Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31840921
PubMed Central
PMC7317801
DOI
10.1111/mec.15329
Knihovny.cz E-zdroje
- Klíčová slova
- Approximate Bayesian Computation, Pleistocene, ancient DNA, coalescent modelling, megafauna, population structure, population turnover, wolves,
- MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- mitochondriální DNA genetika MeSH
- psi MeSH
- starobylá DNA * MeSH
- tok genů MeSH
- vlci * genetika MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
- starobylá DNA * MeSH
Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that have maintained a wide geographical distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the Late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single Late Pleistocene population. Both the geographical origin of this ancestral population and how it became widespread remain unknown. Here, we used a spatially and temporally explicit modelling framework to analyse a data set of 90 modern and 45 ancient mitochondrial wolf genomes from across the Northern Hemisphere, spanning the last 50,000 years. Our results suggest that contemporary wolf populations trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum, and that this process was most likely driven by Late Pleistocene ecological fluctuations that occurred across the Northern Hemisphere. This study provides direct ancient genetic evidence that long-range migration has played an important role in the population history of a large carnivore, and provides insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because Late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog.
Arctic and Antarctic Research Institute St Petersburg Russia
BioArch Department of Archaeology University of York York UK USA
Breeding Centre for Endangered Arabian Wildlife Sharjah United Arab Emirates
Carl R Woese Institute for Genomic Biology University of Illinois at Urbana Champaign Urbana IL USA
Centre for GeoGenetics Globe Institute University of Copenhagen Copenhagen Denmark
cGEM Institute of Genomics University of Tartu Tartu Estonia
Department of Anthropology University of West Bohemia Pilzen Czech Republic
Department of Archaeology Classics and Egyptology University of Liverpool Liverpool UK
Department of Archaeology Simon Fraser University Burnaby BC Canada
Department of Archaeology University of Aberdeen Aberdeen UK
Department of Genetics University of Cambridge Cambridge UK
Department of Geosciences Palaeobiology University of Tübingen Tübingen Germany
Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Department of Medical and Molecular Genetics King's College London Guys Hospital London UK
Department of Zoology University of Cambridge Cambridge UK
EvoGenomics GLOBE Institute University of Copenhagen Copenhagen Denmark
Geological Institute Russian Academy of Sciences Moscow Russia
Hrdlička Museum of Man Faculty of Science Charles University Praha Czech Republic
Institute for Archaeological Sciences University of Tübingen Tübingen Germany
Institute for Material Culture History Russian Academy of Sciences St Petersburg Russia
Institute of Evolutionary Medicine University of Zurich Zurich Switzerland
Max Planck Institute for the Science of Human History Jena Germany
Moravian museum Brno Czech Republic
Natural History Museum University of Oslo Oslo Norway
Norwegian University of Science and Technology University Museum Trondheim Norway
OD Earth and History of Life Royal Belgian Institute of Natural Sciences Brussels Belgium
OD Taxonomy and Phylogeny Royal Belgian Institute of Natural Sciences Brussels Belgium
Research Laboratory for Archaeology and History of Art University of Oxford Oxford UK
School of Integrative Biology University of Illinois at Urbana Champaign Urbana IL USA
Senckenberg Centre for Human Evolution and Palaeoenvironment University of Tübingen Tübingen Germany
The Qimmeq Project University of Greenland Nuussuaq Greenland
Zobrazit více v PubMed
Aggarwal, R. K. , Kivisild, T. , Ramadevi, J. , & Singh, L. (2007). Mitochondrial DNA coding region sequences support the phylogenetic distinction of two Indian wolf species. Journal of Zoological Systematics and Evolutionary Research, 45, 163–172. 10.1111/j.1439-0469.2006.00400.x DOI
Amante, C. , & Eakins, B. W. (2016). ETOPO1 1 Arc‐Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC‐24. Retrieved from https://www.ngdc.noaa.gov/mgg/global/
Barnosky, A. D. , Koch, P. L. , Feranec, R. S. , Wing, S. L. , & Shabel, A. B. (2004). Assessing the causes of late Pleistocene extinctions on the continents. Science, 306, 70–75. 10.1126/science.1101476 PubMed DOI
Baryshnikov, G. F. , Mol, D. , & Tikhonov, A. N. (2009). Finding of the Late Pleistocene carnivores in Taimyr Peninsula (Russia, Siberia) with paleoecological context. Russian Journal of Theriology, 8, 107–113. 10.15298/rusjtheriol.08.2.04 DOI
Beaumont, M. A. , Zhang, W. , & Balding, D. J. (2002). Approximate Bayesian Computation in population genetics. Genetics, 162, 2025–2035. PubMed PMC
Bocherens, H. (2015). Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quaternary Science Reviews, 117, 42–71. 10.1016/j.quascirev.2015.03.018 DOI
Clark, P. U. , Shakun, J. D. , Baker, P. A. , Bartlein, P. J. , Brewer, S. , Brook, E. , … Williams, J. W. (2012). Global climate evolution during the last deglaciation. Proceedings of the National Academy of Sciences, 109, E1134–E1142. 10.1073/pnas.1116619109 PubMed DOI PMC
Crockford, S. J. , & Kuzmin, Y. V. (2012). Comments on Germonpré et al., Journal of Archaeological Science 36, 2009 “Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes”, and Germonpré, Lázkičková‐Galetová, and Sablin, Journal of Archaeological Science 39, 2012 “Palaeolithic dog skulls at the Gravettian Předmostí site, the Czech Republic.”. Journal of Archaeological Science, 39, 2797–2801.
Cueto, M. , Camarós, E. , Castaños, P. , Ontañón, R. , & Arias, P. (2016). Under the skin of a lion: Unique evidence of upper Paleolithic exploitation and use of cave lion (Panthera spelaea) from the Lower Gallery of La Garma (Spain). PLoS ONE, 11, e0163591 10.1371/journal.pone.0163591 PubMed DOI PMC
Drake, A. G. , Coquerelle, M. , & Colombeau, G. (2015). 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic. Scientific Reports, 5, 8299 10.1038/srep08299 PubMed DOI PMC
Drummond, A. J. , Nicholls, G. K. , Rodrigo, A. G. , & Solomon, W. (2002). Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics, 161, 1307–1320. PubMed PMC
Drummond, A. J. , Suchard, M. A. , Xie, D. , & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. 10.1093/molbev/mss075 PubMed DOI PMC
Druzhkova, A. S. , Thalmann, O. , Trifonov, V. A. , Leonard, J. A. , Vorobieva, N. V. , Ovodov, N. D. , … Wayne, R. K. (2013). Ancient DNA analysis affirms the canid from Altai as a primitive dog. PLoS ONE, 8, e57754 10.1371/journal.pone.0057754 PubMed DOI PMC
Eriksson, A. , Betti, L. , Friend, A. D. , Lycett, S. J. , Singarayer, J. S. , von Cramon‐Taubadel, N. , … Manica, A. (2012). Late Pleistocene climate change and the global expansion of anatomically modern humans. Proceedings of the National Academy of Sciences, 109, 16089–16094. 10.1073/pnas.1209494109 PubMed DOI PMC
Eriksson, A. , & Manica, A. (2012). Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proceedings of the National Academy of Sciences, 109, 13956–13960. 10.1073/pnas.1200567109 PubMed DOI PMC
Eriksson, A. , & Mehlig, B. (2004). Gene‐history correlation and population structure. Physical Biology, 1, 220 10.1088/1478-3967/1/4/004 PubMed DOI
Excoffier, L. , Smouse, P. E. , & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491. PubMed PMC
Excoffier, L. , & Yang, Z. (1999). Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees. Molecular Biology and Evolution, 16, 1357–1368. 10.1093/oxfordjournals.molbev.a026046 PubMed DOI
Fan, Z. , Silva, P. , Gronau, I. , Wang, S. , Armero, A. S. , Schweizer, R. M. , … Wayne, R. K. (2016). Worldwide patterns of genomic variation and admixture in gray wolves. Genome Research, 26, 163–173. 10.1101/gr.197517.115 PubMed DOI PMC
Flower, L. O. H. , & Schreve, D. C. (2014). An investigation of palaeodietary variability in European Pleistocene canids. Quaternary Science Reviews, 96, 188–203. 10.1016/j.quascirev.2014.04.015 DOI
Fox‐Dobbs, K. , Leonard, J. A. , & Koch, P. L. (2008). Pleistocene megafauna from eastern Beringia: Paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeography, Palaeoclimatology, Palaeoecology, 261, 30–46. 10.1016/j.palaeo.2007.12.011 DOI
Frantz, L. A. F. , Mullin, V. E. , Pionnier‐Capitan, M. , Lebrasseur, O. , Ollivier, M. , Perri, A. , … Larson, G. (2016). Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science, 352, 1228 10.1126/science.aaf3161 PubMed DOI
Freedman, A. H. , Gronau, I. , Schweizer, R. M. , Ortega‐Del Vecchyo, D. , Han, E. , Silva, P. M. , … Novembre, J. (2014). Genome sequencing highlights the dynamic early history of dogs. PLoS Genetics, 10, e1004016 10.1371/journal.pgen.1004016 PubMed DOI PMC
Fu, Q. , Posth, C. , Hajdinjak, M. , Petr, M. , Mallick, S. , Fernandes, D. , … Reich, D. (2016). The genetic history of Ice Age Europe. Nature, 534, 200–205. 10.1038/nature17993 PubMed DOI PMC
Geffen, E. , Anderson, M. J. , & Wayne, R. K. (2004). Climate and habitat barriers to dispersal in the highly mobile grey wolf. Molecular Ecology, 13, 2481–2490. 10.1111/j.1365-294X.2004.02244.x PubMed DOI
Germonpré, M. , Fedorov, S. , Danilov, P. , Galeta, P. , Jimenez, E.‐L. , Sablin, M. , & Losey, R. J. (2017). Palaeolithic and prehistoric dogs and Pleistocene wolves from Yakutia: Identification of isolated skulls. Journal of Archaeological Science, 78, 1–19. 10.1016/j.jas.2016.11.008 DOI
Germonpré, M. , & Hämäläinen, R. (2007). Fossil bear bones in the Belgian Upper Paleolithic: The possibility of a proto bear‐ceremonialism. Arctic Anthropology, 44, 1–30. 10.1353/arc.2011.0015 DOI
Germonpré, M. , Lázničková‐Galetová, M. , Losey, R. J. , Räikkönen, J. , & Sablin, M. V. (2015). Large canids at the Gravettian Předmostí site, the Czech Republic: The mandible. Quaternary International, 359–360, 261–279. 10.1016/j.quaint.2014.07.012 DOI
Germonpré, M. , Lázničková‐Galetová, M. , & Sablin, M. V. (2012). Palaeolithic dog skulls at the Gravettian Předmostí site, the Czech Republic. Journal of Archaeological Science, 39, 184–202. 10.1016/j.jas.2011.09.022 DOI
Germonpré, M. , Sablin, M. V. , Stevens, R. E. , Hedges, R. E. M. , Hofreiter, M. , Stiller, M. , & Després, V. R. (2009). Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: Osteometry, ancient DNA and stable isotopes. Journal of Archaeological Science, 36, 473–490. 10.1016/j.jas.2008.09.033 DOI
Godinho, R. , Llaneza, L. , Blanco, J. C. , Lopes, S. , Álvares, F. , García, E. J. , … Ferrand, N. (2011). Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula. Molecular Ecology, 20, 5154–5166. 10.1111/j.1365-294X.2011.05345.x PubMed DOI
Gopalakrishnan, S. , Sinding, M.‐H. , Ramos‐Madrigal, J. , Niemann, J. , Samaniego Castruita, J. A. , Vieira, F. G. , … Gilbert, M. T. P. (2018). Interspecific gene flow shaped the evolution of the genus Canis . Current Biology, 28, 3441–3449.e5. 10.1016/j.cub.2018.08.041 PubMed DOI PMC
Groucutt, H. S. , Petraglia, M. D. , Bailey, G. , Scerri, E. M. L. , Parton, A. , Clark‐Balzan, L. , … Breeze, P. S. (2015). Rethinking the dispersal of Homo sapiens out of Africa. Evolutionary Anthropology, 24, 149–164. PubMed PMC
Hofreiter, M. , & Stewart, J. (2009). Ecological change, range fluctuations and population dynamics during the Pleistocene. Current Biology, 19, R584–R594. PubMed
Hopkins, D. , Matthews, J. , & Schweger, C. (1982). Paleoecology of Beringia, 1st ed New York, NY: Academic Press.
Kimura, M. , & Weiss, G. H. (1964). The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561–576. PubMed PMC
Kingman, J. F. C. (1982). The coalescent. Stochastic Processes and their Applications, 13, 235–248. 10.1016/0304-4149(82)90011-4 DOI
Koblmüller, S. , Vilà, C. , Lorente‐Galdos, B. , Dabad, M. , Ramirez, O. , Marques‐Bonet, T. , … Leonard, J. A. (2016). Whole mitochondrial genomes illuminate ancient intercontinental dispersals of grey wolves (Canis lupus). Journal of Biogeography, 43, 1728–1738.
Kuzmina, I. E. , & Sablin, M. V. (1993). Pozdnepleistotsenovyi pesets verhnei Desny In Baryshnikov G. F., & Kuzmina I. E. (Eds.), Materiali po mezozoickoi i kainozoickoi istorii nazemnykh pozvonochnykh (pp. 93–104). Leningrad, USSR: Trudy 17 Zoologicheskogo Instituta RAN 249.
Lanfear, R. , Calcott, B. , Ho, S. Y. W. , & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701. 10.1093/molbev/mss020 PubMed DOI
Larkin, M. A. , Blackshields, G. , Brown, N. P. , Chenna, R. , McGettigan, P. A. , McWilliam, H. , … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. 10.1093/bioinformatics/btm404 PubMed DOI
Larson, G. , Karlsson, E. K. , Perri, A. , Webster, M. T. , Ho, S. Y. W. , Peters, J. , … Lindblad‐Toh, K. (2012). Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proceedings of the National Academy of Sciences, 109, 8878–8883. 10.1073/pnas.1203005109 PubMed DOI PMC
Leonard, J. A. (2015). Ecology drives evolution in grey wolves. Evolutionary Ecology Research, 16, 461–473.
Leonard, J. A. , Vilà, C. , Fox‐Dobbs, K. , Koch, P. L. , Wayne, R. K. , & Van Valkenburgh, B. (2007). Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Current Biology, 17, 1146–1150. 10.1016/j.cub.2007.05.072 PubMed DOI
Lister, A. M. , & Stuart, A. J. (2008). The impact of climate change on large mammal distribution and extinction: Evidence from the last glacial/interglacial transition. Comptes Rendus Geoscience, 340, 615–620. 10.1016/j.crte.2008.04.001 DOI
Loog, L. , Lahr, M. M. , Kovacevic, M. , Manica, A. , Eriksson, A. , & Thomas, M. G. (2017). Estimating mobility using sparse data: Application to human genetic variation. Proceedings of the National Academy of Sciences, 114(46), 12213–12218. 10.1073/pnas.1703642114 PubMed DOI PMC
Lorenzen, E. D. , Nogués‐Bravo, D. , Orlando, L. , Weinstock, J. , Binladen, J. , Marske, K. A. , … Willerslev, E. (2011). Species‐specific responses of Late Quaternary megafauna to climate and humans. Nature, 479, 359–364. 10.1038/nature10574 PubMed DOI PMC
Lucchini, V. , Galov, A. , & Randi, E. (2004). Evidence of genetic distinction and long‐term population decline in wolves (Canis lupus) in the Italian Apennines. Molecular Ecology, 13, 523–536. 10.1046/j.1365-294X.2004.02077.x PubMed DOI
Mazet, O. , Rodríguez, W. , & Chikhi, L. (2015). Demographic inference using genetic data from a single individual: Separating population size variation from population structure. Theoretical Population Biology, 104, 46–58. 10.1016/j.tpb.2015.06.003 PubMed DOI
Mazet, O. , Rodríguez, W. , Grusea, S. , Boitard, S. , & Chikhi, L. (2016). On the importance of being structured: Instantaneous coalescence rates and human evolution—lessons for ancestral population size inference? Heredity, 116, 362–371. 10.1038/hdy.2015.104 PubMed DOI PMC
Morey, D. F. (2014). In search of Paleolithic dogs: A quest with mixed results. Journal of Archaeological Science, 52, 300–307. 10.1016/j.jas.2014.08.015 DOI
Münzel, S. C. , & Conard, N. J. (2004). Change and continuity in subsistence during the Middle and Upper Palaeolithic in the Ach Valley of Swabia (south‐west Germany). International Journal of Osteoarchaeology, 14, 225–243. 10.1002/oa.758 DOI
Nielsen, R. , & Beaumont, M. A. (2009). Statistical inferences in phylogeography. Molecular Ecology, 18, 1034–1047. 10.1111/j.1365-294X.2008.04059.x PubMed DOI
O'Keefe, F. R. , Meachen, J. , Fet, E. V. , & Brannick, A. (2013). Ecological determinants of clinal morphological variation in the cranium of the North American gray wolf. Journal of Mammalogy, 94, 1223–1236. 10.1644/13-MAMM-A-069 DOI
Palkopoulou, E. , Dalén, L. , Lister, A. M. , Vartanyan, S. , Sablin, M. , Sher, A. , … Thomas, J. A. (2013). Holarctic genetic structure and range dynamics in the woolly mammoth. Proceedings of the Royal Society B: Biological Sciences, 280, 20131910 10.1098/rspb.2013.1910 PubMed DOI PMC
Paradis, E. , Claude, J. , & Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics, 20, 289–290. 10.1093/bioinformatics/btg412 PubMed DOI
Perri, A. (2016). A wolf in dog's clothing: Initial dog domestication and Pleistocene wolf variation. Journal of Archaeological Science, 68, 1–4. 10.1016/j.jas.2016.02.003 DOI
Pilot, M. , Jedrzejewski, W. , Branicki, W. , Sidorovich, V. E. , Jedrzejewska, B. , Stachura, K. , & Funk, S. M. (2006). Ecological factors influence population genetic structure of European grey wolves. Molecular Ecology, 15, 4533–4553. 10.1111/j.1365-294X.2006.03110.x PubMed DOI
Posth, C. , Renaud, G. , Mittnik, A. , Drucker, D. G. , Rougier, H. , Cupillard, C. , … Krause, J. (2016). Pleistocene mitochondrial genomes suggest a single major dispersal of non‐Africans and a Late Glacial population turnover in Europe. Current Biology, 26, 827–833. 10.1016/j.cub.2016.01.037 PubMed DOI
Puzachenko, A. Y. , & Markova, A. K. (2016). Diversity dynamics of large‐ and medium‐sized mammals in the Late Pleistocene and the Holocene on the East European Plain: Systems approach. Quaternary International, 420, 391–401. 10.1016/j.quaint.2015.07.031 DOI
Raghavan, M. , Steinrucken, M. , Harris, K. , Schiffels, S. , Rasmussen, S. , DeGiorgio, M. , … Willerslev, E. (2015). Genomic evidence for the Pleistocene and recent population history of Native Americans. Science, 349(6250), aab3884 10.1126/science.aab3884 PubMed DOI PMC
Rambaut, A. (2000). Estimating the rate of molecular evolution: Incorporating non‐contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics, 16, 395–399. 10.1093/bioinformatics/16.4.395 PubMed DOI
Rieux, A. , Eriksson, A. , Li, M. , Sobkowiak, B. , Weinert, L. A. , Warmuth, V. , … Balloux, F. (2014). Improved calibration of the human mitochondrial clock using ancient genomes. Molecular Biology and Evolution, 31, 2780–2792. 10.1093/molbev/msu222 PubMed DOI PMC
Sablin, M. V. , & Khlopachev, G. A. (2002). The earliest Ice Age dogs: Evidence from Eliseevichi 1. Current Anthropology, 43, 795–799. 10.1086/344372 DOI
Sharma, D. K. , Maldonado, J. E. , Jhala, Y. V. , & Fleischer, R. C. . (2004). Ancient wolf lineages in India. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(Suppl_3), S1–S4. 10.1098/rsbl.2003.0071 PubMed DOI PMC
Sinding, M.‐H. , Gopalakrishan, S. , Vieira, F. G. , Samaniego Castruita, J. A. , Raundrup, K. , Heide Jørgensen, M. P. , … Gilbert, M. T. P. (2018). Population genomics of grey wolves and wolf‐like canids in North America. PLoS Genetics, 14, e1007745 10.1371/journal.pgen.1007745 PubMed DOI PMC
Sinnott, R. (1984). Virtues of the haversine. Sky and Telescope, 68, 159.
Skoglund, P. , Ersmark, E. , Palkopoulou, E. , & Dalén, L. (2015). Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high‐latitude breeds. Current Biology, 25, 1515–1519. 10.1016/j.cub.2015.04.019 PubMed DOI
Sotnikova, M. , & Rook, L. (2010). Dispersal of the Canini (Mammalia, Canidae: Caninae) across Eurasia during the Late Miocene to Early Pleistocene. Quaternary International, 212, 86–97. 10.1016/j.quaint.2009.06.008 DOI
Stuart, A. J. , Kosintsev, P. A. , Higham, T. F. G. , & Lister, A. M. (2004). Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth. Nature, 431, 684–689. 10.1038/nature02890 PubMed DOI
Thalmann, O. , Shapiro, B. , Cui, P. , Schuenemann, V. J. , Sawyer, S. K. , Greenfield, D. L. , … Wayne, R. K. (2013). Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science, 342, 871–874. 10.1126/science.1243650 PubMed DOI
Verardi, A. , Lucchini, V. , & Randi, E. (2006). Detecting introgressive hybridization between free‐ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis. Molecular Ecology, 15, 2845–2855. 10.1111/j.1365-294X.2006.02995.x PubMed DOI
Wang, G.‐D. , Zhai, W. , Yang, H.‐C. , Wang, L. U. , Zhong, L. I. , Liu, Y.‐H. , … Zhang, Y.‐P. (2016). Out of southern East Asia: The natural history of domestic dogs across the world. Cell Research, 26, 21–33. 10.1038/cr.2015.147 PubMed DOI PMC
Warmuth, V. , Eriksson, A. , Bower, M. A. , Barker, G. , Barrett, E. , Hanks, B. K. , … Manica, A. (2012). Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proceedings of the National Academy of Sciences, 109, 8202–8206. 10.1073/pnas.1111122109 PubMed DOI PMC
Wegmann, D. , Leuenberger, C. , Neuenschwander, S. , & Excoffier, L. (2010). ABCtoolbox: A versatile toolkit for approximate Bayesian computations. BMC Bioinformatics, 11, 116 10.1186/1471-2105-11-116 PubMed DOI PMC