Divide, conquer and reconstruct: How to solve the 3D structure of recalcitrant Micro-Exon Gene (MEG) protein from Schistosoma mansoni
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37535563
PubMed Central
PMC10399815
DOI
10.1371/journal.pone.0289444
PII: PONE-D-23-18239
Knihovny.cz E-resources
- MeSH
- Exons genetics MeSH
- Peptides * metabolism MeSH
- Protein Isoforms genetics MeSH
- Schistosoma mansoni * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Peptides * MeSH
- Protein Isoforms MeSH
Micro-Exon Genes are a widespread class of genes known for their high variability, widespread in the genome of parasitic trematodes such as Schistosoma mansoni. In this study, we present a strategy that allowed us to solve the structures of three alternatively spliced isoforms from the Schistoma mansoni MEG 2.1 family for the first time. All isoforms are hydrophobic, intrinsically disordered, and recalcitrant to be expressed in high yield in heterologous hosts. We resorted to the chemical synthesis of shorter pieces, before reconstructing the entire sequence. Here, we show that isoform 1 partially folds in a-helix in the presence of trifluoroethanol while isoform 2 features two rigid elbows, that maintain the peptide as disordered, preventing any structuring. Finally, isoform 3 is dominated by the signal peptide, which folds into a-helix. We demonstrated that combining biophysical techniques, like circular dichroism and nuclear magnetic resonance at natural abundance, with in silico molecular dynamics simulation for isoform 1 only, was the key to solve the structure of MEG 2.1. Our results provide a crucial piece to the puzzle of this elusive and highly variable class of proteins.
Department of Biochemical Sciences Sapienza University of Rome Rome Italy
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czechia
See more in PubMed
McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou X-N. Schistosomiasis. Nature Rev Dis Primers. 2018;4(1). PubMed
Hambrook JR, Hanington PC. Immune evasion strategies of schistosomes. Front immunol. 2021;11:624178. doi: 10.3389/fimmu.2020.624178 PubMed DOI PMC
Boros DL. Immunopathology of Schistosoma mansoni infection. Clin Microbiol Rev. 1989;2(3):250–69. doi: 10.1128/CMR.2.3.250 PubMed DOI PMC
Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al.. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460(7253):352–8. doi: 10.1038/nature08160 PubMed DOI PMC
Lu Z, Sankaranarayanan G, Rawlinson KA, Offord V, Brindley PJ, Berriman M, et al.. The Transcriptome of Schistosoma mansoni Developing Eggs Reveals Key Mediators in Pathogenesis and Life Cycle Propagation. Front trop dis. 2021;2. doi: 10.3389/fitd.2021.713123 PubMed DOI PMC
Anderson L, Amaral MS, Beckedorff F, Silva LF, Dazzani B, Oliveira KC, et al.. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq. PLOS Negl Trop Dis. 2015;9(12):e0004334. doi: 10.1371/journal.pntd.0004334 PubMed DOI PMC
Castro-Borges W, Wilson RA. Schistosome proteomics: updates and clinical implications. Expert Rev Proteomics. 2022:1–15. PubMed
DeMarco R, Mathieson W, Manuel SJ, Dillon GP, Curwen RS, Ashton PD, et al.. Protein variation in blood-dwelling schistosome worms generated by differential splicing of micro-exon gene transcripts. Genome Res. 2010;20(8):1112–21. doi: 10.1101/gr.100099.109 PubMed DOI PMC
UniProt: the Universal Protein knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–D31. doi: 10.1093/nar/gkac1052 PubMed DOI PMC
Thrippleton MJ, Keeler J. Elimination of Zero-Quantum Interference in Two-Dimensional NMR Spectra. Angew Chem Int Ed. 2003;42(33):3938–41. doi: 10.1002/anie.200351947 PubMed DOI
Kay LE, Keifer P, Saarinen T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc. 1992;114(26):10663–5.
Becker J, Koos MRM, Schulze-Sünninghausen D, Luy B. ASAP-HSQC-TOCSY for fast spin system identification and extraction of long-range couplings. J Magn Reson. 2019;300:76–83. doi: 10.1016/j.jmr.2018.12.021 PubMed DOI
Kövér KE, Hruby VJ, Uhrín D. Sensitivity- and gradient-enhanced heteronuclear coupled/decoupled HSQC-TOCSY experiments for measuring long-range heteronuclear coupling constants. J Magn Reson. 1997;129(2):125–9. doi: 10.1006/jmre.1997.1265 PubMed DOI
Cavanagh J, Rance M. Sensitivity improvement in isotropic mixing (TOCSY) experiments. Journal of Magnetic Resonance (1969). 1990;88(1):72–85.
Boyer RD, Johnson R, Krishnamurthy K. Compensation of refocusing inefficiency with synchronized inversion sweep (CRISIS) in multiplicity-edited HSQC. J Magn Reson. 2003;165(2):253–9. doi: 10.1016/j.jmr.2003.08.009 PubMed DOI
Schanda P, Brutscher B. Very Fast Two-Dimensional NMR Spectroscopy for Real-Time Investigation of Dynamic Events in Proteins on the Time Scale of Seconds. J Am Chem Soc. 2005;127(22):8014–5. doi: 10.1021/ja051306e PubMed DOI
Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6(3). doi: 10.1007/BF00197809 PubMed DOI
Lee W, Tonelli M, Markley JL. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015;31(8):1325–7. doi: 10.1093/bioinformatics/btu830 PubMed DOI PMC
Lee W, Rahimi M, Lee Y, Chiu A. POKY: a software suite for multidimensional NMR and 3D structure calculation of biomolecules. Bioinformatics. 2021;37(18):3041–2. doi: 10.1093/bioinformatics/btab180 PubMed DOI PMC
Güntert P, Buchner L. Combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR. 2015;62(4):453–71. doi: 10.1007/s10858-015-9924-9 PubMed DOI
Güntert P, Mumenthaler C, Wuthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997;273(1):283–98. doi: 10.1006/jmbi.1997.1284 PubMed DOI
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 PubMed DOI
Ramachandran S, Kota P, Ding F, Dokholyan NV. Automated minimization of steric clashes in protein structures. Proteins. 2011;79(1):261–70. doi: 10.1002/prot.22879 PubMed DOI PMC
Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. Journal of Chemical Theory and Computation. 2009;5(6):1632–9. doi: 10.1021/ct9000685 PubMed DOI
Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation. 2015;11(8):3696–713. doi: 10.1021/acs.jctc.5b00255 PubMed DOI PMC
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics. 1983;79(2):926–35.
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–8, 27–8. doi: 10.1016/0263-7855(96)00018-5 PubMed DOI
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577–637. doi: 10.1002/bip.360221211 PubMed DOI
Touw WG, Baakman C, Black J, te Beek TA, Krieger E, Joosten RP, et al.. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015;43(Database issue):D364-8. doi: 10.1093/nar/gku1028 PubMed DOI PMC
Chabert V, Hologne M, Seneque O, Walker O, Fromm KM. Alpha-helical folding of SilE models upon Ag(His)(Met) motif formation. Chem Comm. 2018;54(74):10419–22. doi: 10.1039/c8cc03784a PubMed DOI
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32. doi: 10.1016/0022-2836(82)90515-0 PubMed DOI
Bocian W, Borowicz P, Mikolajczyk J, Sitkowski J, Tarnowska A, Bednarek E, et al.. NMR structure of biosynthetic engineered human insulin monomer B31(Lys)-B32(Arg) in water/acetonitrile solution. Comparison with the solution structure of native human insulin monomer. Biopolymers. 2008;89(10):820–30. doi: 10.1002/bip.21018 PubMed DOI
Bocian W, Sitkowski J, Bednarek E, Tarnowska A, Kawecki R, Kozerski L. Structure of human insulin monomer in water/acetonitrile solution. J Biomol NMR. 2008;40(1):55–64. doi: 10.1007/s10858-007-9206-2 PubMed DOI
Zhu GY, Huang QC, Qian MX, Tang YQ. Crystal structure of alpha-momorcharin in 80% acetonitrile-water mixture. Biochim Biophys Acta, Protein Struct Mol Enzymol. 2001;1548(1):152–8. doi: 10.1016/s0167-4838(01)00235-7 PubMed DOI
Cammers-Goodwin A, Allen TJ, Oslick SL, McClure KF, Lee JH, Kemp DS. Mechanism of Stabilization of Helical Conformations of Polypeptides by Water Containing Trifluoroethanol. J Am Chem Soc. 1996;118(13):3082–90.
Luo P, Baldwin RL. Mechanism of Helix Induction by Trifluoroethanol: A Framework for Extrapolating the Helix-Forming Properties of Peptides from Trifluoroethanol/Water Mixtures Back to Water. Biochem. 1997;36(27):8413–21. doi: 10.1021/bi9707133 PubMed DOI
Dyson HJ, Wright PE. NMR illuminates intrinsic disorder. Curr Opin Struct Biol. 2021;70:44–52. doi: 10.1016/j.sbi.2021.03.015 PubMed DOI PMC
Palmer AG. NMR Characterization of the Dynamics of Biomacromolecules. Chem Rev. 2004;104(8):3623–40. doi: 10.1021/cr030413t PubMed DOI
Sharma D, Rajarathnam K. 13C NMR chemical shifts can predict disulfide bond formation. J Biomol NMR. 2000;18(2):165–71. doi: 10.1023/a:1008398416292 PubMed DOI
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.. UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 PubMed DOI
Costain AH, MacDonald AS, Smits HH. Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses. Front immunol. 2018;9. doi: 10.3389/fimmu.2018.03042 PubMed DOI PMC
Takaki KK, Rinaldi G, Berriman M, Pagán AJ, Ramakrishnan L. Schistosoma mansoni eggs modulate the timing of granuloma formation to promote transmission. Cell Host Microbe. 2021;29(1):58–67. e5. doi: 10.1016/j.chom.2020.10.002 PubMed DOI PMC
Felizatti AP, Zeraik AE, Basso LG, Kumagai PS, Lopes JL, Wallace BA, et al.. Interactions of amphipathic α-helical MEG proteins from Schistosoma mansoni with membranes. Biochim Biophys Acta Biomembr. 2020;1862(3):183173. PubMed
Lopes Jose Luiz S, Orcia D, Araujo Ana Paula U, DeMarco R, Wallace BA. Folding Factors and Partners for the Intrinsically Disordered Protein Micro-Exon Gene 14 (MEG-14). Biophys J. 2013;104(11):2512–20. doi: 10.1016/j.bpj.2013.03.063 PubMed DOI PMC
Martins VP, Morais SB, Pinheiro CS, Assis NRG, Figueiredo BCP, Ricci ND, et al.. Sm10.3, a Member of the Micro-Exon Gene 4 (MEG-4) Family, Induces Erythrocyte Agglutination In Vitro and Partially Protects Vaccinated Mice against Schistosoma mansoni Infection. PLOS Negl Trop Dis. 2014;8(3):e2750. doi: 10.1371/journal.pntd.0002750 PubMed DOI PMC
Jackson M, Mantsch HH. Beware of Proteins in DMSO. Biochimica Et Biophysica Acta. 1991;1078(2):231–5. doi: 10.1016/0167-4838(91)90563-f PubMed DOI
Rath P, Saurel O, Tropis M, Daffé M, Demange P, Milon A. NMR localization of the O-mycoloylation on PorH, a channel forming peptide from Corynebacterium glutamicum. FEBS Lett. 2013;587(22):3687–91. doi: 10.1016/j.febslet.2013.09.032 PubMed DOI
Spyranti Z, Tselios T, Deraos G, Matsoukas J, Spyroulias GA. NMR structural elucidation of myelin basic protein epitope 83–99 implicated in multiple sclerosis. Amino Acids. 2010;38(3):929–36. doi: 10.1007/s00726-009-0301-4 PubMed DOI
Takeuchi K, Misaki I, Tokunaga Y, Fujisaki M, Kamoshida H, Takizawa T, et al.. Conformational Plasticity of Cyclic Ras-Inhibitor Peptides Defines Cell Permeabilization Activity. Angew Chem Int Ed. 2021;60(12):6567–72. doi: 10.1002/anie.202016647 PubMed DOI