The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37559898
PubMed Central
PMC10407145
DOI
10.1016/j.isci.2023.107307
PII: S2589-0042(23)01384-6
Knihovny.cz E-zdroje
- Klíčová slova
- Canine genetics, Evolutionary biology,
- Publikační typ
- časopisecké články MeSH
The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.
BIOPOLIS Program in Genomics Biodiversity and Land Planning CIBIO Vairão Portugal
Center for Evolutionary Hologenomics the Globe Institute University of Copenhagen Copenhagen Denmark
Charles University Department of Zoology Faculty of Science Prague 2 Czech Republic
CIBIO InBIO University of Porto Vairão Portugal
Department of Biology University of Copenhagen Copenhagen Denmark
Department of Zoology Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
Ecology and Genetics Research Unit University of Oulu Finland
Faculty of Forestry Technical University Zvolen Slovakia
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Czech Republic
FIZV Via Marco Aurelio 2 Roma Italy
Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Austria
Laboratory of Ancient DNA Department of Cultural Heritage University of Bologna Bologna Italy
Museo dell'Ecologia di Cesena Cesena Italy
Museum of Zoology P Doderlein SIMUA University of Palermo Palermo Italy
National Center for Wildlife Al Imam Faisal Ibn Turki Ibn Abdullah Ulaishah Saudi Arabia
Natural Resources Institute Finland Rovaniemi Finland
Nature Research Centre Vilnius Lithuania
NTNU University Museum Norwegian University of Science and Technology Trondheim Norway
Palaeogenomics Group Department of Veterinary Sciences Ludwig Maximilian University Munich Germany
School of Biological and Behavioural Sciences Queen Mary University of London London UK
Section for Evolutionary Genomics the Globe Institute University of Copenhagen Copenhagen Denmark
Società Amatori Cirneco dell'Etna Modica Italy
Università di Roma La Sapienza Department Biology and Biotechnologies Charles Darwin Roma Italy
University Museum Norwegian University of Science and Technology Trondheim Norway
Zobrazit více v PubMed
Fan Z., Silva P., Gronau I., Wang S., Armero A.S., Schweizer R.M., Ramirez O., Pollinger J., Galaverni M., Ortega Del-Vecchyo D., et al. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res. 2016;26:163–173. PubMed PMC
Loog L., Thalmann O., Sinding M.-H.S., Schuenemann V.J., Perri A., Germonpré M., Bocherens H., Witt K.E., Samaniego Castruita J.A., Velasco M.S., et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol. Ecol. 2020;29:1596–1610. PubMed PMC
Ramos-Madrigal J., Sinding M.-H.S., Carøe C., Mak S.S.T., Niemann J., Samaniego Castruita J.A., Fedorov S., Kandyba A., Germonpré M., Bocherens H., et al. Genomes of Pleistocene Siberian wolves uncover multiple extinct wolf lineages. Curr. Biol. 2021;31:198–206.e8. PubMed PMC
Bergström A., Stanton D.W.G., Taron U.H., Frantz L., Sinding M.-H.S., Ersmark E., Pfrengle S., Cassatt-Johnstone M., Lebrasseur O., Girdland-Flink L., et al. Grey wolf genomic history reveals a dual ancestry of dogs. Nature. 2022;607:313–320. PubMed PMC
Gopalakrishnan S., Sinding M.-H.S., Ramos-Madrigal J., Niemann J., Samaniego Castruita J.A., Vieira F.G., Carøe C., de Manuel Montero M., Kuderna L., Serres A., et al. Interspecific gene flow shaped the evolution of the genus Canis. Curr. Biol. 2019;29:4152. PubMed PMC
Hindrikson M., Remm J., Pilot M., Godinho R., Stronen A.V., Baltrūnaité L., Czarnomska S.D., Leonard J.A., Randi E., Nowak C., et al. Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol. Rev. Camb. Philos. Soc. 2017;92:1601–1629. PubMed
Randi E. Genetics and conservation of wolves Canis lupus in Europe. Mamm Rev. 2011;41:99–111.
Leonard J.A. Ecology drives evolution in grey wolves. Evol. Ecol. Res. 2014;16:461–473.
Leonard J.A., Echegaray J., Randi E., Vilà C., Gompper M.E. Free-ranging dogs and wildlife conservation. 2013. Impact of hybridization with domestic dogs on the conservation of wild canids; pp. 170–184.
Randi E., Lucchini V., Christensen M.F., Mucci N., Funk S.M., Dolf G., Loeschcke V. Mitochondrial DNA variability in Italian and east European wolves: Detecting the consequences of small population size and hybridization. Conserv. Biol. 2000;14:464–473.
Boggiano F., Ciofi C., Boitani L., Formia A., Grottoli L., Natali C., Ciucci P. Detection of an East European wolf haplotype puzzles mitochondrial DNA monomorphism of the Italian wolf population. Mamm. Biol. 2013;78:374–378.
VonHoldt B.M., Pollinger J.P., Earl D.A., Knowles J.C., Boyko A.R., Parker H., Geffen E., Pilot M., Jedrzejewski W., Jedrzejewska B., et al. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res. 2011;21:1294–1305. PubMed PMC
Montana L., Caniglia R., Galaverni M., Fabbri E., Randi E. A new mitochondrial haplotype confirms the distinctiveness of the Italian wolf (Canis lupus) population. Mamm. Biol. 2017;84:30–34.
Angelici F.M., Rossi L. A new subspecies of grey wolf (Carnivora Canidae), recently extinct, from Sicily, Italy. bioRxiv. 2018 doi: 10.1101/320655. Preprint at. DOI
Angelici F.M., Ciucani M.M., Angelini S., Annesi F., Caniglia R., Castiglia R., Fabbri E., Galaverni M., Palumbo D., Ravegnini G., et al. The Sicilian wolf: genetic identity of a recently extinct insular population. Zool. Sci. (Tokyo) 2019;36:189–197. PubMed
Reale S.C., Farber M.K., Cumbo V., Sammarco I., Bonanno F., Spinnato A., Seminara S. Biodiversity lost: the phylogenetic relationships of a complete mitochondrial DNA genome sequenced from the extinct wolf population of Sicily. Mamm. Biol. 2019;38:1–3.
David Mech L., Boitani L. University of Chicago Press; 2007. Wolves: Behavior, Ecology, and Conservation.
Salvatori V. Council of Europe; 2005. Report on the Conservation Status and Threats for Wolf (Canis Lupus) in Europe.
Sastre N., Vilà C., Salinas M., Bologov V.V., Urios V., Sánchez A., Francino O., Ramírez O. Signatures of demographic bottlenecks in European wolf populations. Conserv. Genet. 2011;12:701–712.
Sarà M. Soc. messinese di Storia Patria, Messina; 1999. Il “Catalogo dei Mammiferi della Sicilia” rivisitato.
Palumbo F.M. Catalogo dei mammiferi della Sicilia. Annali di Agricoltura Siciliana. 1868;12:3–123.
Migneco M. Catania: Stabilimento tipografico M. Galati; 1897. Considerazioni ed appunti sul cane cirneco. 17.
Ghigi A. Ricerche faunistiche e sistematiche sui Mammiferi d’Italia che formano oggetto di caccia. Natura. 1911:1–51.
Zimen E., Boitani L. Number and distribution of wolves in Italy. Z. Säugetierkunde. 1975;40:102–112.
Lucchini V., Galov A., Randi E. Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol. Ecol. 2004;13:523–536. PubMed
Altobello G. Fauna dell’Abruzzo e del Molise - Mammiferi - Carnivori. 1921. http://www.storiadellafauna.it/scaffale/testi/alto/Carnivo.htm
Ciucani M.M., Palumbo D., Galaverni M., Serventi P., Fabbri E., Ravegnini G., Angelini S., Maini E., Persico D., Caniglia R., et al. Old wild wolves: ancient DNA survey unveils population dynamics in Late Pleistocene and Holocene Italian remains. PeerJ. 2019;7:e6424. PubMed PMC
Koupadi K., Fontani F., Ciucani M.M., Maini E., De Fanti S., Cattani M., Curci A., Nenzioni G., Reggiani P., Andrews A.J., et al. Population dynamics in Italian Canids between the Late Pleistocene and Bronze Age. Genes. 2020;11:1409. doi: 10.3390/genes11121409. PubMed DOI PMC
Freedman A.H., Gronau I., Schweizer R.M., Ortega-Del Vecchyo D., Han E., Silva P.M., Galaverni M., Fan Z., Marx P., Lorente-Galdos B., et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014;10:e1004016. PubMed PMC
Alexander D.H., Novembre J., Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. PubMed PMC
Gómez-Sánchez D., Olalde I., Sastre N., Enseñat C., Carrasco R., Marques-Bonet T., Lalueza-Fox C., Leonard J.A., Vilà C., Ramírez O. On the path to extinction: Inbreeding and admixture in a declining grey wolf population. Mol. Ecol. 2018;27:3599–3612. PubMed
Pickrell J.K., Pritchard J.K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8:e1002967. PubMed PMC
Kozlov A.M., Darriba D., Flouri T., Morel B., Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. PubMed PMC
Brisbin A., Bryc K., Byrnes J., Zakharia F., Omberg L., Degenhardt J., Reynolds A., Ostrer H., Mezey J.G., Bustamante C.D. PCAdmix: principal components-based assignment of ancestry along each chromosome in individuals with admixed ancestry from two or more populations. Hum. Biol. 2012;84:343–364. PubMed PMC
Niemann J., Gopalakrishnan S., Yamaguchi N., Ramos-Madrigal J., Wales N., Gilbert M.T.P., Sinding M.-H.S. Extended survival of Pleistocene Siberian wolves into the early 20th century on the island of Honshū. iScience. 2021;24:101904. PubMed PMC
Segawa T., Yonezawa T., Mori H., Kohno A., Kudo Y., Akiyoshi A., Wu J., Tokanai F., Sakamoto M., Kohno N., et al. Paleogenomics reveals independent and hybrid origins of two morphologically distinct wolf lineages endemic to Japan. Curr. Biol. 2022;32:2494–2504.e5. PubMed
Kardos M., Åkesson M., Fountain T., Flagstad Ø., Liberg O., Olason P., Sand H., Wabakken P., Wikenros C., Ellegren H. Genomic consequences of intensive inbreeding in an isolated wolf population. Nat. Ecol. Evol. 2018;2:124–131. PubMed
Robinson J.A., Räikkönen J., Vucetich L.M., Vucetich J.A., Peterson R.O., Lohmueller K.E., Wayne R.K. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci. Adv. 2019;5:eaau0757. PubMed PMC
Dussex N., van der Valk T., Morales H.E., Wheat C.W., Díez-Del-Molino D., von Seth J., Foster Y., Kutschera V.E., Guschanski K., Rhie A., et al. Population genomics of the critically endangered kākāpō. Cell Genom. 2021;1:100002. PubMed PMC
Ciucani M.M., Jensen J.K., Sinding M.-H.S., Smith O., Lucenti S.B., Rosengren E., Rook L., Tuveri C., Arca M., Cappellini E., et al. Evolutionary history of the extinct Sardinian dhole. Curr. Biol. 2021;31:5571–5579.e6. PubMed
Pemberton T.J., Absher D., Feldman M.W., Myers R.M., Rosenberg N.A., Li J.Z. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 2012;91:275–292. PubMed PMC
Greer, D. (2020). Extinction Genomics: The Case of Grey Wolves Year.
Bergström A., Frantz L., Schmidt R., Ersmark E., Lebrasseur O., Girdland-Flink L., Lin A.T., Storå J., Sjögren K.G., Anthony D., et al. Origins and genetic legacy of prehistoric dogs. Science. 2020;370:557–564. PubMed PMC
Montana L., Caniglia R., Galaverni M., Fabbri E., Ahmed A., Bolfíková B.Č., Czarnomska S.D., Galov A., Godinho R., Hindrikson M., et al. Combining phylogenetic and demographic inferences to assess the origin of the genetic diversity in an isolated wolf population. PLoS One. 2017;12:e0176560. PubMed PMC
Silva P., Galaverni M., Ortega-Del Vecchyo D., Fan Z., Caniglia R., Fabbri E., Randi E., Wayne R., Godinho R. Genomic evidence for the Old divergence of Southern European wolf populations. Proc. Biol. Sci. 2020;287:20201206. PubMed PMC
Auton A., Rui Li Y., Kidd J., Oliveira K., Nadel J., Holloway J.K., Hayward J.J., Cohen P.E., Greally J.M., Wang J., et al. Genetic recombination is targeted towards gene promoter regions in dogs. PLoS Genet. 2013;9:e1003984. PubMed PMC
vonHoldt B.M., Cahill J.A., Fan Z., Gronau I., Robinson J., Pollinger J.P., Shapiro B., Wall J., Wayne R.K. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2016;2:e1501714. PubMed PMC
Gopalakrishnan S., Sinding M.S., Ramos-Madrigal J., Niemann J., Samaniego Castruita J.A., Vieira F.G., Carøe C., Montero M.M., Kuderna L., et al. Interspecific gene flow shaped the evolution of the Genus Canis. Curr. Biol. 2018;28:3441–3449.e5. PubMed PMC
Zhang W., Fan Z., Han E., Hou R., Zhang L., Galaverni M., Huang J., Liu H., Silva P., Li P., et al. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. PLoS Genet. 2014;10:e1004466. PubMed PMC
Wang G.-D., Zhai W., Yang H.-C., Wang L., Zhong L., Liu Y.-H., Fan R.-X., Yin T.-T., Zhu C.-L., Poyarkov A.D., et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 2016;26:21–33. PubMed PMC
Sinding M.-H.S., Gopalakrishan S., Vieira F.G., Samaniego Castruita J.A., Raundrup K., Heide Jørgensen M.P., Meldgaard M., Petersen B., Sicheritz-Ponten T., Mikkelsen J.B., et al. Population genomics of grey wolves and wolf-like canids in North America. PLoS Genet. 2018;14:e1007745. PubMed PMC
Wang G.-D., Zhai W., Yang H.-C., Fan R.-X., Cao X., Zhong L., Wang L., Liu F., Wu H., Cheng L.-G., et al. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat. Commun. 2013;4:1860. PubMed
Sinding M.-H.S., Gopalakrishnan S., Ramos-Madrigal J., de Manuel M., Pitulko V.V., Kuderna L., Feuerborn T.R., Frantz L.A.F., Vieira F.G., Niemann J., et al. Arctic-adapted dogs emerged at the Pleistocene-Holocene transition. Science. 2020;368:1495–1499. PubMed PMC
Frantz L.A.F., Mullin V.E., Pionnier-Capitan M., Lebrasseur O., Ollivier M., Perri A., Linderholm A., Mattiangeli V., Teasdale M.D., Dimopoulos E.A., et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science. 2016;352:1228–1231. PubMed
Botigué L.R., Song S., Scheu A., Gopalan S., Pendleton A.L., Oetjens M., Taravella A.M., Seregély T., Zeeb-Lanz A., Arbogast R.M., et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 2017;8:16082. doi: 10.1038/ncomms16082. PubMed DOI PMC
Ní Leathlobhair M., Perri A.R., Irving-Pease E.K., Witt K.E., Linderholm A., Haile J., Lebrasseur O., Ameen C., Blick J., Boyko A.R., et al. The evolutionary history of dogs in the Americas. Science. 2018;361:81–85. PubMed PMC
Feuerborn T.R., Carmagnini A., Losey R.J., Nomokonova T., Askeyev A., Askeyev I., Askeyev O., Antipina E.E., Appelt M., Bachura O.P., et al. Modern Siberian dog ancestry was shaped by several thousand years of Eurasian-wide trade and human dispersal. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2100338118. e2100338118. PubMed DOI PMC
Wiedmer M., Oevermann A., Borer-Germann S.E., Gorgas D., Shelton G.D., Drögemüller M., Jagannathan V., Henke D., Leeb T. A RAB3GAP1 SINE insertion in Alaskan huskies with polyneuropathy, ocular abnormalities, and neuronal vacuolation (POANV) resembling human warburg micro syndrome 1 (WARBM1) G3 (Bethesda) 2016;6:255–262. PubMed PMC
Decker B., Davis B.W., Rimbault M., Long A.H., Karlins E., Jagannathan V., Reiman R., Parker H.G., Drögemüller C., Corneveaux J.J., et al. Comparison against 186 canid whole-genome sequences reveals survival strategies of an ancient clonally transmissible canine tumor. Genome Res. 2015;25:1646–1655. PubMed PMC
Metzger J., Nolte A., Uhde A.-K., Hewicker-Trautwein M., Distl O. Whole genome sequencing identifies missense mutation in MTBP in Shar-Pei affected with Autoinflammatory Disease (SPAID) BMC Genom. 2017;18:348. PubMed PMC
Marsden C.D., Ortega-Del Vecchyo D., O’Brien D.P., Taylor J.F., Ramirez O., Vilà C., Marques-Bonet T., Schnabel R.D., Wayne R.K., Lohmueller K.E. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl. Acad. Sci. USA. 2016;113:152–157. PubMed PMC
Lindblad-Toh K., Wade C.M., Mikkelsen T.S., Karlsson E.K., Jaffe D.B., Kamal M., Clamp M., Chang J.L., Kulbokas E.J., 3rd, Zody M.C., et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–819. PubMed
Meyer M., Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010;2010 doi: 10.1101/pdb.prot5448. https://pubmed.ncbi.nlm.nih.gov/20516186/ PubMed DOI
Mak S.S.T., Gopalakrishnan S., Carøe C., Geng C., Liu S., Sinding M.-H.S., Kuderna L.F.K., Zhang W., Fu S., Vieira F.G., et al. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. Gigascience. 2017;6:1–13. PubMed PMC
Schubert M., Ermini L., Der Sarkissian C., Jónsson H., Ginolhac A., Schaefer R., Martin M.D., Fernández R., Kircher M., McCue M., et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 2014;9:1056–1082. PubMed
Schubert M., Lindgreen S., Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes. 2016;9:88. PubMed PMC
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. PubMed PMC
Korneliussen T.S., Albrechtsen A., Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., 1000 Genome Project Data Processing Subgroup The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Patterson N., Moorjani P., Luo Y., Mallick S., Rohland N., Zhan Y., Genschoreck T., Webster T., Reich D. Ancient admixture in human history. Genetics. 2012;192:1065–1093. PubMed PMC
Jónsson H., Ginolhac A., Schubert M., Johnson P.L.F., Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–1684. PubMed PMC
Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. PubMed PMC
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. PubMed PMC
Rambaut A. FigTree V. 1.4.0. 2012. http://tree.bio.ed.ac.uk/software/figtree/
Quinlan A.R., Hall I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. PubMed PMC
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic Era. Mol. Biol. Evol. 2020;37:1530–1534. PubMed PMC
Zhang C., Rabiee M., Sayyari E., Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 2018;19:153. PubMed PMC
Liu L., Bosse M., Megens H.-J., Frantz L.A.F., Lee Y.-L., Irving-Pease E.K., Narayan G., Groenen M.A.M., Madsen O. Genomic analysis on pygmy hog reveals extensive interbreeding during wild boar expansion. Nat. Commun. 2019;10:1992. PubMed PMC
Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. PubMed PMC
Allaire, J. (2012). RStudio: Integrated Development Environment for R. Boston, MA.
Browning B.L., Browning S.R. Genotype Imputation with Millions of Reference Samples. Am. J. Hum. Genet. 2016;98:116–126. PubMed PMC
Browning B.L., Tian X., Zhou Y., Browning S.R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 2021;108:1880–1890. PubMed PMC
Renaud G., Hanghøj K., Korneliussen T.S., Willerslev E., Orlando L. Joint estimates of heterozygosity and runs of homozygosity for modern and ancient samples. Genetics. 2019;212:587–614. PubMed PMC
Watterson G.A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 1975;7:256–276. PubMed
Dabney J., Meyer M., Paabo S. Ancient DNA Damage. Cold Spring Harb. Perspect. Biol. 2013;5:a012567. PubMed PMC
Campos P.F., Gilbert M.T.P. DNA Extraction from Keratin and Chitin. Methods Mol. Biol. 2019;1963:57–63. PubMed
Carøe C., Gopalakrishnan S., Vinner L., Mak S.S.T., Sinding M.H.S., Samaniego J.A., Wales N., Sicheritz-Pontén T., Gilbert M.T.P. Single-tube library preparation for degraded DNA. Methods Ecol. Evol. 2018;9:410–419.
Sirén K., Mak S.S.T., Melkonian C., Carøe C., Swiegers J.H., Molenaar D., Fischer U., Gilbert M.T.P. Taxonomic and functional characterization of the microbial community during spontaneous in vitro fermentation of riesling must. Front. Microbiol. 2019;10:697. PubMed PMC
Toolkit P. Broad Institute; 2018. Picard Toolkit.
DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A., Hanna M., et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–498. PubMed PMC
Becker D., Minor K.M., Letko A., Ekenstedt K.J., Jagannathan V., Leeb T., Shelton G.D., Mickelson J.R., Drögemüller C. A GJA9 frameshift variant is associated with polyneuropathy in Leonberger dogs. BMC Genom. 2017;18:662. PubMed PMC
Plassais J., Kim J., Davis B.W., Karyadi D.M., Hogan A.N., Harris A.C., Decker B., Parker H.G., Ostrander E.A. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019;10:1489. PubMed PMC
Behr A.A., Liu K.Z., Liu-Fang G., Nakka P., Ramachandran S. pong: fast analysis and visualization of latent clusters in population genetic data. Bioinformatics. 2016;32:2817–2823. PubMed PMC
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. PubMed PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. PubMed PMC
Computing R., et al. R Core Team; 2013. R: A Language and Environment for Statistical Computing.
Leppälä K., Nielsen S.V., Mailund T. admixturegraph: an R package for admixture graph manipulation and fitting. Bioinformatics. 2017;33:1738–1740. PubMed PMC
Lipson M., Reich D. A working model of the deep relationships of diverse modern human genetic lineages outside of Africa. Mol. Biol. Evol. 2017;34:889–902. PubMed PMC
Campbell C.L., Bhérer C., Morrow B.E., Boyko A.R., Auton A. A pedigree-based map of recombination in the domestic dog genome. G3. 2016;6:3517–3524. PubMed PMC
RStudio Team (2020). RStudio: Integrated Development Environment for R.
Wickham H. Springer-Verlag; 2016. ggplot2: Elegant Graphics for Data Analysis.
Hadley Wickham, R.F., Henry, L., Müller, K., et al. (2018). Dplyr: A Grammar of Data Manipulation. Version 0. 7 6.
Pacheco C., Stronen A.V., Jędrzejewska B., Plis K., Okhlopkov I.M., Mamaev N.V., Drovetski S.V., Godinho R. Demography and evolutionary history of grey wolf populations around the Bering Strait. Mol. Ecol. 2022;31:4851–4865. PubMed PMC
Ng P.C., Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–3814. PubMed PMC
McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R.S., Thormann A., Flicek P., Cunningham F. The ensembl variant effect predictor. Genome Biol. 2016;17:122. PubMed PMC
Plassais J., vonHoldt B.M., Parker H.G., Carmagnini A., Dubos N., Papa I., Bevant K., Derrien T., Hennelly L.M., Whitaker D.T., et al. Natural and human-driven selection of a single non-coding body size variant in ancient and modern canids. Curr. Biol. 2022;32:889–897.e9. PubMed PMC
Upham N.S., Esselstyn J.A., Jetz W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 2019;17:e3000494. PubMed PMC
Dudchenko O., Shamim M.S., Batra S.S., Durand N.C., Musial N.T., Mostofa R., Pham M., Glenn St Hilaire B., Yao W., Stamenova E., et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. bioRxiv. 2018 doi: 10.1101/254797. Preprint at. DOI
Dudchenko O., Batra S.S., Omer A.D., Nyquist S.K., Hoeger M., Durand N.C., Shamim M.S., Machol I., Lander E.S., Aiden A.P., et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–95. PubMed PMC
Foote A.D., Liu Y., Thomas G.W.C., Vinař T., Alföldi J., Deng J., Dugan S., van Elk C.E., Hunter M.E., Joshi V., et al. Convergent evolution of the genomes of marine mammals. Nat. Genet. 2015;47:272–275. PubMed PMC
Hu Y., Wu Q., Ma S., Ma T., Shan L., Wang X., Nie Y., Ning Z., Yan L., Xiu Y., et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. Proc. Natl. Acad. Sci. USA. 2017;114:1081–1086. PubMed PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013 doi: 10.48550/arXiv.1303.3997. Preprint at. DOI