• This record comes from PubMed

Soil erosion modelling: A global review and statistical analysis

. 2021 Aug 01 ; 780 () : 146494. [epub] 20210317

Status PubMed-not-MEDLINE Language English Country Netherlands Media print-electronic

Document type Journal Article, Review

Links

PubMed 33773346
PubMed Central PMC8140410
DOI 10.1016/j.scitotenv.2021.146494
PII: S0048-9697(21)01562-X
Knihovny.cz E-resources

To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions.

Castilla La Mancha University School of Advanced Agricultural and Forestry Engineering Albacete 02071 Spain

Centre for Environmental and Marine Studies Dpt of Environment and Planning University of Aveiro Portugal

Department Agraria University Mediterranea of Reggio Calabria Località Feo di Vito 89122 Reggio Calabria Italy

Department of Agricultural and Environmental Sciences University of Milan Via Celoria 2 20133 Milan Italy

Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE United States

Department of Biological Environment Kangwon National University Chuncheon 24341 Republic of Korea

Department of Chemistry and Biochemistry University of Alaska Fairbanks Fairbanks AK USA

Department of Civil Engineering National Taipei University of Technology Taiwan

Department of Earth and Environmental Sciences University of Pavia Via Ferrata 1 27100 Pavia Italy

Department of Earth and Environmental Sciences University of Pavia Via Ferrata 1 27100 Pavia Italy; Department of Environmental Sciences Environmental Geosciences University of Basel Basel CH 4056 Switzerland; Department of Biological Environment Kangwon National University Chuncheon 24341 Republic of Korea

Department of Environmental Sciences Environmental Geosciences University of Basel Basel CH 4056 Switzerland

Department of Hydraulics and Sanitation São Carlos School of Engineering CxP 359 São Carlos SP 13566 590 Brazil; Federal University of Mato Grosso do Sul CxP 549 Campo Grande MS 79070 900 Brazil

Department of Plant Science and Landscape Architecture University of Maryland College Park MD USA

Department of Rural and Surveying Engineering Aristotle University of Thessaloniki 54124 Thessaloniki Greece

Department of Soil Science and Plant Nutrition Faculty of Agriculture University of Ankara 06110 Diskapi Ankara Turkey

Department of Veterinary Sciences University of Pisa Pisa Italy

Department of Watershed Management Engineering Faculty of Natural Resources Yazd university Yazd Iran

Estación Experimental de Aula Dei Spanish National Research Council Avenida Montañana 1005 50059 Zaragoza Spain

European Commission Joint Research Centre Ispra Italy

Faculty of Agriculture University of Torbat Heydarieh Torbat Heydarieh Iran

Faculty of Environmental Sciences Czech University of Life Sciences Prague Kamýcká 129 Praha Suchdol 165 00 Czech Republic

Faculty of Natural Resources University of Tehran Tehran Iran

Faculty of Science and Technology Free University of Bozen Bolzano Bolzano Italy

Federal University of Mato Grosso do Sul CxP 549 Campo Grande MS 79070 900 Brazil

Georges Lemaître Centre for Earth and Climate Research Earth and Life Institute Université Catholique de Louvain Belgium

INRAE Unité InfoSol Orléans 45075 France

Institute of Geography and Geoecology Karlsruhe Institute of Technology Germany; Faculty of Agricultural Sciences National University of Loja Ecuador

Institute of Sciences and Technologies for Sustainable Energy and Mobility Strada delle Cacce 73 10135 Torino Italy

International Crops Research Institute for the Semi Arid Tropics Ethiopia

International Platform for Dryland Research and Education Tottori University Tottori 680 0001 Japan

ISRIC World Soil Information Wageningen the Netherlands

Julius Kühn Institute Federal Research Centre for Cultivated Plants Institute for Strategies and Technology Assessment Kleinmachnow Germany

Leibniz Center for Agricultural Landscape Research Muencheberg Germany

Leibniz Institute of Freshwater Ecology and Inland Fisheries Department of Ecohydrology 12587 Berlin Germany

Ludwig Maximilian University Munich Germany

Met European Research Observatory International Affiliates Program of the University Corporation for Atmospheric Research Via Monte Pino snc 82100 Benevento Italy

Minas Gerais State University Campus Frutal Brazil

Normandie Univ Rouen UNIROUEN UNICAEN CNRS M2C FED SCALE Rouen France

Romanian Academy Iasi Branch Geography Group 8 Carol 1 700505 Iasi Romania

School of Biological Sciences University of Adelaide Adelaide Australia

School of Environmental and Rural Science University of New England Armidale NSW 2351 Australia

School of Environmental Ecology and Biological Engineering Wuhan Institute of Technology Wuhan 430205 China

Soil Erosion and Degradation Research Group Department of Geography University of Valencia Valencia Spain

Soil Erosion and Degradation Research Group Department of Geography University of Valencia Valencia Spain; Department of Physical Geography University of Trier 54296 Trier Germany

Soil Physics and Land Management Group Wageningen University Wageningen the Netherlands

Soil Research Institute Council for Scientific and Industrial Research Kwadaso Kumasi Ghana

Southwest Watershed Research Center USDA ARS 2000 E Allen Rd Tucson AZ 85719 United States

State Key Laboratory of Earth Surface Processes and Resource Ecology Faculty of Geographical Science Beijing Normal University Beijing China

State Key Laboratory of Earth Surface Processes and Resource Ecology Faculty of Geographical Science Beijing Normal University Beijing China; Institute of Land Surface System and Sustainable Development Faculty of Geographical Science Beijing Normal University Beijing China

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau Institute of Soil and Water Conservation Northwest A and F University Yangling Shaanxi 712100 China

Team Soil Water and Land Use Wageningen Environmental Research Wageningen 6708RC Netherlands

Unité de Recherche en Science du Sol INRAE Orléans 45075 France; Sciences de la Terre et de l'Univers Orléans University 45067 Orléans France

University Hassiba Benbouali of Chlef Laboratory of Chemistry Vegetable Water Energy Algeria

University of Bari Aldo Moro Department of Agricultural and Environmental Sciences Bari Italy

University of Ljubljana Faculty of Civil and Geodetic Engineering Ljubljana Slovenia

University of Turin Department of Agricultural Forest and Food Sciences Largo Paolo Braccini 2 10095 Grugliasco Italy

University of Twente Faculty of Geo Information Science and Earth Observation PO Box 217 Enschede AE 7500 the Netherlands

Water and Soil Resources Research Group Institute of Geography Universität Augsburg Alter Postweg 118 86159 Augsburg Germany

Water Research Institute National Research Council Bari Italy

World Food Programme Roma 00148 Italy; University of Leicester Centre for Landscape and Climate Research Department of Geography University Road Leicester LE1 7RH UK

See more in PubMed

Alewell C., Borrelli P., Meusburger K., Panagos P. Using the USLE: chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019;7:203–225. doi: 10.1016/j.iswcr.2019.05.004. DOI

Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R. Large area hydrologic modeling and assesment part I: model development. JAWRA J. Am. Water Resour. Assoc. 1998;34:73–89. doi: 10.1111/j.1752-1688.1998.tb05961.x. DOI

Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M.K., 2012. SWAT: Model use, calibration, and validation. Trans. ASABE 55, 1491–1508. doi:10.13031/2013.42259. DOI

Auerswald K., Kainz M., Fiener P. Soil erosion potential of organic versus conventional farming evaluated by USLE modelling of cropping statistics for agricultural districts in Bavaria. Soil Use Manag. 2003;19:305–311. doi: 10.1079/SUM2003212. DOI

Auerswald K., Fiener P., Martin W., Elhaus D. Use and misuse of the K factor equation in soil erosion modeling: an alternative equation for determining USLE nomograph soil erodibility values. Catena. 2014;118:220–225. doi: 10.1016/j.catena.2014.01.008. DOI

Baade J., Rekolainen S. Existing soil erosion data sets. In: Poesen J., editor. Boardman, J. Soil Erosion in Europe. John Wiley & Sons; Ltd, Chichester, UK: 2006. pp. 717–728. DOI

Barnett P., Lascar C. Comparing unique title coverage of web of science and scopus in earth and atmospheric sciences. Issues Sci. Technol. Librariansh. 2012:1–20. doi: 10.5062/F4W37T8C. DOI

Batista P.V.G., Davies J., Silva M.L.N., Quinton J.N. On the evaluation of soil erosion models: are we doing enough? Earth-Science Rev. 2019;197:102898. doi: 10.1016/j.earscirev.2019.102898. DOI

Batjes N.H. Global assessment of land vulnerability to water erosion on a 1/2° by 1/2° grid. L. Degrad. Dev. 1996;7:353–365. doi: 10.1002/(SICI)1099-145X(199612)7:4<353::AID-LDR239>3.0.CO;2-N. DOI

D. B. Beasley, L. F. Huggins, E. J. Monke, 1980. ANSWERS: a model for watershed planning. Trans. ASAE 23, 0938–0944. doi:10.13031/2013.34692. DOI

Bennett, H., Chapline, W., 1928. Soil erosion: a national menace., United States Department of Agriculture (USDA).

Bernatek-Jakiel A., Poesen J. Subsurface erosion by soil piping: significance and research needs. Earth-Science Rev. 2018;185:1107–1128. doi: 10.1016/j.earscirev.2018.08.006. DOI

Bezak N., Mikoš M., Borrelli P., Alewell C., Alvarez P., Anache j.A.A., Baartman J., Ballabio C., Biddoccu M., Cerdà A., Chalise D., Chen S., Chen W., De Girolamo A.M., Gessesse G.D., Deumlich D., Diodato N., Efthimiou N., Erpul G., Fiener P., Freppaz M., Gentile F., Gericke A., Haregeweyn N., Hu B., Jeanneau A., Kaffas K., Kiani-Harchegani M., Lizaga Villuendas I., Li C., Lombardo L., López-Vicente M., Lucas-Borja M.E., Märker M., Miao C., Modugno S., Möller M., Naipal V., Nearing M., Owusu S., Panday D., Patault E., Patriche C.V., Poggio Portes, R., Quijano L., Rahdari M.R., Renima M., Ricci G.F., Rodrigo-Comino J., Saia S., Samani A.N., Schillaci C., Syrris V., Kim H.S., Spinola D.N., Oliveira P.T.S., Teng H., Thapa R., Vantas K., Vieira D., Yang J.E, Yin S., Zema D.A., Zhao G., Panagos P. 2021. Soil Erosion Modelling: A Bibliometric Analysis. Manuscript submitted to Environmental Research. PubMed

Boardman J. Soil erosion science: reflections on the limitations of current approaches. Catena. 2006;68:73–86. doi: 10.1016/j.catena.2006.03.007. DOI

Boardman J., Poesen J. Soil Erosion in Europe. John Wiley & Sons. 2006 doi: 10.1002/0470859202. DOI

Bongaarts J. Development: slow down population growth. Nature. 2016;530:409–412. doi: 10.1038/530409a. PubMed DOI

Borrelli P., Märker M., Panagos P., Schütt B. Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines. Italy. Catena. 2014;114 doi: 10.1016/j.catena.2013.10.007. DOI

Borrelli P., Panagos P., Montanarella L. New insights into the geography and modelling of wind erosion in the European agricultural land. Application of a spatially explicit indicator of land susceptibility to wind erosion. Sustain. 2015;7:8823–8836. doi: 10.3390/su7078823. DOI

Borrelli P., Panagos P., Ballabio C., Lugato E., Weynants M., Montanarella L. Towards a Pan-European assessment of land susceptibility to wind erosion. L. Degrad. Dev. 2016;27:1093–1105. doi: 10.1002/ldr.2318. DOI

Borrelli P., Lugato E., Montanarella L., Panagos P. A new assessment of soil loss due to wind erosion in European agricultural soils using a quantitative spatially distributed modelling approach. L. Degrad. Dev. 2017;28:335–344. doi: 10.1002/ldr.2588. DOI

Borrelli P., Robinson D.A., Panagos P., Lugato E., Yang J.E., Alewell C., Wuepper D., Montanarella L., Ballabio C. Land use and climate change impacts on global soil erosion by water (2015-2070) Proc. Natl. Acad. Sci. U. S. A. 2020;117:21994–22001. doi: 10.1073/pnas.2001403117. PubMed DOI PMC

Borrelli Pasquale, Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schütt B., Ferro V., Bagarello V., Van Oost K., Montanarella L., Panagos P. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017;8:2013. doi: 10.1038/s41467-017-02142-7. PubMed DOI PMC

Bosco C., De Rigo D., Dewitte O., Poesen J., Panagos P. Modelling soil erosion at European scale: towards harmonization and reproducibility. Nat. Hazards Earth Syst. Sci. 2015;15:225–245. doi: 10.5194/nhess-15-225-2015. DOI

Cerdan O., Souchère V., Lecomte V., Couturier A., Le Bissonnais Y. Incorporating soil surface crusting processes in an expert-based runoff model: sealing and transfer by runoff and erosion related to agricultural management. Catena. 2002;46:189–205. doi: 10.1016/S0341-8162(01)00166-7. DOI

Cerdan O., Govers G., Le Bissonnais Y., Van Oost K., Poesen J., Saby N., Gobin A., Vacca A., Quinton J., Auerswald K., Klik A., Kwaad F.J.P.M., Raclot D., Ionita I., Rejman J., Rousseva S., Muxart T., Roxo M.J., Dostal T. Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology. 2010;122:167–177. doi: 10.1016/j.geomorph.2010.06.011. DOI

Cetina K.K. Forms of Reason in Science. Hist. Polit. Econ; Cultures: 1991. Epistemic. DOI

Chappell A., Webb N.P. Using albedo to reform wind erosion modelling, mapping and monitoring. Aeolian Res. 2016;23:63–78. doi: 10.1016/j.aeolia.2016.09.006. DOI

Cook H.L. The nature and controlling variables of the water erosion process. Soil Sci. Soc. Am. J. 1937;1:478–494.

De Roo A.P.J., Offermans R.J.E., Cremers N.H.D.T. LISEM: a single-event, physically based hydrological and soil erosion model for drainage basins. II: sensitivity analysis, validation and application. Hydrol. Process. 1996;10:1119–1126. doi: 10.1002/(SICI)1099-1085(199608)10:8<1119::AID-HYP416>3.0.CO;2-V. DOI

De Vente J., Poesen J. Predicting soil erosion and sediment yield at the basin scale: scale issues and semi - quantitative models. Earth - Sci. Rev. 2005;71:95–125. doi: 10.1016/j.earscirev.2005.02.002. DOI

De Vente J., Poesen J., Verstraeten G., Govers G., Vanmaercke M., Van Rompaey A., Arabkhedri M., Boix-Fayos C. Predicting soil erosion and sediment yield at regional scales: where do we stand? Earth-Science Rev. 2013;127:16–29. doi: 10.1016/j.earscirev.2013.08.014. DOI

FAO . 2019. Global Symposium on Soil Erosion (GSER19): Outcome Document.

FAO, ITPS, 2015. The Status of the World's Soil Resources (Main Report). Rome. doi:ISBN 978-92-5-109004-6.

Ferro V., Porto P. Sediment delivery distributed (SEDD) model. J. Hydrol. Eng. 2000;5:411–422. doi: 10.1061/(ASCE)1084-0699(2000)5:4(411). DOI

Flanagan D.C., Nearing M.A. USDA-water erosion prediction project: hillslope profile and watershed model documentation. NSERL Rep. 1995:10.

Forbes . Ctries. Lead. World Sci. Publ; URL: 2020. No Title [WWW Document]https://www.forbes.com/sites/niallmccarthy/2019/12/19/the-countries-leading-the-world-in-scientific-publications-infographic/#2dbb3efd1ec4

G.R. Foster, D.C. Yoder, G.A. Weesies, T.J. Toy, 2001. The design philosophy behind RUSLE2: evolution of an empirical model, in: Engineers, A.S. of A. and B. (Ed.), Soil Erosion. American Society of Agricultural and Biological Engineers, St. Joseph, MI, p. 95. doi:10.13031/2013.3211. DOI

Fryrear D.W., Chen W.N., Lester C. Revised wind erosion equation. Ann. Arid Zone. 2001;40:265–279.

García-Ruiz J.M., Beguería S., Nadal-Romero E., González-Hidalgo J.C., Lana-Renault N., Sanjuán Y. A meta-analysis of soil erosion rates across the world. Geomorphology. 2015;239:160–173. doi: 10.1016/j.geomorph.2015.03.008. DOI

Gavrilovic S. A method for estimating of the average annual quantity of sediments according to the potency of erosion. Bull. Fac. For. 1962;26:151–168.

Gericke A. Soil loss estimation and empirical relationships for sediment delivery ratios of European river catchments. Int. J. river Basin Manag. 2015;13:179–202. doi: 10.1080/15715124.2014.1003302. DOI

Govers, G., Gobin, A., Cerdan, O., van Rompaey, A., Kirkby, M., Irvine, B., Le Bissonais, Y., Daroussin, J., King, D., Jones, R.J.A., 2003. Pan-European soil erosion risk assessment for Europe: the PESERA Map, JRC, Ispra, Italy.Available online at http://eusoils.jrc.it/ESDB_Archive/pesera/pesera_cd/pdf/ThePeseraMap.pdf [verified 25 October 2006].

GSP Global Soil Partnership [WWW Document] 2019. http://www.fao.org/global-soil-partnership/about/p URL.

Hansen L. Conservation reserve program: environmental benefits update. J. Agric. Resour. Econ. 2007;36:267–280. doi: 10.1017/S1068280500007085. DOI

Hansen L.T., Breneman V.E., Davison C.W., Dicken C.W. The cost of soil erosion to downstream navigation. J. Soil Water Conserv. 2002;57:205–212.

Hansen, M.C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century forest cover change. Science (80-. ). 342, 850–853. doi:10.1126/science.1244693. PubMed DOI

Hessel R., Daroussin J., Verzandvoort S., Walvoort D. Evaluation of two different soil databases to assess soil erosion sensitivity with MESALES for three areas in Europe and Morocco. Catena. 2014;118:234–247. doi: 10.1016/j.catena.2014.01.012. DOI

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;15:1965–1978. doi: 10.1002/joc.1276. DOI

Hurtt G.C., Chini L., Sahajpal R., Frolking S., Bodirsky B.L., Calvin K., Doelman J.C., Fisk J., Fujimori S., Klein Goldewijk K., Hasegawa T., Havlik P., Heinimann A., Humpenöder F., Jungclaus J., Kaplan J.O., Kennedy J., Krisztin T., Lawrence D., Lawrence P., Ma L., Mertz O., Pongratz J., Popp A., Poulter B., Riahi K., Shevliakova E., Stehfest E., Thornton P., Tubiello F.N., van Vuuren D.P., Zhang X. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 2020;13:5425–5464. doi: 10.5194/gmd-13-5425-2020. DOI

Jabbar M.T., Chen X., Li H. Land degradation due to soil wind erosion in arid and semi-arid regions with the aid of geoinformation technology. Int. Geosci. Remote Sens. Symp. 2006:3309–3312. doi: 10.1109/IGARSS.2006.850. DOI

Kirkby M. Soil erosion in Europe, Soil Erosion in Europe. John Wiley & Sons, Ltd, Chichester, UK. 2006 doi: 10.1002/0470859202. DOI

Kirkby, M.J., Jones, R., Irvine, B., Gobin, A., Govers, G., Cerdan, O., Rompaey, A.J.J. Van, Le Bissonnais, Y., Daroussin, J., King, D., Montanarella, L., Grimm, M., Vieillefont, V., Puigdefabregas, J., Boer, M., Kosmas, C., Yassoglou, N., Tsara, M., Mantel, S., Lynden, G.J. Van, Huting, J., 2004. Pan-European soil erosion risk assessment: the PESERA map, version 1 October 2003. Explanation of special publication Ispra 2004 no.73 (S.P.I.04.73). Eur. Soil Bur. Res. Report. Off. Off. Publ. Eur. Communities, Luxemb. 16, 18pp. and 1 map in ISO B1 format.

Labrière N., Locatelli B., Laumonier Y., Freycon V., Bernoux M. Soil erosion in the humid tropics: a systematic quantitative review. Agric. Ecosyst. Environ. 2015;203:127–139. doi: 10.1016/j.agee.2015.01.027. DOI

Laflen J.M., Lane L.J., Foster G.R. WEPP: a new generation of erosion prediction technology. J. Soil Water Conserv. 1991;46:34–38.

Lal R. Anthropogenic influences on world soils and implications to global food security. Adv. Agron. 2007;93:69–93. doi: 10.1016/S0065-2113(06)93002-8. DOI

Li P., Holden J., Irvine B., Mu X. Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change. Geophys. Res. Lett. 2017;44:3615–3623. doi: 10.1002/2017GL072590. DOI

Littleboy M., Silburn D.M., Freebairn D.M., Woodruff D.R., Hammer G.L. Bull. Dep. Prim; Ind: 1989. PERFECT - a computer simulation model of Productivity Erosion Runoff Functions to Evaluate Conservation Techniques.

Lizaga I., Quijano L., Gaspar L., Navas A. Estimating soil redistribution patterns with 137Cs measurements in a Mediterranean mountain catchment affected by land abandonment. L. Degrad. Dev. 2018;29:105–117. doi: 10.1002/ldr.2843. DOI

Mabit L., Lee Z.Y., Fulajtar L., Dercon G., Zaman M., Toloza A., Heng L., Bernard C. 2019. Two Decades of FAO/IAEA Supported Research and Development for Combating Soil Degradation Through Isotopes.

Merritt W.S., Letcher R.A., Jakeman A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003 doi: 10.1016/S1364-8152(03)00078-1. DOI

Mezosi G., Blanka V., Bata T., Kovacs F., Meyer B. Estimation of regional differences in wind erosion sensitivity in Hungary. Nat. Hazards Earth Syst. Sci. 2015;15:97–107. doi: 10.5194/nhess-15-97-2015. DOI

Mitasova H., Hofierka J., Zlocha M., Iverson L.R. Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 1996;10:629–641. doi: 10.1080/02693799608902101. DOI

Mongeon P., Paul-Hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics. 2016;106:213–228. doi: 10.1007/s11192-015-1765-5. DOI

Montgomery D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. U. S. A. 2007;104:13268–13272. doi: 10.1073/pnas.0611508104. PubMed DOI PMC

Morgan R.P.C. John Wiley & Sons; 2009. Soil Erosion and Conservation.

Morgan, R.P.C., Nearing, M.A., 2011. Handbook of erosion modelling, Handbook of Erosion Modelling. doi:10.1002/9781444328455. DOI

Morgan R.P.C., Morgan D.D.V., Finney H.J. A predictive model for the assessment of soil erosion risk. J. Agric. Eng. Res. 1984;30:245–253. doi: 10.1016/S0021-8634(84)80025-6. DOI

Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D., Styczen, M.E., 1998. The European soil erosion model (EUROSEM): a process-based approach for predicting soil loss from fields and small catchments. 527–544. Earth Surf. Process. Landforms 23, 527–544. doi:10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5.

Mutchler C.K., Murphree C.E., McGregor K.C. Routledge; Routledge: 2017. Laboratory and field plots for erosion research, in: Soil Erosion Research Methods; pp. 11–38.

Naipal V., Ciais P., Wang Y., Lauerwald R., Guenet B., Van Oost K. Global soil organic carbon removal by water erosion under climate change and land use change during AD 1850–2005. Biogeosciences. 2018;15:4459–4480. doi: 10.5194/bg-15-4459-2018. DOI

Nearing M.A. Evaluating soil erosion models using measured plot data: accounting for variability in the data. Earth Surf. Process. Landforms. 2000;25:1035–1043. doi: 10.1002/1096-9837(200008)25:9<1035::AID-ESP121>3.0.CO;2-B. DOI

Nearing, M.A., 2013. Soil erosion and conservation, in: Environmental Modelling: Finding Simplicity in Complexity: Second Edition. pp. 365–378. doi:10.1002/9781118351475.ch22. DOI

Nearing M. Soil erosion and conservation. In: Wainwright J., Mulligan M., editors. Environmental modelling: Finding simplicity in complexity. John Wiley & Sons, Ltd; 2004. pp. 277–290.

Nearing M.A., Wei H., Stone J.J., Pierson F.B., Spaeth K.E., Weltz M.A., Flanagan D.C., Hernandez M. A rangeland hydrology and erosion model. Trans. ASABE. 2011;54:901–908.

Oldeman L. 1994. The Global Extent of Soil Degradation. (Soil resilience and sustainable land use)

Olsson, L., Barbosa, H., 2019. Chapter 4: land degradation, in: Climate Change and Land. pp. 4–186.

Panagos P., Borrelli P., Poesen J., Ballabio C., Lugato E., Meusburger K., Montanarella L., Alewell C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Pol. 2015;54:438–447. doi: 10.1016/j.envsci.2015.08.012. DOI

Panagos P., Borrelli P., Robinson D.A. Common agricultural policy: tackling soil loss across Europe. Nature. 2015;526:195. PubMed

Panagos P., Borrelli P., Meusburger K., Yu B., Klik A., Lim K.J., Yang J.Y., Ni J., Miao C., Chattopadhyay N., Sadeghi S.H., Hazbavi Z., Zabihi M., Larionov G.A., Krasnov S.F., Garobets A., Levi Y., Erpul G., Birkel C., Hoyos N., Naipal V., Oliveira P.T.S., Bonilla C., Meddi M., Nel W., Dashti H.A., Boni M., Diodato N., Van Oost K., Nearing M.A., Ballabio C. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-04282-8. PubMed DOI PMC

Panagos P., Borrelli P., Poesen J. Soil loss due to crop harvesting in the European Union: A first estimation of an underrated geomorphic process. Sci. Total Environ. 2019;664:487–498. doi: 10.1016/j.scitotenv.2019.02.009. PubMed DOI PMC

Pinheiro A., Caussade B., Ayphassorho H. Simulation of soil erosion by water at the watershed level. Trans. Ecol. Environ. 1995;26:547–556.

Podmanicky L., Balázs K., Belényesi M., Centeri C., Kristóf D., Kohlheb N. Modelling soil quality changes in Europe. An impact assessment of land use change on soil quality in Europe. Ecol. Indic. 2011;11:4–15. doi: 10.1016/j.ecolind.2009.08.002. DOI

Poesen J. Soil erosion in the Anthropocene: research needs. Earth Surf. Process. Landforms. 2018;84:64–84. doi: 10.1002/esp.4250. DOI

Quinton J.N., Govers G., Van Oost K., Bardgett R.D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 2010;3:311–314. doi: 10.1038/ngeo838. DOI

Renard, K., Foster, G., Weesies, G., McCool, D., Yoder, D., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric. Handb. No. 703. doi:DC0-16-048938-5 65–100.

Renschler C.S. Designing geo-spatial interfaces to scale process modes: the GeoWEPP approach. Hydrol. Process. 2003;17:1005–1017. doi: 10.1002/hyp.1177. DOI

Rezaei M., Sameni A., Shamsi S.R.F., Bartholomeus H. Remote sensing of land use/cover changes and its effect on wind erosion potential in southern Iran. PeerJ. 2016;2016 doi: 10.7717/peerj.1948. PubMed DOI PMC

Schmidt J. A mathematical model to simulate rainfall erosion. Catena. 1991;19:101–109.

Sharma K.D., Singh S. Satellite remote sensing for soil erosion modelling using the ANSWERS model. Hydrol. Sci. J. 1995;40:259–272. doi: 10.1080/02626669509491408. DOI

Smith, J.R., 1914. Soil erosion and its remedy by terracing and tree planting. Science (80-. ). 39, 858–862. doi:10.1126/science.39.1015.858. PubMed DOI

Stehfest, E., van Vuuren, D., Kram, T., Bouwman, L., Alkemade, R., Bakkenes, M., Biemans, H., Bouwman, A., Den Elzen, M., Janse, J., Alkemade, R., Bakkenes, M., Biemans, H., Bouwman, A., Den Elzen, M., Janse, J., Lucas, P., van Minnen, J., Muller, C., Prins, A.G., 2014. Integrated assessment of global environmental change with IMAGE 3.0, Model description and policy applications, The Hague: PBL Netherlands Environmental Assessment Agency.

Symeonakis E., Drake N. 10-daily soil erosion modelling over sub-Saharan Africa. Environ. Monit. Assess. 2010;161:369–387. doi: 10.1007/s10661-009-0754-7. PubMed DOI

Syvitski J.P.M., Milliman J.D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal iocean. J. Geol. 2014;115:1–19. doi: 10.1086/509246. DOI

Teng H., Viscarra Rossel R.A., Shi Z., Behrens T., Chappell A., Bui E. Assimilating satellite imagery and visible-near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environ. Model. Softw. 2016;77:156–167. doi: 10.1016/j.envsoft.2015.11.024. DOI

Toy T.J., Foster G.R., Renard K.G. John Wiley & Sons, Inc.; New York: 2002. Soil Erosion: Processes, Prediction, Measurement, and Control.

Van Oost K., Govers G., Desmet P. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landsc. Ecol. 2000;15:577–589. doi: 10.1023/A:1008198215674. DOI

Van Oost K., Beuselinck L., Hairsine P.B., Govers G. Spatial evaluation of a multi-class sediment transport and deposition model. Earth Surf. Process. Landforms. 2004;29:1027–1044. doi: 10.1002/esp.1089. DOI

Van Oost K., Cerdan O., Quine T.A. Accelerated sediment fluxes by water and tillage erosion on European agricultural land. Earth Surf. Process. Landforms. 2009;34:1625–1634. doi: 10.1002/esp. DOI

Wagner, L.E., 1996. An overview of the wind erosion prediction system, in: Intl. Conf. on Air Pollution from Agricultural Operations. pp. 73–75.

Wagner L.E. A history of wind erosion prediction models in the United States Department of Agriculture: the Wind Erosion Prediction System (WEPS) Aeolian Res. 2013;10:9–24. doi: 10.1016/j.aeolia.2012.10.001. DOI

Williams, J.R., Berndt, H.D., 1977. Sediment yield prediction based on watershed hydrology. Trans. Am. Soc. Agric. Eng. 20, 1100–1104. doi:10.13031/2013.35710.

Williams J.R., Renard K.G., Dyke P.T. EPIC: a new method for assessing erosion’s effect on soil productivity. J. Soil Water Conserv. 1983;38:381–383.

Wischmeier W.H., Smith D.D. Predicting rainfall erosion losses. Agric. Handb. no. 1978;537:285–291. doi: 10.1029/TR039i002p00285. DOI

Woodruff N., Armbrust D. A monthly climatic factor for the wind erosion equation. J. Soil Water Conserv. 1968;23:103–104.

Wuepper D., Borrelli P., Finger R. Countries and the global rate of soil erosion. Nat. Sustain. 2020;3:51–55. doi: 10.1038/s41893-019-0438-4. DOI

Young, R.A., Onstad, C.A., Bosch, D.D., Anderson, W.P., 1989. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 44, 121–13.

Yuan Z., Chu Y., Shen Y. Simulation of surface runoff and sediment yield under different land-use in a Taihang Mountains watershed. North China. Soil Tillage Res. 2015;153:7–19.

Zhang C., McBean E.A. Estimation of desertification risk from soil erosion: a case study for Gansu Province. China. Stoch. Environ. Res. Risk Assess. 2016;30:2215–2229. doi: 10.1007/s00477-015-1186-2. DOI

Zingg R.W. Degree and length of land slope as it affects soil loss in runoff. J. Agric. Eng. 1940;21:59–64.

Newest 20 citations...

See more in
Medvik | PubMed

EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water

. 2023 Aug 04 ; 10 (1) : 515. [epub] 20230804

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...