Grey wolf genomic history reveals a dual ancestry of dogs
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu historické články, časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
FC001595
Arthritis Research UK - United Kingdom
852558
European Research Council - International
217223/Z/19/Z
Wellcome Trust - United Kingdom
681396
European Research Council - International
310763
European Research Council - International
ERC-2013-STG-337574-UNDEAD
European Research Council - International
ERC-2019-STG-853272-PALAEOFARM
European Research Council - International
210119/Z/18/Z
Wellcome Trust - United Kingdom
FC001595
Wellcome Trust - United Kingdom
PubMed
35768506
PubMed Central
PMC9279150
DOI
10.1038/s41586-022-04824-9
PII: 10.1038/s41586-022-04824-9
Knihovny.cz E-zdroje
- MeSH
- dějiny starověku MeSH
- domestikace MeSH
- fylogeneze * MeSH
- genom * genetika MeSH
- genomika * MeSH
- mutace MeSH
- nádorové supresorové proteiny genetika MeSH
- psi * genetika MeSH
- selekce (genetika) MeSH
- starobylá DNA analýza MeSH
- vlci * klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- dějiny starověku MeSH
- psi * genetika MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Afrika MeSH
- Evropa MeSH
- Severní Amerika MeSH
- Sibiř MeSH
- Střední východ MeSH
- Názvy látek
- nádorové supresorové proteiny MeSH
- starobylá DNA MeSH
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.
Academy of Sciences of Sakha Republic Yakutsk Russian Federation
Ancient Genomics Laboratory The Francis Crick Institute London UK
Arctic and Antarctic Research Institute St Petersburg Russian Federation
Biogeology Department of Geosciences University of Tübingen Tübingen Germany
Centre for Palaeogenetics Stockholm Sweden
CIAS Department of Life Sciences University of Coimbra Coimbra Portugal
Collections and Research Canadian Museum of Nature Ottawa Ontario Canada
Department of Anthropology University of Nevada Las Vegas Las Vegas NV USA
Department of Archaeology Ghent University Ghent Belgium
Department of Archaeology School of Geosciences University of Aberdeen Aberdeen UK
Department of Archaeology University of Exeter Exeter UK
Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
Department of Early Prehistory and Quaternary Ecology University of Tübingen Tübingen Germany
Department of Earth Sciences Natural History Museum London UK
Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA
Department of Evolutionary Anthropology University of Vienna Vienna Austria
Department of Geological Sciences Stockholm University Stockholm Sweden
Department of Geosciences and Geography Faculty of Science University of Helsinki Helsinki Finland
Department of Zoology University of Cambridge Cambridge UK
Estación Biológica de Doñana Sevilla Spain
Genetics Institute University College London London UK
Geological Institute Russian Academy of Sciences Moscow Russian Federation
German Archaeological Institute Berlin Germany
Greenland Institute of Natural Resources Nuuk Greenland
Howard Hughes Medical Institute University of California Santa Cruz Santa Cruz CA USA
Human Evolution and Archaeological Sciences University of Vienna Vienna Austria
Hungarian Natural History Museum Budapest Hungary
Ice Age Museum Shidlovskiy National Alliance 'Ice Age' Moscow Russian Federation
Institute for Archaeological Sciences University of Tübingen Tübingen Germany
Institute of Ecology and Evolution University of Bern Bern Switzerland
Institute of Evolutionary Medicine University of Zurich Zurich Switzerland
Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Max Planck Institute for the Science of Human History Jena Germany
Moravian Museum Brno Czech Republic
Museum 'Severnyi Mir' Yakutsk Russian Federation
Museum and Institute of Zoology Polish Academy of Sciences Gdańsk Poland
National Monuments Service Department of Housing Local Government and Heritage Dublin Ireland
Naturhistorisches Museum Bern Bern Switzerland
North Eastern Federal University Yakutsk Russian Federation
Palaeogenomics Group Department of Veterinary Sciences Ludwig Maximilian University Munich Germany
Royal Belgian Institute of Natural Sciences Brussels Belgium
School of Archaeology University College Dublin Dublin Ireland
School of Biological and Behavioural Sciences Queen Mary University of London London UK
School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
Senckenberg Centre for Human Evolution and Palaeoenvironment University of Tübingen Tübingen Germany
Service Régional de l'Archéologie Orléans France
Smurfit Institute of Genetics Trinity College Dublin Dublin Ireland
Stockholm University Stockholm Sweden
Texas A and M University College Station TX USA
The GLOBE Institute University of Copenhagen Copenhagen Denmark
The Qimmeq Project University of Greenland Nuuk Greenland
University Museum NTNU Trondheim Norway
University of Alaska Fairbanks AK USA
University of Leiden Leiden the Netherlands
University of Rennes CNRS ECOBIO UMR 6553 Rennes France
Ural Federal University Yekaterinburg Russian Federation
VNIIOkeangeologiya St Petersburg Russian Federation
Yukon Palaeontology Program Whitehorse Yukon Territories Canada
Zoological Institute of the Russian Academy of Sciences St Petersburg Russian Federation
Zobrazit více v PubMed
Savolainen P, Zhang Y-P, Luo J, Lundeberg J, Leitner T. Genetic evidence for an East Asian origin of domestic dogs. Science. 2002;298:1610–1613. PubMed
Wang G-D, et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 2016;26:21–33. PubMed PMC
Frantz LAF, et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science. 2016;352:1228–1231. PubMed
Shannon LM, et al. Genetic structure in village dogs reveals a Central Asian domestication origin. Proc. Natl Acad. Sci. USA. 2015;112:13639–13644. PubMed PMC
Thalmann O, et al. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science. 2013;342:871–874. PubMed
Vonholdt BM, et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature. 2010;464:898–902. PubMed PMC
Botigué LR, et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 2017;8:16082. PubMed PMC
Bergström A, et al. Origins and genetic legacy of prehistoric dogs. Science. 2020;370:557–564. PubMed PMC
Tian H, et al. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum. Mol. Genet. 2017;26:860–872. PubMed PMC
Fan Z, et al. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res. 2016;26:163–173. PubMed PMC
vonHoldt BM, et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2016;2:e1501714. PubMed PMC
Hughes PD, Gibbard PL. A stratigraphical basis for the Last Glacial Maximum (LGM) Quat. Int. 2015;383:174–185.
Skoglund P, Ersmark E, Palkopoulou E, Dalén L. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 2015;25:1515–1519. PubMed
Ramos-Madrigal J, et al. Genomes of Pleistocene Siberian wolves uncover multiple extinct wolf lineages. Curr. Biol. 2020;31:198–206. PubMed PMC
Janssens L, et al. A new look at an old dog: Bonn-Oberkassel reconsidered. J. Archaeol. Sci. 2018;92:126–138.
Perri AR, et al. Dog domestication and the dual dispersal of people and dogs into the Americas. Proc. Natl Acad. Sci. USA. 2021;118:e2010083118. PubMed PMC
Sinding M-HS, et al. Arctic-adapted dogs emerged at the Pleistocene–Holocene transition. Science. 2020;368:1495–1499. PubMed PMC
Pečnerová P, et al. Genome-based sexing provides clues about behavior and social structure in the woolly mammoth. Curr. Biol. 2017;27:3505–3510. PubMed
Gower G, et al. Widespread male sex bias in mammal fossil and museum collections. Proc. Natl Acad. Sci. USA. 2019;116:19019–19024. PubMed PMC
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007;7:214. PubMed PMC
Loog L, et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol. Ecol. 2020;29:1596–1610. PubMed PMC
Gopalakrishnan S, et al. Interspecific gene flow shaped the evolution of the genus Canis. Curr. Biol. 2018;28:3441–3449. PubMed PMC
Wang M-S, et al. Ancient hybridization with an unknown population facilitated high-altitude adaptation of canids. Mol. Biol. Evol. 2020;37:2616–2629. PubMed
vonHoldt BM, et al. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res. 2011;21:1294–1305. PubMed PMC
Sinding M-HS, et al. Population genomics of grey wolves and wolf-like canids in North America. PLoS Genet. 2018;14:e1007745. PubMed PMC
Wang K, Mathieson I, O’Connell J, Schiffels S. Tracking human population structure through time from whole genome sequences. PLoS Genet. 2020;16:e1008552. PubMed PMC
Kurtén, B. & Anderson, E. Pleistocene Mammals of North America (Columbia University Press, 1980).
Hu A, et al. Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes. Nat. Geosci. 2010;3:118–121.
Vershinina AO, et al. Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge. Mol. Ecol. 2021;30:6144–6161. PubMed
Leonard JA, et al. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Curr. Biol. 2007;17:1146–1150. PubMed
Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992;132:583–589. PubMed PMC
Pilot M, et al. Genome-wide signatures of population bottlenecks and diversifying selection in European wolves. Heredity. 2014;112:428–442. PubMed PMC
Dufresnes C, et al. Howling from the past: historical phylogeography and diversity losses in European grey wolves. Proc. Biol. Sci. 2018;285:20181148. PubMed PMC
Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004. PubMed
Speidel L, Forest M, Shi S, Myers SR. A method for genome-wide genealogy estimation for thousands of samples. Nat. Genet. 2019;51:1321–1329. PubMed PMC
Stern AJ, Wilton PR, Nielsen R. An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data. PLoS Genet. 2019;15:e1008384. PubMed PMC
Freedman AH, et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014;10:e1004016. PubMed PMC
Rimbault M, et al. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Res. 2013;23:1985–1995. PubMed PMC
Webster MT, et al. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds. BMC Genomics. 2015;16:474. PubMed PMC
Plassais J, et al. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019;10:1489. PubMed PMC
Boyko AR, et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2010;8:e1000451. PubMed PMC
Anderson TM, et al. Molecular and evolutionary history of melanism in North American gray wolves. Science. 2009;323:1339–1343. PubMed PMC
Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. PubMed PMC
Mech LD. Unexplained patterns of grey wolf Canis lupus natal dispersal. Mamm. Rev. 2020;50:314–323.
Baumann C, et al. A refined proposal for the origin of dogs: the case study of Gnirshöhle, a Magdalenian cave site. Sci. Rep. 2021;11:5137. PubMed PMC
Germonpré M, et al. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J. Archaeol. Sci. 2009;36:473–490.
Davis SJM, Valla FR. Evidence for domestication of the dog 12,000 years ago in the Natufian of Israel. Nature. 1978;276:608–610.
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010;2010:db.prot5448. PubMed
Rodríguez-Varela R, et al. Genomic analyses of pre-European Conquest human remains from the Canary Islands reveal close affinity to modern North Africans. Curr. Biol. 2017;27:3396–3402. PubMed
Ersmark, E. et al. Population demography and genetic diversity in the Pleistocene cave lion. Open Quatern., 10.5334/oq.aa (2015).
Stanton DWG, et al. Early Pleistocene origin and extensive intra-species diversity of the extinct cave lion. Sci. Rep. 2020;10:12621. PubMed PMC
Dabney J, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA. 2013;110:15758–15763. PubMed PMC
Gansauge M-T, Meyer M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 2013;8:737–748. PubMed
Poinar HN, Cooper A. Ancient DNA: do it right or not at all. Science. 2000;5482:416. PubMed
Knapp M, Hofreiter M. Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes. 2010;1:227–243. PubMed PMC
Kircher M. Analysis of high-throughput ancient DNA sequencing data. Methods Mol. Biol. 2012;840:197–228. PubMed
Orlando L, et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499:74–78. PubMed
Carøe C, et al. Single‐tube library preparation for degraded DNA. Methods Ecol. Evol. 2018;9:410–419.
Mak SST, et al. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. Gigascience. 2017;6:1–13. PubMed PMC
Fulton TL, Shapiro B. Setting up an ancient DNA laboratory. Methods Mol. Biol. 2019;1963:1–13. PubMed
Korlević P, Meyer M. Pretreatment: removing DNA contamination from ancient bones and teeth using sodium hypochlorite and phosphate. Methods Mol. Biol. 2019;1963:15–19. PubMed
Kapp JD, Green RE, Shapiro B. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J. Hered. 2021;112:241–249. PubMed PMC
Harney É, et al. A minimally destructive protocol for DNA extraction from ancient teeth. Genome Res. 2021;31:472–483. PubMed PMC
Gamba C, et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 2014;5:5257. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
Ramos Madrigal J, et al. Genomes of extinct Pleistocene Siberian wolves provide insights into the origin of present-day wolves. Curr. Biol. 2021;31:199. PubMed PMC
Skoglund P, et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA. 2014;111:2229–2234. PubMed PMC
Liu Y-H, et al. Whole-genome sequencing of African dogs provides insights into adaptations against tropical parasites. Mol. Biol. Evol. 2018;35:287–298. PubMed
Kardos M, et al. Genomic consequences of intensive inbreeding in an isolated wolf population. Nat. Ecol. Evol. 2018;2:124–131. PubMed
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. PubMed PMC
Ní Leathlobhair M, et al. The evolutionary history of dogs in the Americas. Science. 2018;361:81–85. PubMed PMC
Niemann J, et al. Extended survival of Pleistocene Siberian wolves into the early 20th century on the island of Honshū. iScience. 2021;24:101904. PubMed PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Arnason U, Gullberg A, Janke A, Kullberg M. Mitogenomic analyses of caniform relationships. Mol. Phylogenet. Evol. 2007;45:863–874. PubMed
Björnerfeldt S, Webster MT, Vilà C. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res. 2006;16:990–994. PubMed PMC
Matsumura S, Inoshima Y, Ishiguro N. Reconstructing the colonization history of lost wolf lineages by the analysis of the mitochondrial genome. Mol. Phylogenet. Evol. 2014;80:105–112. PubMed
Meng C, Zhang H, Meng Q. Mitochondrial genome of the Tibetan wolf. Mitochondrial DNA. 2009;20:61–63. PubMed
Pang J-F, et al. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol. Biol. Evol. 2009;26:2849–2864. PubMed PMC
Zhang H, et al. Complete mitochondrial genome of Canis lupus campestris. Mitochondrial DNA. 2015;26:255–256. PubMed
Sievers F, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. PubMed PMC
Suchard MA, et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. PubMed PMC
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. PubMed PMC
Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. PubMed PMC
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190. PubMed PMC
Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv10.1101/201178 (2018).
Koch E, et al. De novo mutation rate estimation in wolves of known pedigree. Mol. Biol. Evol. 2019;36:2536–2547. PubMed PMC
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience4, 7 (2015). PubMed PMC
Deane-Coe PE, Chu ET, Slavney A, Boyko AR, Sams AJ. Direct-to-consumer DNA testing of 6,000 dogs reveals 98.6-kb duplication associated with blue eyes and heterochromia in Siberian Huskies. PLoS Genet. 2018;14:e1007648. PubMed PMC
Hudson RR. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics. 2002;18:337–338. PubMed
Testing Times: Challenges in Disentangling Admixture Histories in Recent and Complex Demographies
The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs
On the limits of fitting complex models of population history to f-statistics