• This record comes from PubMed

Divide, conquer and reconstruct: How to solve the 3D structure of recalcitrant Micro-Exon Gene (MEG) protein from Schistosoma mansoni

. 2023 ; 18 (8) : e0289444. [epub] 20230803

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Micro-Exon Genes are a widespread class of genes known for their high variability, widespread in the genome of parasitic trematodes such as Schistosoma mansoni. In this study, we present a strategy that allowed us to solve the structures of three alternatively spliced isoforms from the Schistoma mansoni MEG 2.1 family for the first time. All isoforms are hydrophobic, intrinsically disordered, and recalcitrant to be expressed in high yield in heterologous hosts. We resorted to the chemical synthesis of shorter pieces, before reconstructing the entire sequence. Here, we show that isoform 1 partially folds in a-helix in the presence of trifluoroethanol while isoform 2 features two rigid elbows, that maintain the peptide as disordered, preventing any structuring. Finally, isoform 3 is dominated by the signal peptide, which folds into a-helix. We demonstrated that combining biophysical techniques, like circular dichroism and nuclear magnetic resonance at natural abundance, with in silico molecular dynamics simulation for isoform 1 only, was the key to solve the structure of MEG 2.1. Our results provide a crucial piece to the puzzle of this elusive and highly variable class of proteins.

See more in PubMed

McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou X-N. Schistosomiasis. Nature Rev Dis Primers. 2018;4(1). PubMed

Hambrook JR, Hanington PC. Immune evasion strategies of schistosomes. Front immunol. 2021;11:624178. doi: 10.3389/fimmu.2020.624178 PubMed DOI PMC

Boros DL. Immunopathology of Schistosoma mansoni infection. Clin Microbiol Rev. 1989;2(3):250–69. doi: 10.1128/CMR.2.3.250 PubMed DOI PMC

Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al.. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460(7253):352–8. doi: 10.1038/nature08160 PubMed DOI PMC

Lu Z, Sankaranarayanan G, Rawlinson KA, Offord V, Brindley PJ, Berriman M, et al.. The Transcriptome of Schistosoma mansoni Developing Eggs Reveals Key Mediators in Pathogenesis and Life Cycle Propagation. Front trop dis. 2021;2. doi: 10.3389/fitd.2021.713123 PubMed DOI PMC

Anderson L, Amaral MS, Beckedorff F, Silva LF, Dazzani B, Oliveira KC, et al.. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq. PLOS Negl Trop Dis. 2015;9(12):e0004334. doi: 10.1371/journal.pntd.0004334 PubMed DOI PMC

Castro-Borges W, Wilson RA. Schistosome proteomics: updates and clinical implications. Expert Rev Proteomics. 2022:1–15. PubMed

DeMarco R, Mathieson W, Manuel SJ, Dillon GP, Curwen RS, Ashton PD, et al.. Protein variation in blood-dwelling schistosome worms generated by differential splicing of micro-exon gene transcripts. Genome Res. 2010;20(8):1112–21. doi: 10.1101/gr.100099.109 PubMed DOI PMC

UniProt: the Universal Protein knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–D31. doi: 10.1093/nar/gkac1052 PubMed DOI PMC

Thrippleton MJ, Keeler J. Elimination of Zero-Quantum Interference in Two-Dimensional NMR Spectra. Angew Chem Int Ed. 2003;42(33):3938–41. doi: 10.1002/anie.200351947 PubMed DOI

Kay LE, Keifer P, Saarinen T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc. 1992;114(26):10663–5.

Becker J, Koos MRM, Schulze-Sünninghausen D, Luy B. ASAP-HSQC-TOCSY for fast spin system identification and extraction of long-range couplings. J Magn Reson. 2019;300:76–83. doi: 10.1016/j.jmr.2018.12.021 PubMed DOI

Kövér KE, Hruby VJ, Uhrín D. Sensitivity- and gradient-enhanced heteronuclear coupled/decoupled HSQC-TOCSY experiments for measuring long-range heteronuclear coupling constants. J Magn Reson. 1997;129(2):125–9. doi: 10.1006/jmre.1997.1265 PubMed DOI

Cavanagh J, Rance M. Sensitivity improvement in isotropic mixing (TOCSY) experiments. Journal of Magnetic Resonance (1969). 1990;88(1):72–85.

Boyer RD, Johnson R, Krishnamurthy K. Compensation of refocusing inefficiency with synchronized inversion sweep (CRISIS) in multiplicity-edited HSQC. J Magn Reson. 2003;165(2):253–9. doi: 10.1016/j.jmr.2003.08.009 PubMed DOI

Schanda P, Brutscher B. Very Fast Two-Dimensional NMR Spectroscopy for Real-Time Investigation of Dynamic Events in Proteins on the Time Scale of Seconds. J Am Chem Soc. 2005;127(22):8014–5. doi: 10.1021/ja051306e PubMed DOI

Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6(3). doi: 10.1007/BF00197809 PubMed DOI

Lee W, Tonelli M, Markley JL. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015;31(8):1325–7. doi: 10.1093/bioinformatics/btu830 PubMed DOI PMC

Lee W, Rahimi M, Lee Y, Chiu A. POKY: a software suite for multidimensional NMR and 3D structure calculation of biomolecules. Bioinformatics. 2021;37(18):3041–2. doi: 10.1093/bioinformatics/btab180 PubMed DOI PMC

Güntert P, Buchner L. Combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR. 2015;62(4):453–71. doi: 10.1007/s10858-015-9924-9 PubMed DOI

Güntert P, Mumenthaler C, Wuthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997;273(1):283–98. doi: 10.1006/jmbi.1997.1284 PubMed DOI

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 PubMed DOI

Ramachandran S, Kota P, Ding F, Dokholyan NV. Automated minimization of steric clashes in protein structures. Proteins. 2011;79(1):261–70. doi: 10.1002/prot.22879 PubMed DOI PMC

Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. Journal of Chemical Theory and Computation. 2009;5(6):1632–9. doi: 10.1021/ct9000685 PubMed DOI

Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation. 2015;11(8):3696–713. doi: 10.1021/acs.jctc.5b00255 PubMed DOI PMC

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics. 1983;79(2):926–35.

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–8, 27–8. doi: 10.1016/0263-7855(96)00018-5 PubMed DOI

Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577–637. doi: 10.1002/bip.360221211 PubMed DOI

Touw WG, Baakman C, Black J, te Beek TA, Krieger E, Joosten RP, et al.. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015;43(Database issue):D364-8. doi: 10.1093/nar/gku1028 PubMed DOI PMC

Chabert V, Hologne M, Seneque O, Walker O, Fromm KM. Alpha-helical folding of SilE models upon Ag(His)(Met) motif formation. Chem Comm. 2018;54(74):10419–22. doi: 10.1039/c8cc03784a PubMed DOI

Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32. doi: 10.1016/0022-2836(82)90515-0 PubMed DOI

Bocian W, Borowicz P, Mikolajczyk J, Sitkowski J, Tarnowska A, Bednarek E, et al.. NMR structure of biosynthetic engineered human insulin monomer B31(Lys)-B32(Arg) in water/acetonitrile solution. Comparison with the solution structure of native human insulin monomer. Biopolymers. 2008;89(10):820–30. doi: 10.1002/bip.21018 PubMed DOI

Bocian W, Sitkowski J, Bednarek E, Tarnowska A, Kawecki R, Kozerski L. Structure of human insulin monomer in water/acetonitrile solution. J Biomol NMR. 2008;40(1):55–64. doi: 10.1007/s10858-007-9206-2 PubMed DOI

Zhu GY, Huang QC, Qian MX, Tang YQ. Crystal structure of alpha-momorcharin in 80% acetonitrile-water mixture. Biochim Biophys Acta, Protein Struct Mol Enzymol. 2001;1548(1):152–8. doi: 10.1016/s0167-4838(01)00235-7 PubMed DOI

Cammers-Goodwin A, Allen TJ, Oslick SL, McClure KF, Lee JH, Kemp DS. Mechanism of Stabilization of Helical Conformations of Polypeptides by Water Containing Trifluoroethanol. J Am Chem Soc. 1996;118(13):3082–90.

Luo P, Baldwin RL. Mechanism of Helix Induction by Trifluoroethanol:  A Framework for Extrapolating the Helix-Forming Properties of Peptides from Trifluoroethanol/Water Mixtures Back to Water. Biochem. 1997;36(27):8413–21. doi: 10.1021/bi9707133 PubMed DOI

Dyson HJ, Wright PE. NMR illuminates intrinsic disorder. Curr Opin Struct Biol. 2021;70:44–52. doi: 10.1016/j.sbi.2021.03.015 PubMed DOI PMC

Palmer AG. NMR Characterization of the Dynamics of Biomacromolecules. Chem Rev. 2004;104(8):3623–40. doi: 10.1021/cr030413t PubMed DOI

Sharma D, Rajarathnam K. 13C NMR chemical shifts can predict disulfide bond formation. J Biomol NMR. 2000;18(2):165–71. doi: 10.1023/a:1008398416292 PubMed DOI

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.. UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 PubMed DOI

Costain AH, MacDonald AS, Smits HH. Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses. Front immunol. 2018;9. doi: 10.3389/fimmu.2018.03042 PubMed DOI PMC

Takaki KK, Rinaldi G, Berriman M, Pagán AJ, Ramakrishnan L. Schistosoma mansoni eggs modulate the timing of granuloma formation to promote transmission. Cell Host Microbe. 2021;29(1):58–67. e5. doi: 10.1016/j.chom.2020.10.002 PubMed DOI PMC

Felizatti AP, Zeraik AE, Basso LG, Kumagai PS, Lopes JL, Wallace BA, et al.. Interactions of amphipathic α-helical MEG proteins from Schistosoma mansoni with membranes. Biochim Biophys Acta Biomembr. 2020;1862(3):183173. PubMed

Lopes Jose Luiz S, Orcia D, Araujo Ana Paula U, DeMarco R, Wallace BA. Folding Factors and Partners for the Intrinsically Disordered Protein Micro-Exon Gene 14 (MEG-14). Biophys J. 2013;104(11):2512–20. doi: 10.1016/j.bpj.2013.03.063 PubMed DOI PMC

Martins VP, Morais SB, Pinheiro CS, Assis NRG, Figueiredo BCP, Ricci ND, et al.. Sm10.3, a Member of the Micro-Exon Gene 4 (MEG-4) Family, Induces Erythrocyte Agglutination In Vitro and Partially Protects Vaccinated Mice against Schistosoma mansoni Infection. PLOS Negl Trop Dis. 2014;8(3):e2750. doi: 10.1371/journal.pntd.0002750 PubMed DOI PMC

Jackson M, Mantsch HH. Beware of Proteins in DMSO. Biochimica Et Biophysica Acta. 1991;1078(2):231–5. doi: 10.1016/0167-4838(91)90563-f PubMed DOI

Rath P, Saurel O, Tropis M, Daffé M, Demange P, Milon A. NMR localization of the O-mycoloylation on PorH, a channel forming peptide from Corynebacterium glutamicum. FEBS Lett. 2013;587(22):3687–91. doi: 10.1016/j.febslet.2013.09.032 PubMed DOI

Spyranti Z, Tselios T, Deraos G, Matsoukas J, Spyroulias GA. NMR structural elucidation of myelin basic protein epitope 83–99 implicated in multiple sclerosis. Amino Acids. 2010;38(3):929–36. doi: 10.1007/s00726-009-0301-4 PubMed DOI

Takeuchi K, Misaki I, Tokunaga Y, Fujisaki M, Kamoshida H, Takizawa T, et al.. Conformational Plasticity of Cyclic Ras-Inhibitor Peptides Defines Cell Permeabilization Activity. Angew Chem Int Ed. 2021;60(12):6567–72. doi: 10.1002/anie.202016647 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...