EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články, práce podpořená grantem
Grantová podpora
S003017N
Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
PubMed
37542067
PubMed Central
PMC10403541
DOI
10.1038/s41597-023-02393-8
PII: 10.1038/s41597-023-02393-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
As a network of researchers we release an open-access database (EUSEDcollab) of water discharge and suspended sediment yield time series records collected in small to medium sized catchments in Europe. EUSEDcollab is compiled to overcome the scarcity of open-access data at relevant spatial scales for studies on runoff, soil loss by water erosion and sediment delivery. Multi-source measurement data from numerous researchers and institutions were harmonised into a common time series and metadata structure. Data reuse is facilitated through accompanying metadata descriptors providing background technical information for each monitoring station setup. Across ten European countries, EUSEDcollab covers over 1600 catchment years of data from 245 catchments at event (11 catchments), daily (22 catchments) and monthly (212 catchments) temporal resolution, and is unique in its focus on small to medium catchment drainage areas (median = 43 km2, min = 0.04 km2, max = 817 km2) with applicability for soil erosion research. We release this database with the aim of uniting people, knowledge and data through the European Union Soil Observatory (EUSO).
Altereo Innovation and Digital division 2 Av Madeleine Bonnaud Venelles 13770 France
AREAS 2 Avenue Foch 76460 Saint Valery en Caux France
Ciencias Humanas University of La Rioja Luis de Ulloa 2 26004 La Rioja Spain
Department of Environmental Sciences University of Basel Bernoullistrasse 30 4056 Basel Switzerland
Department of Science Roma Tre University Viale Guglielmo Marconi 446 146 Roma Italy
Earth and Environmental Sciences KU Leuven Celestijnenlaan 200e box 2409 3001 Leuven Belgium
Ecoscience Aarhus University C F Møllers Allé 3 Aarhus 8000 Denmark
European Commission Joint Research Centre Via Enrico Fermi 2749 Ispra VA 21026 Italy
Faculty of Civil and Geodetic Engineering University of Ljubljana Jamova 2 1000 Ljubljana Slovenia
Gembloux Agro Bio Tech Uliège Passage des Déportés 2 Gembloux 5030 Belgium
Geography University of Barcelona Montalegre 6 Barcelona 8001 Spain
Instituto Pirenaico de Ecología Avenida Montañana 1005 Zaragoza 50059 Spain
LGCgE IMT Nord Europe 942 rue Charles Bourseul Douai 59508 France
Marine Sciences Department University of the Aegean University hill Mytilene 81100 Greece
NBFC National Biodiversity Future Center Palermo 90133 Italy
Soil Physics and Land Management Wageningen University P O Box 47 Wageningen 6700 AA Netherlands
UNISYSTEMS Rue du Puits Romain 29 Bertrange L 8070 Luxembourg
Zobrazit více v PubMed
Montanarella L, Panagos P. The relevance of sustainable soil management within the European Green Deal. Land use policy. 2021;100:104950.
Alewell C, et al. Global phosphorus shortage will be aggravated by soil erosion. Nature Communications 2020 11:1. 2020;11:1–12. PubMed PMC
Panagos P, Jiskra M, Borrelli P, Liakos L, Ballabio C. Mercury in European topsoils: Anthropogenic sources, stocks and fluxes. Environ Res. 2021;201:111556. PubMed PMC
Ulén B, Bechmann M, Fölster J, Jarvie HP, Tunney H. Agriculture as a phosphorus source for eutrophication in the north-west European countries, Norway, Sweden, United Kingdom and Ireland: a review. Soil Use Manag. 2007;23:5–15.
Mullan D, Vandaele K, Boardman J, Meneely J, Crossley LH. Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate. Geomorphology. 2016;270:102–120.
Boardman J, Vandaele K, Evans R, Foster IDL. Off-site impacts of soil erosion and runoff: Why connectivity is more important than erosion rates. Soil Use Manag. 2019;35:245–256.
Chappell A, Baldock J, Sanderman J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nature Climate Change 2015 6:2. 2015;6:187–191.
Kuhn NJ, Hoffmann T, Schwanghart W, Dotterweich M. Agricultural soil erosion and global carbon cycle: Controversy over? Earth Surf Process Landf. 2009;34:1033–1038.
Borrelli P, et al. Effect of Good Agricultural and Environmental Conditions on erosion and soil organic carbon balance: A national case study. Land use policy. 2016;50:408–421.
Borrelli P, et al. A step towards a holistic assessment of soil degradation in Europe: Coupling on-site erosion with sediment transfer and carbon fluxes. Environ Res. 2018;161:291–298. PubMed PMC
Graf WL, Wohl E, Sinha T, Sabo JL. Sedimentation and sustainability of western American reservoirs. Water Resour Res. 2010;46:12535.
Borrelli, P. et al. Policy implications of multiple concurrent soil erosion processes in European farmland. Nature Sustainability 2022 1–10, 10.1038/s41893-022-00988-4 (2022).
Borrelli P, Panagos P. An indicator to reflect the mitigating effect of Common Agricultural Policy on soil erosion. Land use policy. 2020;92:104467.
Panagos, P. & Katsoyiannis, A. Soil erosion modelling: The new challenges as the result of policy developments in Europe. Environmental Research vol. 172, 470–474, 10.1016/j.envres.2019.02.043 (2019). PubMed
Panagos P, et al. Projections of soil loss by water erosion in Europe by 2050. Environ Sci Policy. 2021;124:380–392.
Quinton JN, Govers G, Van Oost K, Bardgett RD. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience 2010 3:5. 2010;3:311–314.
Lal R. Soil conservation and ecosystem services. International Soil and Water Conservation Research. 2014;2:36–47.
Issaka, S. & Ashraf, M. A. Impact of soil erosion and degradation on water quality: a review. 1, 1–11, 10.1080/24749508.2017.1301053 (2017).
Tang T, et al. Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide. Curr Opin Environ Sustain. 2019;36:39–48.
Borrelli P, et al. Soil erosion modelling: A global review and statistical analysis. Science of The Total Environment. 2021;780:146494. PubMed PMC
Vörösmarty, C. et al. Global water data: A newly endangered species. Eos (Washington DC)82, (2001).
Syvitski J, et al. Earth’s sediment cycle during the Anthropocene. Nature Reviews Earth & Environment 2022 3:3. 2022;3:179–196.
García-Ruiz JM, et al. A meta-analysis of soil erosion rates across the world. Geomorphology. 2015;239:160–173.
Maetens, W. et al. Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: A meta-analysis of plot data. 36, 599–653, 10.1177/0309133312451303 (2012).
Vanmaercke M, Poesen J, Verstraeten G, de Vente J, Ocakoglu F. Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology. 2011;130:142–161.
Gonzalez-Hidalgo JC, de Luis M, Batalla RJ. Effects of the largest daily events on total soil erosion by rainwater. An analysis of the USLE database. Earth Surf Process Landf. 2009;34:2070–2077.
Gonzalez-Hidalgo JC, Batalla RJ, Cerda A. Catchment size and contribution of the largest daily events to suspended sediment load on a continental scale. Catena (Amst) 2013;102:40–45.
Vercruysse K, Grabowski RC, Rickson RJ. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth Sci Rev. 2017;166:38–52.
Vereecken H, et al. Soil hydrology: Recent methodological advances, challenges, and perspectives. Water Resour Res. 2015;51:2616–2633.
Bogena HR, et al. Toward Better Understanding of Terrestrial Processes through Long-Term Hydrological Observatories. Vadose Zone Journal. 2018;17:1–10.
Lefèvre C, Cruse RM, Cunha dos Anjos LH, Calzolari C, Haregeweyn N. Guest editorial – soil erosion assessment, tools and data: A special issue from the Global Symposium on soil Erosion 2019. International Soil and Water Conservation Research. 2020;8:333–336.
Latron J, Lana-Renault N. The relevance of hydrological research in small catchments- a perspective from long-term monitoring sites in. Europe. Geographical Research Letters. 2018;44:387–395.
Brazier, R. E., Beven, K. J., Freer, J. & Rowan, J. S. Equifinality and uncertainty in physically based soil erosion models: application of the GLUE methodology to WEPP–the Water Erosion Prediction Project–for sites in the UK and USA. 10.1002/1096-9837.
Beven K, Binley A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol Process. 1992;6:279–298.
van Oost K, et al. Spatially distributed data for erosion model calibration and validation: The Ganspoel and Kinderveld datasets. Catena (Amst) 2005;61:105–121.
Onnen N, et al. Distributed water erosion modelling at fine spatial resolution across Denmark. Geomorphology. 2019;342:150–162.
Alatorre LC, Beguería S, García-Ruiz JM. Regional scale modeling of hillslope sediment delivery: A case study in the Barasona Reservoir watershed (Spain) using WATEM/SEDEM. J Hydrol (Amst) 2010;391:109–123.
Jetten V, de Roo A, Favis-Mortlock D. Evaluation of field-scale and catchment-scale soil erosion models. Catena (Amst) 1999;37:521–541.
Refsgaard JC. Parameterisation, calibration and validation of distributed hydrological models. J Hydrol (Amst) 1997;198:69–97.
Baartman JEM, Jetten VG, Ritsema CJ, de Vente J. Exploring effects of rainfall intensity and duration on soil erosion at the catchment scale using openLISEM: Prado catchment, SE Spain. Hydrol Process. 2012;26:1034–1049.
de Vente J, Poesen J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth Sci Rev. 2005;71:95–125.
Batista PVG, Davies J, Silva MLN, Quinton JN. On the evaluation of soil erosion models: Are we doing enough? Earth Sci Rev. 2019;197:102898.
Harmel RD, Bonta JV, Richardson CW. The Original USDA-ARS Experimental Watersheds in Texas and Ohio: Contributions from the Past and Visions for the Future. Trans ASABE. 2007;50:1669–1675.
Owens LB, Bonta JV, Shipitalo MJ. USDA-ARS North Appalachian Experimental Watershed: 70-Year Hydrologic, Soil Erosion, and Water Quality Database. Soil Science Society of America Journal. 2010;74:619–623.
Goodrich DC, et al. The USDA‐ARS Experimental Watershed Network – Evolution, Lessons Learned, Societal Benefits, and Moving Forward. Water Resour Res. 2020 doi: 10.1029/2019wr026473. DOI
Nearing MA, Foster GR, Lane LJ, Finkner SC. A Process-Based Soil Erosion Model for USDA-Water Erosion Prediction Project Technology. Transactions of the ASAE. 1989;32:1587–1593.
Vines TH, et al. The Availability of Research Data Declines Rapidly with Article Age. Current Biology. 2014;24:94–97. PubMed
Panagos P, et al. Soil priorities in the European Union. Geoderma Regional. 2022;29:e00510.
Horowitz AJ, Clarke RT, Merten GH. The effects of sample scheduling and sample numbers on estimates of the annual fluxes of suspended sediment in fluvial systems. Hydrol Process. 2015;29:531–543.
Horowitz AJ. An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrol Process. 2003;17:3387–3409.
Asselman NEM. Fitting and interpretation of sediment rating curves. J Hydrol (Amst) 2000;234:228–248.
Navratil O, et al. Global uncertainty analysis of suspended sediment monitoring using turbidimeter in a small mountainous river catchment. J Hydrol (Amst) 2011;398:246–259.
Rode M, Suhr U. Uncertainties in selected river water quality data. Hydrol Earth Syst Sci. 2007;11:863–874.
Skarbøvik E, Stålnacke P, Bogen J, Bønsnes TE. Impact of sampling frequency on mean concentrations and estimated loads of suspended sediment in a Norwegian river: Implications for water management. Science of The Total Environment. 2012;433:462–471. PubMed
de Girolamo AM, di Pillo R. lo Porto, A., Todisco, M. T. & Barca, E. Identifying a reliable method for estimating suspended sediment load in a temporary river system. Catena (Amst) 2018;165:442–453.
Thodsen H, et al. Suspended matter and associated contaminants in Danish streams: a national analysis. J Soils Sediments. 2019;19:3068–3082.
Gonzalez-Hidalgo JC, Batalla RJ, Cerdá A, de Luis M. Contribution of the largest events to suspended sediment transport across the USA. Land Degrad Dev. 2010;21:83–91.
Gonzalez-Hidalgo JC, Peña-Monné JL, de Luis M. A review of daily soil erosion in Western Mediterranean areas. Catena (Amst) 2007;71:193–199.
Parsons AJ, Brazier RE, Wainwright J, Powell DM. Scale relationships in hillslope runoff and erosion. Earth Surf Process Landf. 2006;31:1384–1393.
Kirkby MJ. Distance, time and scale in soil erosion processes. Earth Surf Process Landf. 2010;35:1621–1623.
Cerdan O, et al. Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. J Hydrol (Amst) 2004;299:4–14.
Peña-Angulo D, et al. Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. J Hydrol (Amst) 2019;571:390–405.
Panagos P, et al. European Soil Data Centre 2.0: Soil data and knowledge in support of the EU policies. Eur J Soil Sci. 2022;73:e13315.
Matthews F, 2023. EUSEDcollab.v1. Figshare. DOI
Cantreul V, Pineux N, Swerts G, Bielders C, Degré A. Performance of the LandSoil expert-based model to map erosion and sedimentation: application to a cultivated catchment in central Belgium. Earth Surf Process Landf. 2020;45:1376–1391.
Pineux N, et al. Diachronic soil surveys: A method for quantifying long-term diffuse erosion? Geoderma Regional. 2017;10:102–114.
Steegen A, et al. Sediment export by water from an agricultural catchment in the Loam Belt of central Belgium. Geomorphology. 2000;33:25–36.
Steegen A, et al. Factors Controlling Sediment and Phosphorus Export from Two Belgian Agricultural Catchments. J Environ Qual. 2001;30:1249–1258. PubMed
Steegen A, Govers G. Correction factors for estimating suspended sediment export from loess catchments. Earth Surf Process Landf. 2001;26:441–449.
Pak, L. T. et al. Observatoire Pesticeros des transferts de substances actives phytosanitaires dans les eaux de ruissellement d’un bassin versant agricole représentatif des régions limoneuses en grandes cultures. in 48th congress of French pesticides Group (2018).
Ouvry, J.-F. et al. Erosion des sols à l’échelle du bassin versant agricole de Bourville. in Journée d’Etudes des Sols (‘Journée d’Etudes des Sols’ conference, 2018).
Grangeon T, et al. Les observatoires du ruissellement: comprendre les processus pour améliorer les modélisations. La Houille Blanche - Revue internationale de l’eau. 2020;6:7–16.
Grangeon T, et al. Dynamic parameterization of soil surface characteristics for hydrological models in agricultural catchments. Catena (Amst) 2022;214:106257.
Richet, J.-B., Ouvry, J.-F. & Pak, L. T. Quantification des ruissellements sur les petits bassins versants limoneux et karstiques de Normandie. in SHF scientific research congress Lyon 30 nov-2 déc 2020 (SHF scientific research congress Lyon 30 nov-2 déc 2020, 2020).
Patault E, Alary C, Franke C, Gauthier A, Abriak NE. Assessing temporal variability and controlling factors of the sediment budget of a small agricultural catchment in Northern France (the Pommeroye) Heliyon. 2019;5:e01407. PubMed PMC
Licciardello F, Barbagallo S, Gallart F. Hydrological and erosional response of a small catchment in Sicily. Journal of Hydrology and Hydromechanics. 2019;67:201–212.
Carollo FG, di Stefano C, Ferro V, Pampalone V. New Stage-Discharge Equation for the SMBF Flume. Journal of Irrigation and Drainage Engineering. 2016;142:04016005.
Ferro V, di Stefano C, Giordano G, Rizzo S. Sediment delivery processes and the spatial distribution of caesium-137 in a small Sicilian basin. Hydrol Process. 1998;12:701–711.
Zumr D, Dostál T, Devátý J. Identification of prevailing storm runoff generation mechanisms in an intensively cultivated catchment. J. Hydrol. Hydromech. 2015;63:246–254.
Zumr D, et al. Experimental determination of the flood wave transformation and the sediment resuspension in a small regulated stream in an agricultural catchment. Hydrol Earth Syst Sci. 2017;21:5681–5691.
Li T, Jeřábek J, Noreika N, Dostál T, Zumr D. An overview of hydrometeorological datasets from a small agricultural catchment (Nučice) in the Czech Republic. Hydrol Process. 2021;35:e14042.
Gamvroudis C, Nikolaidis NP, Tzoraki O, Papadoulakis V, Karalemas N. Water and sediment transport modeling of a large temporary river basin in Greece. Science of The Total Environment. 2015;508:354–365. PubMed
Tzoraki, O. et al. Flood generation and classification of a semi-arid intermittent flow watershed: Evrotas river. 11, 77–92, 10.1080/15715124.2013.768623 (2013).
Smolska, E. Soil erosion and sediment supply to a fluvial system in the last-glacial area on the example of the upper Szeszupa river catchment (NE Poland). in Zeitschrift für Geomorphologie (2012).
Smolska, E. Soil erosion and fluvial transport monitoring in the Upper Szeszupa catchment (NE Poland). in Quaestiones Geographicae 73–83 (Adam Mickiewicz University Press, 2008).
Smolska, E. Extreme rainfalls and their impact on slopes based on soil erosion measurements (as exemplified by the Suwalki Lakeland, Poland). Geogr Pol80 (2007).
Smolska, E. Channel response to flood flows on example of the Szeszupa river in the last-glacial area (NE Poland). in Quaestiones Geographicae 63–72 (Adam Mickiewicz University Press, 2008).
Święchowicz J. Linkage of slope wash and sediment and solute export from a foothill catchment in the Carpathian Foothills of South Poland. Earth Surf Process Landf. 2002;27:1389–1413.
Święchowicz J. The influence of plant cover and land use on slope–channel decoupling in a foothill catchment: a case study from the Carpathian Foothills, southern Poland. Earth Surf Process Landf. 2002;27:463–479.
Nunes JP, et al. Hydrological and Erosion Processes in Terraced Fields: Observations from a Humid Mediterranean Region in Northern Portugal. Land Degrad Dev. 2018;29:596–606.
Nunes JP, et al. Impacts of wildfire and post-fire land management on hydrological and sediment processes in a humid Mediterranean headwater catchment. Hydrol Process. 2020;34:5210–5228.
Wu J, Baartman JEM, Nunes JP. Comparing the impacts of wildfire and meteorological variability on hydrological and erosion responses in a Mediterranean catchment. Land Degrad Dev. 2021;32:640–653.
Bezak N, Šraj M, Mikoš M. Analyses of suspended sediment loads in Slovenian rivers. Hydrological Sciences Journal. 2016;61:1094–1108.
Durán ZVH, et al. Runoff and sediment yield from a small watershed in southeastern Spain (Lanjarón): implications for water quality. Hydrological Sciences Journal. 2012;57:1610–1625.
Merchán D, et al. Dissolved solids and suspended sediment dynamics from five small agricultural watersheds in Navarre, Spain: A 10-year study. Catena (Amst) 2019;173:114–130.
Casalí J, et al. Runoff, erosion, and water quality of agricultural watersheds in central Navarre (Spain) Agric Water Manag. 2008;95:1111–1128.
Merchán D, et al. Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain) Agric Water Manag. 2018;195:120–132.
Chahor Y, et al. Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain) Agric Water Manag. 2014;134:24–37.
Giménez R, et al. Factors controlling sediment export in a small agricultural watershed in Navarre (Spain) Agric Water Manag. 2012;110:1–8.
Casalí J, et al. Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain) Agric Water Manag. 2010;97:1683–1694.
Outeiro L, Úbeda X, Farguell J. The impact of agriculture on solute and suspended sediment load on a Mediterranean watershed after intense rainstorms. Earth Surf Process Landf. 2010;35:549–560.
Farguell J, Úbeda X, Pacheco E. Shrub removal effects on runoff and sediment transport in a mediterranean experimental catchment (Vernegà River, NE Spain) Catena (Amst) 2022;210:105882.
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 2017;37:4302–4315.
Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW. A climatic stratification of the environment of Europe. Global Ecology and Biogeography. 2005;14:549–563.