Soil erosion modelling: A global review and statistical analysis
Status PubMed-not-MEDLINE Language English Country Netherlands Media print-electronic
Document type Journal Article, Review
PubMed
33773346
PubMed Central
PMC8140410
DOI
10.1016/j.scitotenv.2021.146494
PII: S0048-9697(21)01562-X
Knihovny.cz E-resources
- Keywords
- Erosion rates, GIS, Land degradation, Land sustainability, Modelling, Policy support,
- Publication type
- Journal Article MeSH
- Review MeSH
To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions.
Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE United States
Department of Biological Environment Kangwon National University Chuncheon 24341 Republic of Korea
Department of Chemistry and Biochemistry University of Alaska Fairbanks Fairbanks AK USA
Department of Civil Engineering National Taipei University of Technology Taiwan
Department of Earth and Environmental Sciences University of Pavia Via Ferrata 1 27100 Pavia Italy
Department of Plant Science and Landscape Architecture University of Maryland College Park MD USA
Department of Veterinary Sciences University of Pisa Pisa Italy
European Commission Joint Research Centre Ispra Italy
Faculty of Agriculture University of Torbat Heydarieh Torbat Heydarieh Iran
Faculty of Natural Resources University of Tehran Tehran Iran
Faculty of Science and Technology Free University of Bozen Bolzano Bolzano Italy
Federal University of Mato Grosso do Sul CxP 549 Campo Grande MS 79070 900 Brazil
INRAE Unité InfoSol Orléans 45075 France
International Crops Research Institute for the Semi Arid Tropics Ethiopia
International Platform for Dryland Research and Education Tottori University Tottori 680 0001 Japan
ISRIC World Soil Information Wageningen the Netherlands
Leibniz Center for Agricultural Landscape Research Muencheberg Germany
Ludwig Maximilian University Munich Germany
Minas Gerais State University Campus Frutal Brazil
Normandie Univ Rouen UNIROUEN UNICAEN CNRS M2C FED SCALE Rouen France
Romanian Academy Iasi Branch Geography Group 8 Carol 1 700505 Iasi Romania
School of Biological Sciences University of Adelaide Adelaide Australia
School of Environmental and Rural Science University of New England Armidale NSW 2351 Australia
Soil Physics and Land Management Group Wageningen University Wageningen the Netherlands
Soil Research Institute Council for Scientific and Industrial Research Kwadaso Kumasi Ghana
Southwest Watershed Research Center USDA ARS 2000 E Allen Rd Tucson AZ 85719 United States
Team Soil Water and Land Use Wageningen Environmental Research Wageningen 6708RC Netherlands
University Hassiba Benbouali of Chlef Laboratory of Chemistry Vegetable Water Energy Algeria
University of Bari Aldo Moro Department of Agricultural and Environmental Sciences Bari Italy
University of Ljubljana Faculty of Civil and Geodetic Engineering Ljubljana Slovenia
Water Research Institute National Research Council Bari Italy
See more in PubMed
Alewell C., Borrelli P., Meusburger K., Panagos P. Using the USLE: chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019;7:203–225. doi: 10.1016/j.iswcr.2019.05.004. DOI
Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R. Large area hydrologic modeling and assesment part I: model development. JAWRA J. Am. Water Resour. Assoc. 1998;34:73–89. doi: 10.1111/j.1752-1688.1998.tb05961.x. DOI
Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M.K., 2012. SWAT: Model use, calibration, and validation. Trans. ASABE 55, 1491–1508. doi:10.13031/2013.42259. DOI
Auerswald K., Kainz M., Fiener P. Soil erosion potential of organic versus conventional farming evaluated by USLE modelling of cropping statistics for agricultural districts in Bavaria. Soil Use Manag. 2003;19:305–311. doi: 10.1079/SUM2003212. DOI
Auerswald K., Fiener P., Martin W., Elhaus D. Use and misuse of the K factor equation in soil erosion modeling: an alternative equation for determining USLE nomograph soil erodibility values. Catena. 2014;118:220–225. doi: 10.1016/j.catena.2014.01.008. DOI
Baade J., Rekolainen S. Existing soil erosion data sets. In: Poesen J., editor. Boardman, J. Soil Erosion in Europe. John Wiley & Sons; Ltd, Chichester, UK: 2006. pp. 717–728. DOI
Barnett P., Lascar C. Comparing unique title coverage of web of science and scopus in earth and atmospheric sciences. Issues Sci. Technol. Librariansh. 2012:1–20. doi: 10.5062/F4W37T8C. DOI
Batista P.V.G., Davies J., Silva M.L.N., Quinton J.N. On the evaluation of soil erosion models: are we doing enough? Earth-Science Rev. 2019;197:102898. doi: 10.1016/j.earscirev.2019.102898. DOI
Batjes N.H. Global assessment of land vulnerability to water erosion on a 1/2° by 1/2° grid. L. Degrad. Dev. 1996;7:353–365. doi: 10.1002/(SICI)1099-145X(199612)7:4<353::AID-LDR239>3.0.CO;2-N. DOI
D. B. Beasley, L. F. Huggins, E. J. Monke, 1980. ANSWERS: a model for watershed planning. Trans. ASAE 23, 0938–0944. doi:10.13031/2013.34692. DOI
Bennett, H., Chapline, W., 1928. Soil erosion: a national menace., United States Department of Agriculture (USDA).
Bernatek-Jakiel A., Poesen J. Subsurface erosion by soil piping: significance and research needs. Earth-Science Rev. 2018;185:1107–1128. doi: 10.1016/j.earscirev.2018.08.006. DOI
Bezak N., Mikoš M., Borrelli P., Alewell C., Alvarez P., Anache j.A.A., Baartman J., Ballabio C., Biddoccu M., Cerdà A., Chalise D., Chen S., Chen W., De Girolamo A.M., Gessesse G.D., Deumlich D., Diodato N., Efthimiou N., Erpul G., Fiener P., Freppaz M., Gentile F., Gericke A., Haregeweyn N., Hu B., Jeanneau A., Kaffas K., Kiani-Harchegani M., Lizaga Villuendas I., Li C., Lombardo L., López-Vicente M., Lucas-Borja M.E., Märker M., Miao C., Modugno S., Möller M., Naipal V., Nearing M., Owusu S., Panday D., Patault E., Patriche C.V., Poggio Portes, R., Quijano L., Rahdari M.R., Renima M., Ricci G.F., Rodrigo-Comino J., Saia S., Samani A.N., Schillaci C., Syrris V., Kim H.S., Spinola D.N., Oliveira P.T.S., Teng H., Thapa R., Vantas K., Vieira D., Yang J.E, Yin S., Zema D.A., Zhao G., Panagos P. 2021. Soil Erosion Modelling: A Bibliometric Analysis. Manuscript submitted to Environmental Research. PubMed
Boardman J. Soil erosion science: reflections on the limitations of current approaches. Catena. 2006;68:73–86. doi: 10.1016/j.catena.2006.03.007. DOI
Boardman J., Poesen J. Soil Erosion in Europe. John Wiley & Sons. 2006 doi: 10.1002/0470859202. DOI
Bongaarts J. Development: slow down population growth. Nature. 2016;530:409–412. doi: 10.1038/530409a. PubMed DOI
Borrelli P., Märker M., Panagos P., Schütt B. Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines. Italy. Catena. 2014;114 doi: 10.1016/j.catena.2013.10.007. DOI
Borrelli P., Panagos P., Montanarella L. New insights into the geography and modelling of wind erosion in the European agricultural land. Application of a spatially explicit indicator of land susceptibility to wind erosion. Sustain. 2015;7:8823–8836. doi: 10.3390/su7078823. DOI
Borrelli P., Panagos P., Ballabio C., Lugato E., Weynants M., Montanarella L. Towards a Pan-European assessment of land susceptibility to wind erosion. L. Degrad. Dev. 2016;27:1093–1105. doi: 10.1002/ldr.2318. DOI
Borrelli P., Lugato E., Montanarella L., Panagos P. A new assessment of soil loss due to wind erosion in European agricultural soils using a quantitative spatially distributed modelling approach. L. Degrad. Dev. 2017;28:335–344. doi: 10.1002/ldr.2588. DOI
Borrelli P., Robinson D.A., Panagos P., Lugato E., Yang J.E., Alewell C., Wuepper D., Montanarella L., Ballabio C. Land use and climate change impacts on global soil erosion by water (2015-2070) Proc. Natl. Acad. Sci. U. S. A. 2020;117:21994–22001. doi: 10.1073/pnas.2001403117. PubMed DOI PMC
Borrelli Pasquale, Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schütt B., Ferro V., Bagarello V., Van Oost K., Montanarella L., Panagos P. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017;8:2013. doi: 10.1038/s41467-017-02142-7. PubMed DOI PMC
Bosco C., De Rigo D., Dewitte O., Poesen J., Panagos P. Modelling soil erosion at European scale: towards harmonization and reproducibility. Nat. Hazards Earth Syst. Sci. 2015;15:225–245. doi: 10.5194/nhess-15-225-2015. DOI
Cerdan O., Souchère V., Lecomte V., Couturier A., Le Bissonnais Y. Incorporating soil surface crusting processes in an expert-based runoff model: sealing and transfer by runoff and erosion related to agricultural management. Catena. 2002;46:189–205. doi: 10.1016/S0341-8162(01)00166-7. DOI
Cerdan O., Govers G., Le Bissonnais Y., Van Oost K., Poesen J., Saby N., Gobin A., Vacca A., Quinton J., Auerswald K., Klik A., Kwaad F.J.P.M., Raclot D., Ionita I., Rejman J., Rousseva S., Muxart T., Roxo M.J., Dostal T. Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology. 2010;122:167–177. doi: 10.1016/j.geomorph.2010.06.011. DOI
Cetina K.K. Forms of Reason in Science. Hist. Polit. Econ; Cultures: 1991. Epistemic. DOI
Chappell A., Webb N.P. Using albedo to reform wind erosion modelling, mapping and monitoring. Aeolian Res. 2016;23:63–78. doi: 10.1016/j.aeolia.2016.09.006. DOI
Cook H.L. The nature and controlling variables of the water erosion process. Soil Sci. Soc. Am. J. 1937;1:478–494.
De Roo A.P.J., Offermans R.J.E., Cremers N.H.D.T. LISEM: a single-event, physically based hydrological and soil erosion model for drainage basins. II: sensitivity analysis, validation and application. Hydrol. Process. 1996;10:1119–1126. doi: 10.1002/(SICI)1099-1085(199608)10:8<1119::AID-HYP416>3.0.CO;2-V. DOI
De Vente J., Poesen J. Predicting soil erosion and sediment yield at the basin scale: scale issues and semi - quantitative models. Earth - Sci. Rev. 2005;71:95–125. doi: 10.1016/j.earscirev.2005.02.002. DOI
De Vente J., Poesen J., Verstraeten G., Govers G., Vanmaercke M., Van Rompaey A., Arabkhedri M., Boix-Fayos C. Predicting soil erosion and sediment yield at regional scales: where do we stand? Earth-Science Rev. 2013;127:16–29. doi: 10.1016/j.earscirev.2013.08.014. DOI
FAO . 2019. Global Symposium on Soil Erosion (GSER19): Outcome Document.
FAO, ITPS, 2015. The Status of the World's Soil Resources (Main Report). Rome. doi:ISBN 978-92-5-109004-6.
Ferro V., Porto P. Sediment delivery distributed (SEDD) model. J. Hydrol. Eng. 2000;5:411–422. doi: 10.1061/(ASCE)1084-0699(2000)5:4(411). DOI
Flanagan D.C., Nearing M.A. USDA-water erosion prediction project: hillslope profile and watershed model documentation. NSERL Rep. 1995:10.
Forbes . Ctries. Lead. World Sci. Publ; URL: 2020. No Title [WWW Document]https://www.forbes.com/sites/niallmccarthy/2019/12/19/the-countries-leading-the-world-in-scientific-publications-infographic/#2dbb3efd1ec4
G.R. Foster, D.C. Yoder, G.A. Weesies, T.J. Toy, 2001. The design philosophy behind RUSLE2: evolution of an empirical model, in: Engineers, A.S. of A. and B. (Ed.), Soil Erosion. American Society of Agricultural and Biological Engineers, St. Joseph, MI, p. 95. doi:10.13031/2013.3211. DOI
Fryrear D.W., Chen W.N., Lester C. Revised wind erosion equation. Ann. Arid Zone. 2001;40:265–279.
García-Ruiz J.M., Beguería S., Nadal-Romero E., González-Hidalgo J.C., Lana-Renault N., Sanjuán Y. A meta-analysis of soil erosion rates across the world. Geomorphology. 2015;239:160–173. doi: 10.1016/j.geomorph.2015.03.008. DOI
Gavrilovic S. A method for estimating of the average annual quantity of sediments according to the potency of erosion. Bull. Fac. For. 1962;26:151–168.
Gericke A. Soil loss estimation and empirical relationships for sediment delivery ratios of European river catchments. Int. J. river Basin Manag. 2015;13:179–202. doi: 10.1080/15715124.2014.1003302. DOI
Govers, G., Gobin, A., Cerdan, O., van Rompaey, A., Kirkby, M., Irvine, B., Le Bissonais, Y., Daroussin, J., King, D., Jones, R.J.A., 2003. Pan-European soil erosion risk assessment for Europe: the PESERA Map, JRC, Ispra, Italy.Available online at http://eusoils.jrc.it/ESDB_Archive/pesera/pesera_cd/pdf/ThePeseraMap.pdf [verified 25 October 2006].
GSP Global Soil Partnership [WWW Document] 2019. http://www.fao.org/global-soil-partnership/about/p URL.
Hansen L. Conservation reserve program: environmental benefits update. J. Agric. Resour. Econ. 2007;36:267–280. doi: 10.1017/S1068280500007085. DOI
Hansen L.T., Breneman V.E., Davison C.W., Dicken C.W. The cost of soil erosion to downstream navigation. J. Soil Water Conserv. 2002;57:205–212.
Hansen, M.C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century forest cover change. Science (80-. ). 342, 850–853. doi:10.1126/science.1244693. PubMed DOI
Hessel R., Daroussin J., Verzandvoort S., Walvoort D. Evaluation of two different soil databases to assess soil erosion sensitivity with MESALES for three areas in Europe and Morocco. Catena. 2014;118:234–247. doi: 10.1016/j.catena.2014.01.012. DOI
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;15:1965–1978. doi: 10.1002/joc.1276. DOI
Hurtt G.C., Chini L., Sahajpal R., Frolking S., Bodirsky B.L., Calvin K., Doelman J.C., Fisk J., Fujimori S., Klein Goldewijk K., Hasegawa T., Havlik P., Heinimann A., Humpenöder F., Jungclaus J., Kaplan J.O., Kennedy J., Krisztin T., Lawrence D., Lawrence P., Ma L., Mertz O., Pongratz J., Popp A., Poulter B., Riahi K., Shevliakova E., Stehfest E., Thornton P., Tubiello F.N., van Vuuren D.P., Zhang X. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 2020;13:5425–5464. doi: 10.5194/gmd-13-5425-2020. DOI
Jabbar M.T., Chen X., Li H. Land degradation due to soil wind erosion in arid and semi-arid regions with the aid of geoinformation technology. Int. Geosci. Remote Sens. Symp. 2006:3309–3312. doi: 10.1109/IGARSS.2006.850. DOI
Kirkby M. Soil erosion in Europe, Soil Erosion in Europe. John Wiley & Sons, Ltd, Chichester, UK. 2006 doi: 10.1002/0470859202. DOI
Kirkby, M.J., Jones, R., Irvine, B., Gobin, A., Govers, G., Cerdan, O., Rompaey, A.J.J. Van, Le Bissonnais, Y., Daroussin, J., King, D., Montanarella, L., Grimm, M., Vieillefont, V., Puigdefabregas, J., Boer, M., Kosmas, C., Yassoglou, N., Tsara, M., Mantel, S., Lynden, G.J. Van, Huting, J., 2004. Pan-European soil erosion risk assessment: the PESERA map, version 1 October 2003. Explanation of special publication Ispra 2004 no.73 (S.P.I.04.73). Eur. Soil Bur. Res. Report. Off. Off. Publ. Eur. Communities, Luxemb. 16, 18pp. and 1 map in ISO B1 format.
Labrière N., Locatelli B., Laumonier Y., Freycon V., Bernoux M. Soil erosion in the humid tropics: a systematic quantitative review. Agric. Ecosyst. Environ. 2015;203:127–139. doi: 10.1016/j.agee.2015.01.027. DOI
Laflen J.M., Lane L.J., Foster G.R. WEPP: a new generation of erosion prediction technology. J. Soil Water Conserv. 1991;46:34–38.
Lal R. Anthropogenic influences on world soils and implications to global food security. Adv. Agron. 2007;93:69–93. doi: 10.1016/S0065-2113(06)93002-8. DOI
Li P., Holden J., Irvine B., Mu X. Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change. Geophys. Res. Lett. 2017;44:3615–3623. doi: 10.1002/2017GL072590. DOI
Littleboy M., Silburn D.M., Freebairn D.M., Woodruff D.R., Hammer G.L. Bull. Dep. Prim; Ind: 1989. PERFECT - a computer simulation model of Productivity Erosion Runoff Functions to Evaluate Conservation Techniques.
Lizaga I., Quijano L., Gaspar L., Navas A. Estimating soil redistribution patterns with 137Cs measurements in a Mediterranean mountain catchment affected by land abandonment. L. Degrad. Dev. 2018;29:105–117. doi: 10.1002/ldr.2843. DOI
Mabit L., Lee Z.Y., Fulajtar L., Dercon G., Zaman M., Toloza A., Heng L., Bernard C. 2019. Two Decades of FAO/IAEA Supported Research and Development for Combating Soil Degradation Through Isotopes.
Merritt W.S., Letcher R.A., Jakeman A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003 doi: 10.1016/S1364-8152(03)00078-1. DOI
Mezosi G., Blanka V., Bata T., Kovacs F., Meyer B. Estimation of regional differences in wind erosion sensitivity in Hungary. Nat. Hazards Earth Syst. Sci. 2015;15:97–107. doi: 10.5194/nhess-15-97-2015. DOI
Mitasova H., Hofierka J., Zlocha M., Iverson L.R. Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 1996;10:629–641. doi: 10.1080/02693799608902101. DOI
Mongeon P., Paul-Hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics. 2016;106:213–228. doi: 10.1007/s11192-015-1765-5. DOI
Montgomery D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. U. S. A. 2007;104:13268–13272. doi: 10.1073/pnas.0611508104. PubMed DOI PMC
Morgan R.P.C. John Wiley & Sons; 2009. Soil Erosion and Conservation.
Morgan, R.P.C., Nearing, M.A., 2011. Handbook of erosion modelling, Handbook of Erosion Modelling. doi:10.1002/9781444328455. DOI
Morgan R.P.C., Morgan D.D.V., Finney H.J. A predictive model for the assessment of soil erosion risk. J. Agric. Eng. Res. 1984;30:245–253. doi: 10.1016/S0021-8634(84)80025-6. DOI
Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D., Styczen, M.E., 1998. The European soil erosion model (EUROSEM): a process-based approach for predicting soil loss from fields and small catchments. 527–544. Earth Surf. Process. Landforms 23, 527–544. doi:10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5.
Mutchler C.K., Murphree C.E., McGregor K.C. Routledge; Routledge: 2017. Laboratory and field plots for erosion research, in: Soil Erosion Research Methods; pp. 11–38.
Naipal V., Ciais P., Wang Y., Lauerwald R., Guenet B., Van Oost K. Global soil organic carbon removal by water erosion under climate change and land use change during AD 1850–2005. Biogeosciences. 2018;15:4459–4480. doi: 10.5194/bg-15-4459-2018. DOI
Nearing M.A. Evaluating soil erosion models using measured plot data: accounting for variability in the data. Earth Surf. Process. Landforms. 2000;25:1035–1043. doi: 10.1002/1096-9837(200008)25:9<1035::AID-ESP121>3.0.CO;2-B. DOI
Nearing, M.A., 2013. Soil erosion and conservation, in: Environmental Modelling: Finding Simplicity in Complexity: Second Edition. pp. 365–378. doi:10.1002/9781118351475.ch22. DOI
Nearing M. Soil erosion and conservation. In: Wainwright J., Mulligan M., editors. Environmental modelling: Finding simplicity in complexity. John Wiley & Sons, Ltd; 2004. pp. 277–290.
Nearing M.A., Wei H., Stone J.J., Pierson F.B., Spaeth K.E., Weltz M.A., Flanagan D.C., Hernandez M. A rangeland hydrology and erosion model. Trans. ASABE. 2011;54:901–908.
Oldeman L. 1994. The Global Extent of Soil Degradation. (Soil resilience and sustainable land use)
Olsson, L., Barbosa, H., 2019. Chapter 4: land degradation, in: Climate Change and Land. pp. 4–186.
Panagos P., Borrelli P., Poesen J., Ballabio C., Lugato E., Meusburger K., Montanarella L., Alewell C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Pol. 2015;54:438–447. doi: 10.1016/j.envsci.2015.08.012. DOI
Panagos P., Borrelli P., Robinson D.A. Common agricultural policy: tackling soil loss across Europe. Nature. 2015;526:195. PubMed
Panagos P., Borrelli P., Meusburger K., Yu B., Klik A., Lim K.J., Yang J.Y., Ni J., Miao C., Chattopadhyay N., Sadeghi S.H., Hazbavi Z., Zabihi M., Larionov G.A., Krasnov S.F., Garobets A., Levi Y., Erpul G., Birkel C., Hoyos N., Naipal V., Oliveira P.T.S., Bonilla C., Meddi M., Nel W., Dashti H.A., Boni M., Diodato N., Van Oost K., Nearing M.A., Ballabio C. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-04282-8. PubMed DOI PMC
Panagos P., Borrelli P., Poesen J. Soil loss due to crop harvesting in the European Union: A first estimation of an underrated geomorphic process. Sci. Total Environ. 2019;664:487–498. doi: 10.1016/j.scitotenv.2019.02.009. PubMed DOI PMC
Pinheiro A., Caussade B., Ayphassorho H. Simulation of soil erosion by water at the watershed level. Trans. Ecol. Environ. 1995;26:547–556.
Podmanicky L., Balázs K., Belényesi M., Centeri C., Kristóf D., Kohlheb N. Modelling soil quality changes in Europe. An impact assessment of land use change on soil quality in Europe. Ecol. Indic. 2011;11:4–15. doi: 10.1016/j.ecolind.2009.08.002. DOI
Poesen J. Soil erosion in the Anthropocene: research needs. Earth Surf. Process. Landforms. 2018;84:64–84. doi: 10.1002/esp.4250. DOI
Quinton J.N., Govers G., Van Oost K., Bardgett R.D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 2010;3:311–314. doi: 10.1038/ngeo838. DOI
Renard, K., Foster, G., Weesies, G., McCool, D., Yoder, D., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric. Handb. No. 703. doi:DC0-16-048938-5 65–100.
Renschler C.S. Designing geo-spatial interfaces to scale process modes: the GeoWEPP approach. Hydrol. Process. 2003;17:1005–1017. doi: 10.1002/hyp.1177. DOI
Rezaei M., Sameni A., Shamsi S.R.F., Bartholomeus H. Remote sensing of land use/cover changes and its effect on wind erosion potential in southern Iran. PeerJ. 2016;2016 doi: 10.7717/peerj.1948. PubMed DOI PMC
Schmidt J. A mathematical model to simulate rainfall erosion. Catena. 1991;19:101–109.
Sharma K.D., Singh S. Satellite remote sensing for soil erosion modelling using the ANSWERS model. Hydrol. Sci. J. 1995;40:259–272. doi: 10.1080/02626669509491408. DOI
Smith, J.R., 1914. Soil erosion and its remedy by terracing and tree planting. Science (80-. ). 39, 858–862. doi:10.1126/science.39.1015.858. PubMed DOI
Stehfest, E., van Vuuren, D., Kram, T., Bouwman, L., Alkemade, R., Bakkenes, M., Biemans, H., Bouwman, A., Den Elzen, M., Janse, J., Alkemade, R., Bakkenes, M., Biemans, H., Bouwman, A., Den Elzen, M., Janse, J., Lucas, P., van Minnen, J., Muller, C., Prins, A.G., 2014. Integrated assessment of global environmental change with IMAGE 3.0, Model description and policy applications, The Hague: PBL Netherlands Environmental Assessment Agency.
Symeonakis E., Drake N. 10-daily soil erosion modelling over sub-Saharan Africa. Environ. Monit. Assess. 2010;161:369–387. doi: 10.1007/s10661-009-0754-7. PubMed DOI
Syvitski J.P.M., Milliman J.D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal iocean. J. Geol. 2014;115:1–19. doi: 10.1086/509246. DOI
Teng H., Viscarra Rossel R.A., Shi Z., Behrens T., Chappell A., Bui E. Assimilating satellite imagery and visible-near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environ. Model. Softw. 2016;77:156–167. doi: 10.1016/j.envsoft.2015.11.024. DOI
Toy T.J., Foster G.R., Renard K.G. John Wiley & Sons, Inc.; New York: 2002. Soil Erosion: Processes, Prediction, Measurement, and Control.
Van Oost K., Govers G., Desmet P. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landsc. Ecol. 2000;15:577–589. doi: 10.1023/A:1008198215674. DOI
Van Oost K., Beuselinck L., Hairsine P.B., Govers G. Spatial evaluation of a multi-class sediment transport and deposition model. Earth Surf. Process. Landforms. 2004;29:1027–1044. doi: 10.1002/esp.1089. DOI
Van Oost K., Cerdan O., Quine T.A. Accelerated sediment fluxes by water and tillage erosion on European agricultural land. Earth Surf. Process. Landforms. 2009;34:1625–1634. doi: 10.1002/esp. DOI
Wagner, L.E., 1996. An overview of the wind erosion prediction system, in: Intl. Conf. on Air Pollution from Agricultural Operations. pp. 73–75.
Wagner L.E. A history of wind erosion prediction models in the United States Department of Agriculture: the Wind Erosion Prediction System (WEPS) Aeolian Res. 2013;10:9–24. doi: 10.1016/j.aeolia.2012.10.001. DOI
Williams, J.R., Berndt, H.D., 1977. Sediment yield prediction based on watershed hydrology. Trans. Am. Soc. Agric. Eng. 20, 1100–1104. doi:10.13031/2013.35710.
Williams J.R., Renard K.G., Dyke P.T. EPIC: a new method for assessing erosion’s effect on soil productivity. J. Soil Water Conserv. 1983;38:381–383.
Wischmeier W.H., Smith D.D. Predicting rainfall erosion losses. Agric. Handb. no. 1978;537:285–291. doi: 10.1029/TR039i002p00285. DOI
Woodruff N., Armbrust D. A monthly climatic factor for the wind erosion equation. J. Soil Water Conserv. 1968;23:103–104.
Wuepper D., Borrelli P., Finger R. Countries and the global rate of soil erosion. Nat. Sustain. 2020;3:51–55. doi: 10.1038/s41893-019-0438-4. DOI
Young, R.A., Onstad, C.A., Bosch, D.D., Anderson, W.P., 1989. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 44, 121–13.
Yuan Z., Chu Y., Shen Y. Simulation of surface runoff and sediment yield under different land-use in a Taihang Mountains watershed. North China. Soil Tillage Res. 2015;153:7–19.
Zhang C., McBean E.A. Estimation of desertification risk from soil erosion: a case study for Gansu Province. China. Stoch. Environ. Res. Risk Assess. 2016;30:2215–2229. doi: 10.1007/s00477-015-1186-2. DOI
Zingg R.W. Degree and length of land slope as it affects soil loss in runoff. J. Agric. Eng. 1940;21:59–64.