Grey wolf genomic history reveals a dual ancestry of dogs

. 2022 Jul ; 607 (7918) : 313-320. [epub] 20220629

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu historické články, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35768506

Grantová podpora
Wellcome Trust - United Kingdom
FC001595 Arthritis Research UK - United Kingdom
852558 European Research Council - International
217223/Z/19/Z Wellcome Trust - United Kingdom
681396 European Research Council - International
310763 European Research Council - International
ERC-2013-STG-337574-UNDEAD European Research Council - International
ERC-2019-STG-853272-PALAEOFARM European Research Council - International
210119/Z/18/Z Wellcome Trust - United Kingdom
FC001595 Wellcome Trust - United Kingdom

Odkazy

PubMed 35768506
PubMed Central PMC9279150
DOI 10.1038/s41586-022-04824-9
PII: 10.1038/s41586-022-04824-9
Knihovny.cz E-zdroje

The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.

Academy of Sciences of Sakha Republic Yakutsk Russian Federation

Ancient Genomics Laboratory The Francis Crick Institute London UK

Arctic and Antarctic Research Institute St Petersburg Russian Federation

Biogeology Department of Geosciences University of Tübingen Tübingen Germany

Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288 CNRS Faculté de Médecine Purpan Université Paul Sabatier Toulouse France

Centre for Palaeogenetics Stockholm Sweden

CIAS Department of Life Sciences University of Coimbra Coimbra Portugal

Collections and Research Canadian Museum of Nature Ottawa Ontario Canada

Department of Anthropology University of Nevada Las Vegas Las Vegas NV USA

Department of Archaeology Ethnology and Museology Al Farabi Kazakh State University Almaty Kazakhstan

Department of Archaeology Ghent University Ghent Belgium

Department of Archaeology School of Geosciences University of Aberdeen Aberdeen UK

Department of Archaeology University of Exeter Exeter UK

Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden

Department of Early Prehistory and Quaternary Ecology University of Tübingen Tübingen Germany

Department of Earth Sciences Natural History Museum London UK

Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA

Department of Evolutionary Anthropology University of Vienna Vienna Austria

Department of Geological Sciences Stockholm University Stockholm Sweden

Department of Geosciences and Geography Faculty of Science University of Helsinki Helsinki Finland

Department of Zoology University of Cambridge Cambridge UK

Estación Biológica de Doñana Sevilla Spain

Evolutionary Adaptive Genomics Institute of Biochemistry and Biology University of Potsdam Potsdam Germany

Genetics Institute University College London London UK

Geological Institute Russian Academy of Sciences Moscow Russian Federation

German Archaeological Institute Berlin Germany

Greenland Institute of Natural Resources Nuuk Greenland

Howard Hughes Medical Institute University of California Santa Cruz Santa Cruz CA USA

Human Evolution and Archaeological Sciences University of Vienna Vienna Austria

Hungarian Natural History Museum Budapest Hungary

Ice Age Museum Shidlovskiy National Alliance 'Ice Age' Moscow Russian Federation

INRAP Metz France

Institute for Archaeological Sciences University of Tübingen Tübingen Germany

Institute for the History of Material Culture Russian Academy of Sciences St Petersburg Russian Federation

Institute of Archaeology and Steppe Civilizations Al Farabi Kazakh National University Almaty Kazakhstan

Institute of Ecology and Evolution University of Bern Bern Switzerland

Institute of Evolutionary Medicine University of Zurich Zurich Switzerland

Max Planck Institute for Evolutionary Anthropology Leipzig Germany

Max Planck Institute for the Science of Human History Jena Germany

Moravian Museum Brno Czech Republic

Museum 'Severnyi Mir' Yakutsk Russian Federation

Museum and Institute of Zoology Polish Academy of Sciences Gdańsk Poland

National Monuments Service Department of Housing Local Government and Heritage Dublin Ireland

Naturhistorisches Museum Bern Bern Switzerland

North Eastern Federal University Yakutsk Russian Federation

Palaeogenomics Group Department of Veterinary Sciences Ludwig Maximilian University Munich Germany

PaleoWest Henderson NV USA

Royal Belgian Institute of Natural Sciences Brussels Belgium

School of Archaeology University College Dublin Dublin Ireland

School of Biological and Behavioural Sciences Queen Mary University of London London UK

School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK

Senckenberg Centre for Human Evolution and Palaeoenvironment University of Tübingen Tübingen Germany

Service Régional de l'Archéologie Orléans France

Smurfit Institute of Genetics Trinity College Dublin Dublin Ireland

Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences Novosibirsk Russian Federation

Stockholm University Stockholm Sweden

Texas A and M University College Station TX USA

The GLOBE Institute University of Copenhagen Copenhagen Denmark

The Palaeogenomics and Bio Archaeology Research Network Research Laboratory for Archaeology and History of Art University of Oxford Oxford UK

The Qimmeq Project University of Greenland Nuuk Greenland

University Museum NTNU Trondheim Norway

University of Alaska Fairbanks AK USA

University of Leiden Leiden the Netherlands

University of Rennes CNRS ECOBIO UMR 6553 Rennes France

Ural Federal University Yekaterinburg Russian Federation

VNIIOkeangeologiya St Petersburg Russian Federation

Yukon Palaeontology Program Whitehorse Yukon Territories Canada

Zoological Institute of the Russian Academy of Sciences St Petersburg Russian Federation

Zobrazit více v PubMed

Savolainen P, Zhang Y-P, Luo J, Lundeberg J, Leitner T. Genetic evidence for an East Asian origin of domestic dogs. Science. 2002;298:1610–1613. PubMed

Wang G-D, et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 2016;26:21–33. PubMed PMC

Frantz LAF, et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science. 2016;352:1228–1231. PubMed

Shannon LM, et al. Genetic structure in village dogs reveals a Central Asian domestication origin. Proc. Natl Acad. Sci. USA. 2015;112:13639–13644. PubMed PMC

Thalmann O, et al. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science. 2013;342:871–874. PubMed

Vonholdt BM, et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature. 2010;464:898–902. PubMed PMC

Botigué LR, et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 2017;8:16082. PubMed PMC

Bergström A, et al. Origins and genetic legacy of prehistoric dogs. Science. 2020;370:557–564. PubMed PMC

Tian H, et al. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum. Mol. Genet. 2017;26:860–872. PubMed PMC

Fan Z, et al. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res. 2016;26:163–173. PubMed PMC

vonHoldt BM, et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2016;2:e1501714. PubMed PMC

Hughes PD, Gibbard PL. A stratigraphical basis for the Last Glacial Maximum (LGM) Quat. Int. 2015;383:174–185.

Skoglund P, Ersmark E, Palkopoulou E, Dalén L. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 2015;25:1515–1519. PubMed

Ramos-Madrigal J, et al. Genomes of Pleistocene Siberian wolves uncover multiple extinct wolf lineages. Curr. Biol. 2020;31:198–206. PubMed PMC

Janssens L, et al. A new look at an old dog: Bonn-Oberkassel reconsidered. J. Archaeol. Sci. 2018;92:126–138.

Perri AR, et al. Dog domestication and the dual dispersal of people and dogs into the Americas. Proc. Natl Acad. Sci. USA. 2021;118:e2010083118. PubMed PMC

Sinding M-HS, et al. Arctic-adapted dogs emerged at the Pleistocene–Holocene transition. Science. 2020;368:1495–1499. PubMed PMC

Pečnerová P, et al. Genome-based sexing provides clues about behavior and social structure in the woolly mammoth. Curr. Biol. 2017;27:3505–3510. PubMed

Gower G, et al. Widespread male sex bias in mammal fossil and museum collections. Proc. Natl Acad. Sci. USA. 2019;116:19019–19024. PubMed PMC

Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007;7:214. PubMed PMC

Loog L, et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol. Ecol. 2020;29:1596–1610. PubMed PMC

Gopalakrishnan S, et al. Interspecific gene flow shaped the evolution of the genus Canis. Curr. Biol. 2018;28:3441–3449. PubMed PMC

Wang M-S, et al. Ancient hybridization with an unknown population facilitated high-altitude adaptation of canids. Mol. Biol. Evol. 2020;37:2616–2629. PubMed

vonHoldt BM, et al. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res. 2011;21:1294–1305. PubMed PMC

Sinding M-HS, et al. Population genomics of grey wolves and wolf-like canids in North America. PLoS Genet. 2018;14:e1007745. PubMed PMC

Wang K, Mathieson I, O’Connell J, Schiffels S. Tracking human population structure through time from whole genome sequences. PLoS Genet. 2020;16:e1008552. PubMed PMC

Kurtén, B. & Anderson, E. Pleistocene Mammals of North America (Columbia University Press, 1980).

Hu A, et al. Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes. Nat. Geosci. 2010;3:118–121.

Vershinina AO, et al. Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge. Mol. Ecol. 2021;30:6144–6161. PubMed

Leonard JA, et al. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Curr. Biol. 2007;17:1146–1150. PubMed

Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992;132:583–589. PubMed PMC

Pilot M, et al. Genome-wide signatures of population bottlenecks and diversifying selection in European wolves. Heredity. 2014;112:428–442. PubMed PMC

Dufresnes C, et al. Howling from the past: historical phylogeography and diversity losses in European grey wolves. Proc. Biol. Sci. 2018;285:20181148. PubMed PMC

Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004. PubMed

Speidel L, Forest M, Shi S, Myers SR. A method for genome-wide genealogy estimation for thousands of samples. Nat. Genet. 2019;51:1321–1329. PubMed PMC

Stern AJ, Wilton PR, Nielsen R. An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data. PLoS Genet. 2019;15:e1008384. PubMed PMC

Freedman AH, et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014;10:e1004016. PubMed PMC

Rimbault M, et al. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Res. 2013;23:1985–1995. PubMed PMC

Webster MT, et al. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds. BMC Genomics. 2015;16:474. PubMed PMC

Plassais J, et al. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019;10:1489. PubMed PMC

Boyko AR, et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2010;8:e1000451. PubMed PMC

Anderson TM, et al. Molecular and evolutionary history of melanism in North American gray wolves. Science. 2009;323:1339–1343. PubMed PMC

Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. PubMed PMC

Mech LD. Unexplained patterns of grey wolf Canis lupus natal dispersal. Mamm. Rev. 2020;50:314–323.

Baumann C, et al. A refined proposal for the origin of dogs: the case study of Gnirshöhle, a Magdalenian cave site. Sci. Rep. 2021;11:5137. PubMed PMC

Germonpré M, et al. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J. Archaeol. Sci. 2009;36:473–490.

Davis SJM, Valla FR. Evidence for domestication of the dog 12,000 years ago in the Natufian of Israel. Nature. 1978;276:608–610.

Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010;2010:db.prot5448. PubMed

Rodríguez-Varela R, et al. Genomic analyses of pre-European Conquest human remains from the Canary Islands reveal close affinity to modern North Africans. Curr. Biol. 2017;27:3396–3402. PubMed

Ersmark, E. et al. Population demography and genetic diversity in the Pleistocene cave lion. Open Quatern., 10.5334/oq.aa (2015).

Stanton DWG, et al. Early Pleistocene origin and extensive intra-species diversity of the extinct cave lion. Sci. Rep. 2020;10:12621. PubMed PMC

Dabney J, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA. 2013;110:15758–15763. PubMed PMC

Gansauge M-T, Meyer M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 2013;8:737–748. PubMed

Poinar HN, Cooper A. Ancient DNA: do it right or not at all. Science. 2000;5482:416. PubMed

Knapp M, Hofreiter M. Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes. 2010;1:227–243. PubMed PMC

Kircher M. Analysis of high-throughput ancient DNA sequencing data. Methods Mol. Biol. 2012;840:197–228. PubMed

Orlando L, et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499:74–78. PubMed

Carøe C, et al. Single‐tube library preparation for degraded DNA. Methods Ecol. Evol. 2018;9:410–419.

Mak SST, et al. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. Gigascience. 2017;6:1–13. PubMed PMC

Fulton TL, Shapiro B. Setting up an ancient DNA laboratory. Methods Mol. Biol. 2019;1963:1–13. PubMed

Korlević P, Meyer M. Pretreatment: removing DNA contamination from ancient bones and teeth using sodium hypochlorite and phosphate. Methods Mol. Biol. 2019;1963:15–19. PubMed

Kapp JD, Green RE, Shapiro B. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J. Hered. 2021;112:241–249. PubMed PMC

Harney É, et al. A minimally destructive protocol for DNA extraction from ancient teeth. Genome Res. 2021;31:472–483. PubMed PMC

Gamba C, et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 2014;5:5257. PubMed PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC

Ramos Madrigal J, et al. Genomes of extinct Pleistocene Siberian wolves provide insights into the origin of present-day wolves. Curr. Biol. 2021;31:199. PubMed PMC

Skoglund P, et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA. 2014;111:2229–2234. PubMed PMC

Liu Y-H, et al. Whole-genome sequencing of African dogs provides insights into adaptations against tropical parasites. Mol. Biol. Evol. 2018;35:287–298. PubMed

Kardos M, et al. Genomic consequences of intensive inbreeding in an isolated wolf population. Nat. Ecol. Evol. 2018;2:124–131. PubMed

Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. PubMed PMC

Ní Leathlobhair M, et al. The evolutionary history of dogs in the Americas. Science. 2018;361:81–85. PubMed PMC

Niemann J, et al. Extended survival of Pleistocene Siberian wolves into the early 20th century on the island of Honshū. iScience. 2021;24:101904. PubMed PMC

Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC

Arnason U, Gullberg A, Janke A, Kullberg M. Mitogenomic analyses of caniform relationships. Mol. Phylogenet. Evol. 2007;45:863–874. PubMed

Björnerfeldt S, Webster MT, Vilà C. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res. 2006;16:990–994. PubMed PMC

Matsumura S, Inoshima Y, Ishiguro N. Reconstructing the colonization history of lost wolf lineages by the analysis of the mitochondrial genome. Mol. Phylogenet. Evol. 2014;80:105–112. PubMed

Meng C, Zhang H, Meng Q. Mitochondrial genome of the Tibetan wolf. Mitochondrial DNA. 2009;20:61–63. PubMed

Pang J-F, et al. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol. Biol. Evol. 2009;26:2849–2864. PubMed PMC

Zhang H, et al. Complete mitochondrial genome of Canis lupus campestris. Mitochondrial DNA. 2015;26:255–256. PubMed

Sievers F, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. PubMed PMC

Suchard MA, et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. PubMed PMC

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. PubMed PMC

Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. PubMed PMC

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190. PubMed PMC

Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv10.1101/201178 (2018).

Koch E, et al. De novo mutation rate estimation in wolves of known pedigree. Mol. Biol. Evol. 2019;36:2536–2547. PubMed PMC

Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience4, 7 (2015). PubMed PMC

Deane-Coe PE, Chu ET, Slavney A, Boyko AR, Sams AJ. Direct-to-consumer DNA testing of 6,000 dogs reveals 98.6-kb duplication associated with blue eyes and heterochromia in Siberian Huskies. PLoS Genet. 2018;14:e1007648. PubMed PMC

Hudson RR. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics. 2002;18:337–338. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...