Revisiting Schistosoma mansoni Micro-Exon Gene (MEG) Protein Family: A Tour into Conserved Motifs and Annotation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37759676
PubMed Central
PMC10526429
DOI
10.3390/biom13091275
PII: biom13091275
Knihovny.cz E-zdroje
- Klíčová slova
- Schistosoma mansoni, gene annotation, micro-exon genes (MEG), phylogeny,
- MeSH
- exony genetika MeSH
- fylogeneze MeSH
- lidé MeSH
- mapování chromozomů MeSH
- reprodukovatelnost výsledků MeSH
- Schistosoma mansoni * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genome sequencing of the human parasite Schistosoma mansoni revealed an interesting gene superfamily, called micro-exon gene (meg), that encodes secreted MEG proteins. The genes are composed of short exons (3-81 base pairs) regularly interspersed with long introns (up to 5 kbp). This article recollects 35 S. mansoni specific meg genes that are distributed over 7 autosomes and one pair of sex chromosomes and that code for at least 87 verified MEG proteins. We used various bioinformatics tools to produce an optimal alignment and propose a phylogenetic analysis. This work highlighted intriguing conserved patterns/motifs in the sequences of the highly variable MEG proteins. Based on the analyses, we were able to classify the verified MEG proteins into two subfamilies and to hypothesize their duplication and colonization of all the chromosomes. Together with motif identification, we also proposed to revisit MEGs' common names and annotation in order to avoid duplication, to help the reproducibility of research results and to avoid possible misunderstandings.
Zobrazit více v PubMed
Lander E.S., Linton L.M., Birren B., Nusbaum C. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI
Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., et al. The Sequence of the Human Genome. Science. 2001;291:1304–1351. doi: 10.1126/science.1058040. PubMed DOI
Alliance of Genome Resources Consortium. Agapite J., Albou L.-P., A Aleksander S., Alexander M., Anagnostopoulos A.V., Antonazzo G., Argasinska J., Arnaboldi V., Attrill H., et al. Harmonizing model organism data in the Alliance of Genome Resources. GENETICS. 2022;220:iyac022. doi: 10.1093/genetics/iyac022. PubMed DOI PMC
Zerlotini A., Oliveira G. The contributions of the Genome Project to the study of schistosomiasis. Mem. Inst. Oswaldo Cruz. 2010;105:367–369. doi: 10.1590/S0074-02762010000400003. PubMed DOI
Berriman M., Haas B.J., LoVerde P.T., Wilson R.A., Dillon G.P., Cerqueira G.C., Mashiyama S.T., Al-Lazikani B., Andrade L.F., Ashton P.D., et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460:352–358. doi: 10.1038/nature08160. PubMed DOI PMC
Silva L.L., Marcet-Houben M., Nahum L.A., Zerlotini A., Gabaldón T., Oliveira G. The Schistosoma mansoni phylome: Using evolutionary genomics to gain insight into a parasite’s biology. BMC Genom. 2012;13:617. doi: 10.1186/1471-2164-13-617. PubMed DOI PMC
Philippsen G.S. Transposable Elements in the Genome of Human Parasite Schistosoma mansoni: A Review. Trop. Med. Infect. Dis. 2021;6:126. doi: 10.3390/tropicalmed6030126. PubMed DOI PMC
Venancio T.M., Wilson R.A., Verjovski-Almeida S., DeMarco R. Bursts of transposition from non-long terminal repeat retrotransposon families of the RTE clade in Schistosoma mansoni. Int. J. Parasitol. 2010;40:743–749. doi: 10.1016/j.ijpara.2009.11.013. PubMed DOI
Hull R., Dlamini Z. The role played by alternative splicing in antigenic variability in human endo-parasites. Parasites Vectors. 2014;7:53. doi: 10.1186/1756-3305-7-53. PubMed DOI PMC
Davis R.E., Davis A.H., Carroll S.M., Rajkovic A., Rottman F.M. Tandemly Repeated Exons Encode 81-Base Repeats in Multiple, Developmentally Regulated Schistosoma mansoni Transcripts. Mol. Cell. Biol. 1988;8:4745–4755. doi: 10.1128/mcb.8.11.4745-4755.1988. PubMed DOI PMC
DeMarco R., Mathieson W., Manuel S.J., Dillon G.P., Curwen R.S., Ashton P.D., Ivens A.C., Berriman M., Verjovski-Almeida S., Wilson R.A. Protein variation in blood-dwelling schistosome worms generated by differential splicing of micro-exon gene transcripts. Genome Res. 2010;20:1112–1121. doi: 10.1101/gr.100099.109. PubMed DOI PMC
Howe K.L., Bolt B.J., Shafie M., Kersey P., Berriman M. WormBase ParaSite—A comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 2017;215:2–10. doi: 10.1016/j.molbiopara.2016.11.005. PubMed DOI PMC
Wilson R.A., Li X.H., MacDonald S., Neves L.X., Vitoriano-Souza J., Leite L.C.C., Farias L.P., James S., Ashton P.D., DeMarco R., et al. The Schistosome Esophagus Is a ‘Hotspot’ for Microexon and Lysosomal Hydrolase Gene Expression: Implications for Blood Processing. PLoS Neglected Trop. Dis. 2015;9:e0004272. doi: 10.1371/journal.pntd.0004272. PubMed DOI PMC
Anderson L., Amaral M.S., Beckedorff F., Silva L.F., Dazzani B., Oliveira K.C., Almeida G.T., Gomes M.R., Pires D.S., Setubal J.C., et al. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq. PLoS Neglected Trop. Dis. 2015;9:e0004334. doi: 10.1371/journal.pntd.0004334. PubMed DOI PMC
Li X.H., de Castro-Borges W., Parker-Manuel S., Vance G.M., Demarco R., Neves L.X., Evans G.J., Wilson R.A. The schistosome oesophageal gland: Initiator of blood processing. PLoS Neglected Trop. Dis. 2013;7:e2337. doi: 10.1371/journal.pntd.0002337. PubMed DOI PMC
Lu Z., Sankaranarayanan G., Rawlinson K.A., Offord V., Brindley P.J., Berriman M., Rinaldi G. The Transcriptome of Schistosoma mansoni Developing Eggs Reveals Key Mediators in Pathogenesis and Life Cycle Propagation. Front. Trop. Dis. 2021;2:713123. doi: 10.3389/fitd.2021.713123. PubMed DOI PMC
The UniProt Consortium. Bateman A., Martin M.-J., Orchard S., Magrane M., Ahmad S., Alpi E., Bowler-Barnett E.H., Britto R., Bye-A-Jee H., et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–D531. doi: 10.1093/nar/gkac1052. PubMed DOI PMC
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Notredame C., Higgins D.G., Heringa J. T-coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI
Lassmann T., Sonnhammer E.L.L. Kalign, Kalignvu and Mumsa: Web servers for multiple sequence alignment. Nucleic Acids Res. 2006;34:W596–W599. doi: 10.1093/nar/gkl191. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Madeira F., Pearce M., Tivey A.R.N., Basutkar P., Lee J., Edbali O., Madhusoodanan N., Kolesnikov A., Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022;50:W276–W279. doi: 10.1093/nar/gkac240. PubMed DOI PMC
Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing evolutionary trees. Mol. Biol. Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. PubMed DOI
Löytynoja A., Goldman N. Phylogeny-Aware Gap Placement Prevents Errors in Sequence Alignment and Evolutionary Analysis. Science. 2008;320:1632–1635. doi: 10.1126/science.1158395. PubMed DOI
Letunic I., Bork P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC
Crooks G.E., Hon G., Chandonia J.-M., Brenner S.E. WebLogo: A Sequence Logo Generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. Protein Identification and Analysis Tools on the Expasy Server. In: Walker J.M., editor. the Proteomics Protocols Handbook. Humana Press; Totowa, NJ, USA: 2005. pp. 571–607.
Duvaud S., Gabella C., Lisacek F., Stockinger H., Ioannidis V., Durinx C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021;49:W216–W227. doi: 10.1093/nar/gkab225. PubMed DOI PMC
Philippsen G.S., Wilson R.A., DeMarco R. Accelerated evolution of schistosome genes coding for proteins located at the host-parasite interface. Genome Biol. Evol. 2015;7:431–443. doi: 10.1093/gbe/evu287. PubMed DOI PMC
Mathieson W., Wilson R.A. A comparative proteomic study of the undeveloped and developed Schistosoma mansoni egg and its contents: The miracidium, hatch fluid and secretions. Int. J. Parasitol. 2010;40:617–628. doi: 10.1016/j.ijpara.2009.10.014. PubMed DOI
Fneich S., Théron A., Cosseau C., Rognon A., Aliaga B., Buard J., Duval D., Arancibia N., Boissier J., Roquis D., et al. Epigenetic origin of adaptive phenotypic variants in the human blood fluke Schistosoma mansoni. Epigenetics Chromatin. 2016;9:27. doi: 10.1186/s13072-016-0076-2. PubMed DOI PMC
Vlaminck J., Lagatie O., Dana D., Mekonnen Z., Geldhof P., Levecke B., Stuyver L.J. Identification of antigenic linear peptides in the soil-transmitted helminth and Schistosoma mansoni proteome. PLoS Neglected Trop. Dis. 2021;15:e0009369. doi: 10.1371/journal.pntd.0009369. PubMed DOI PMC
Mambelli F.S., Figueiredo B., Morais S., Assis N., Fonseca C., Oliveira S. Recombinant micro-exon gene 3 (MEG-3) antigens from Schistosoma mansoni failed to induce protection against infection but show potential for serological diagnosis. Acta Trop. 2020;204:105356. doi: 10.1016/j.actatropica.2020.105356. PubMed DOI
Lopes J.L.S., Orcia D., Araujo A.P.U., DeMarco R., Wallace B.A. Folding Factors and Partners for the Intrinsically Disordered Protein Micro-Exon Gene 14 (MEG-14) Biophys. J. 2013;104:2512–2520. doi: 10.1016/j.bpj.2013.03.063. PubMed DOI PMC
Orcia D., Zeraik A.E., Lopes J.L., Macedo J.N., dos Santos C.R., Oliveira K.C., Anderson L., Wallace B., Verjovski-Almeida S., Araujo A.P., et al. Interaction of an esophageal MEG protein from schistosomes with a human S100 protein involved in inflammatory response. Biochim. Biophys Acta. Gen. Subj. 2017;1861:3490–3497. doi: 10.1016/j.bbagen.2016.09.015. PubMed DOI
Martins V.P., Morais S.B., Pinheiro C.S., Assis N.R.G., Figueiredo B.C.P., Ricci N.D., Alves-Silva J., Caliari M.V., Oliveira S.C. Sm10.3, a Member of the Micro-Exon Gene 4 (MEG-4) Family, Induces Erythrocyte Agglutination In Vitro and Partially Protects Vaccinated Mice against Schistosoma mansoni Infection. PLoS Neglected Trop. Dis. 2014;8:e2750. doi: 10.1371/journal.pntd.0002750. PubMed DOI PMC
Felizatti A.P., Zeraik A.E., Basso L.G., Kumagai P.S., Lopes J.L., Wallace B., Araujo A.P., DeMarco R. Interactions of amphipathic α-helical MEG proteins from Schistosoma mansoni with membranes. Biochim. Biophys Acta Biomembr. 2020;1862:183173. doi: 10.1016/j.bbamem.2019.183173. PubMed DOI
Nedvedova S., Guillière F., Miele A.E., Cantrelle F.-X., Dvorak J., Walker O., Hologne M. Divide, conquer and reconstruct: How to solve the 3D structure of recalcitrant Micro-Exon Gene (MEG) protein from Schistosoma mansoni. PLoS ONE. 2023;18:e0289444. doi: 10.1371/journal.pone.0289444. PubMed DOI PMC
Romero A.A., Cobb S.A., Collins J.N.R., Kliewer S.A., Mangelsdorf D.J., Collins J.J., 3rd The Schistosoma mansoni nuclear receptor FTZ-F1 maintains esophageal gland function via transcriptional regulation of meg-8.3. PLoS Pathog. 2021;17:e1010140. doi: 10.1371/journal.ppat.1010140. PubMed DOI PMC
Farias L.P., Vance G.M., Coulson P.S., Vitoriano-Souza J., Neto A.P.d.S., Wangwiwatsin A., Neves L.X., Castro-Borges W., McNicholas S., Wilson K.S., et al. Epitope Mapping of Exposed Tegument and Alimentary Tract Proteins Identifies Putative Antigenic Targets of the Attenuated Schistosome Vaccine. Front. Immunol. 2021;11:624613. doi: 10.3389/fimmu.2020.624613. PubMed DOI PMC
Soares J.B.C., Maya-Monteiro C.M., Bittencourt-Cunha P.R., Atella G.C., Lara F.A., D’avila J.C., Menezes D., Vannier-Santos M.A., Oliveira P.L., Egan T.J., et al. Extracellular lipid droplets promote hemozoin crystallization in the gut of the blood fluke Schistosoma mansoni. FEBS Lett. 2007;581:1742–1750. doi: 10.1016/j.febslet.2007.03.054. PubMed DOI