Cervidae antlers exploited to manufacture prehistoric tools and hunting implements as a reliable source of ancient DNA
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38845985
PubMed Central
PMC11154607
DOI
10.1016/j.heliyon.2024.e31858
PII: S2405-8440(24)07889-7
Knihovny.cz E-zdroje
- Klíčová slova
- Ancient DNA, Antler, Hunting implements, Osseous tools, Upper palaeolithic,
- Publikační typ
- časopisecké články MeSH
Antler is one of the primary animal raw materials exploited for technical purposes by the hunter-gatherer groups of the Eurasian Upper Palaeolithic (UP) all over the ecological range of deers, and beyond. It was exhaustively employed to produce one of the most critical tools for the survival of the UP societies: hunting weapons. However, antler implements can be made from diverse deer taxa, with different ecological requirements and ethological behaviours. Identifying the antler's origin at a taxonomic level is thus essential in improving our knowledge of humans' functional, practical and symbolic choices, as well as the human-animal interface during Prehistoric times. Nevertheless, palaeogenetics analyses have focused mainly on bone and teeth, with genetic studies of antler generally focused on modern deer conservation. Here we present the results of the first whole mitochondrial genome ancient DNA (aDNA) analysis by means of in-solution hybridisation capture of antlers from pre-Holocene archaeological contexts. We analysed a set of 50 Palaeolithic and Neolithic (c. 34-8ka) antler and osseous objects from South-Western Europe, Central Europe, South-Western Asia and the Caucasus. We successfully obtained aDNA, allowing us to identify the exploited taxa and demonstrate the archaeological relevance of those finds. Moreover, as most of the antlers were sampled using a minimally-invasive method, further analyses (morphometric, technical, genetic, radiometric and more) remain possible on these objects.
Austrian Archaeological Institute Prehistory Austrian Academy of Sciences Vienna Austria
Departament de Prehistòria Universitat Autònoma de Barcelona Spain
Department of Evolutionary Anthropology University of Vienna Austria
Department of Prehistoric and Historical Archaeology University of Vienna Austria
Georgian National Museum Tbilisi Georgia
GIR PREHUSAL Departamento de Prehistoria H Antigua y Arqueología Universidad de Salamanca Spain
Human Evolution and Archeological Sciences University of Vienna Austria
Independent Researcher Tbilisi Georgia
Institut D'Arqueologia de La Universitat de Barcelona Spain
Institute of Archaeology The Hebrew University of Jerusalem Israel
Instituto Internacional de Investigaciones Prehistóricas de Cantabria Santander Spain
Laboratory of Archaeozoology School of Archaeology and Maritime Cultures University of Haifa Israel
Moravské Zemské Museum Historické Muzeum Ústav Anthropos Brno Czech Republic
Musée D'Archéologie Nationale et Domaine National de Saint Germain en Laye France
Museo de Prehistoria y Arqueología de Cantabria Santander Spain
Zobrazit více v PubMed
Knecht H. New York University; 1991. Technological Innovation and Design during the Early Upper Paleolithic: A Study of Organic Projectile.
Averbouh A. Préhistoire-Ethnologie-Anthropologie, PhD, Université Paris I Panthéon-Sorbonne. 2000. Téchnologie de la matière osseuse travaillée et implications palethnologiques. L’exemple des chaines d'exploitation du bois de cervidé chez les Magdaleniens des Pyrénées.
Goutas N. Université Paris I Panthéon-Sorbonne. 2004. Caractérisation et évolution du Gravettien en France par l’approche techno-économique des industries en matières dures animales (étude de six gisements du Sud-ouest)
Pacher M. In: New Aspects of the Central and Eastern European Upper Palaeolithic - Methods, Chronology, Technology and Subsistence. Neugebauer-Maresch C., Owen L., editors. 2010. Raw material analysis of upper palaeolithic bone points and the invention of the olschewian; pp. 319–326.
Tartar E., White R. The manufacture of Aurignacian split-based points: an experimental challenge. J. Archaeol. Sci. 2013;40:2723–2745.
Tejero J.-M. Towards complexity in osseous raw material exploitation by the first anatomically modern humans in Europe: aurignacian antler working. J. Anthropol. Archaeol. 2014;36:72–92.
Tejero J.-M. In: Osseous Projectile Weaponry: towards an Understanding of Pleistocene Cultural Variability. Langley M.C., editor. Springer Netherlands; Dordrecht: 2016. Spanish aurignacian projectile points: an example of the first European paleolithic hunting weapons in osseous materials; pp. 55–69.
Borao Álvarez M., Villaverde Bonilla V., Aura Tortosa J.E. Debitage by fracturing in the osseous industry of Cova del Parpalló (Gandía-Valencia, Spain): A preliminary study. Quat. Int. 2016;403:118–131.
Wolf S., Münzel S.C., Dotzel K., Barth M.M., Conard N.J. In: Osseous Projectile Weaponry: towards an Understanding of Pleistocene Cultural Variability. Langley M.C., editor. Springer Netherlands; Dordrecht: 2016. Projectile weaponry from the aurignacian to the gravettian of the swabian Jura (Southwest Germany): raw materials, manufacturing and typology; pp. 71–87.
Doyon L. On the shape of things: a geometric morphometrics approach to investigate Aurignacian group membership. J. Archaeol. Sci. 2019;101:99–114.
Langley M. University of Oxford; 2014. Investigating Maintenance and Discard Patterns for Middle to Late Magdalenian Antler Projectile Points : Inter-site and Inter-regional Comparisons.https://ora.ox.ac.uk/objects/uuid:a7a4733d-c665-44ca-a5ed-c611cad66b12
Kitagawa K., Conard N.J. Split-based points from the Swabian Jura highlight Aurignacian regional signatures. PLoS One. 2020;15 PubMed PMC
Pétillon J.-M. Technologie des armatures de projectile en bois de Cervidé du Magdalénien supérieur de la grotte d'Isturitz (Pyrénées-Atlantiques) 2006. Des Magdaléniens en armes; p. 302.
Liolios D. Approches fonctionnelles en Préhistoire : [actes du] XXVe Congrès préhistorique de France, Nanterre, 24-26 novembre 2000. 2004. Le travail des matières osseuses au début de l'Aurignacien; pp. 371–386.
Tartar E. De l’os à l'outil : caractérisation technique, économique et sociale de l'utilisation de l'os à l'Aurignacien ancien : étude de trois sites : l' Abri Castanet (secteur nord et sud) Brassempouy (Grotte des Hyènes et Abri Dubalen) et Gatzarria, Paris. 2009;1 https://www.theses.fr/2009PA010546
Cerezo-Fernández R., Cueto M., Tapia J., Álvarez-Fernández E. The “ciseaux” from Tito Bustillo cave (Asturias, Northern Spain). Redefining a Magdalenian Antler Tool. Archeopress; Oxford: 2024.
Hahn J. Fiche sagaie à base fendue. De L’industrie Osseuse Préhistorique …. 1988;1:1–21.
Münzel S.C., Conard N.J., Cave bear hunting in the hohle fels, a cave site in the ach valley, Swabian Jura, Rev. Paleobiol. (2004). KIP Articles. 6827https://digitalcommons.usf.edu/kip_articles/640/. (Accessed 10 October 2023).
Arias P., Ontañón R. In: ACTUALIDAD DE LA INVESTIGACIÓN ARQUEOLÓGICA EN ESPAÑA I (2018-2019) CONFERENCIAS IMPARTIDAS EN EL MUSEO ARQUEOLÓGICO NACIONAL. Secretaría General Técnica M. de Cultura Y Deporte., editor. 2023. La Garma: un sitio excepcional, una metodología diferente/La Garma: an outstanding site, a different methodology.
Salazar Cañarte S., Rivero Vilá O. “the quotidian of the symbolic”. Iconographic changes between decorated objects in Cantabrian magdalenian portable art. A multivariate statistical approach. Oxf. J. Archaeol. 2022;41:2–21.
Rivero O., Salazar S., Mateo-Pellitero A.M., Bustos P.G., Garate D., Rios-Garaizar J. To be or not to be: reassessing the origins of portable art in the Cantabrian Region (Northern Spain) Archaeol. Anthropol. Sci. 2021;14:18.
Álvarez-Fernández E., Los objetos de adorno-colgantes del paleolítico superior y del mesolítico en la cornisa cantábrica y en el valle del Ebro: una visión europea, PhD, Universidad de Salamanca, (Collección Vitor 195) 2006. https://dialnet.unirioja.es/servlet/tesis?codigo=176324. (Accessed 17 October 2023).
Alvarez-Fernández E., Cueto M., Tapia J. In: De la mano de la Prehistoria: Homenaje a Pilar Utrilla Miranda. Bea M., Domingo R., Mazo C., Montes L., Rodanés J. Ma, editors. Universidad de Zaragoza; Zaragoza: 2021. A propósito de la reutilización de azagayas en el Paleolítico Superior cantábrico; pp. 187–198.
Arias P., Ontañón R. In: Caves in Context: the Cultural Significance of Caves and Rockshelters in Europe. Bergsvik K.A., Skeates R., editors. Oxbow; Oxford: 2012. La Garma (Spain): long-term human activity in a karst system; pp. 101–117.
Arias P., Ontañón R. In: Pleistocene and Holocene Hunter-Gatherers in Iberia and the Gibraltar Strait. The Current Archaeological Record. Sala R., editor. Universidad de Burgos-Fundación Atapuerca, Burgos; 2014. La Garma cave; pp. 636–646.
Doyon L., Li Z., Li H., d'Errico F. Discovery of circa 115,000-year-old bone retouchers at Lingjing, Henan, China. PLoS One. 2018;13 PubMed PMC
Manninen M.A., Asheichyk V., Jonuks T., Kriiska A., Osipowicz G., Sorokin A.N., Vashanau A., Riede F., Persson P. Using radiocarbon dates and tool Design principles to assess the role of composite slotted bone tool technology at the intersection of adaptation and culture-history. J. Archaeol. Method Theor. 2021;28:845–870.
Tejero J.-M., Yeshurun R., Barzilai O., Goder-Goldberger M., Hershkovitz I., Lavi R., Schneller-Pels N., Marder O. The osseous industry from Manot Cave (Western Galilee, Israel): technical and conceptual behaviours of bone and antler exploitation in the Levantine Aurignacian. Quat. Int. 2016;403:90–106.
Goutas N., Lacarrière J. Pensando el Gravetiense: nuevos datos para la región cantábrica en su contexto peninsular y pirenaico. Ministerio de Educación Cultura y Deporte; 2012. L’exploitation des cervidés dans le Gravettien d'Isturitz. Une approche archéozoologique et technologique des ressources animales: de leur acquisition à leur utilisation; pp. 565–592.
McGrath K., Rowsell K., Gates St-Pierre C., Tedder A., Foody G., Roberts C., Speller C., Collins M. Identifying archaeological bone via non-destructive ZooMS and the materiality of symbolic expression: examples from iroquoian bone points. Sci. Rep. 2019;9 PubMed PMC
Langley M.C., Amano N., Wedage O., Deraniyagala S., Pathmalal M.M., Perera N., Boivin N., Petraglia M.D., Roberts P. Bows and arrows and complex symbolic displays 48,000 years ago in the South Asian tropics. Sci. Adv. 2020;6 PubMed PMC
Martisius N.L., Welker F., Dogandžić T., Grote M.N., Rendu W., Sinet-Mathiot V., Wilcke A., McPherron S.J.P., Soressi M., Steele T.E. Non-destructive ZooMS identification reveals strategic bone tool raw material selection by Neandertals. Sci. Rep. 2020;10:7746. PubMed PMC
Bradfield J., Kitchener A.C., Buckley M. Selection preferences for animal species used in bone-tool-manufacturing strategies in KwaZulu-Natal, South Africa. PLoS One. 2021;16 PubMed PMC
Essel E., Zavala E.I., Schulz-Kornas E., Kozlikin M.B., Fewlass H., Vernot B., Shunkov M.V., Derevianko A.P., Douka K., Barnes I., Soulier M.-C., Schmidt A., Szymanski M., Tsanova T., Sirakov N., Endarova E., McPherron S.P., Hublin J.-J., Kelso J., Pääbo S., Hajdinjak M., Soressi M., Meyer M. Ancient human DNA recovered from a Palaeolithic pendant. Nature. 2023;618:328–332. PubMed PMC
Tejero J.-M., Belfer-Cohen A., Bar-Yosef O., Gutkin V., Rabinovich R. Symbolic emblems of the levantine aurignacians as a regional entity identifier (hayonim cave, lower Galilee, Israel) Proc. Natl. Acad. Sci. U. S. A. 2018;115:5145–5150. PubMed PMC
Tejero J.-M., Rabinovich R., Yeshurun R., Abulafia T., Bar-Yosef O., Barzilai O., Goder-Goldberger M., Hershkovitz I., Lavi R., Shemer M., Marder O., Belfer-Cohen A. Personal ornaments from Hayonim and Manot caves (Israel) hint at symbolic ties between the Levantine and the European Aurignacian. J. Hum. Evol. 2021;160 PubMed
Tejero J.-M., Bar-Oz G., Bar-Yosef O., Meshveliani T., Jakeli N., Matskevich Z., Pinhasi R., Belfer-Cohen A. New insights into the Upper Palaeolithic of the Caucasus through the study of personal ornaments. Teeth and bones pendants from Satsurblia and Dzudzuana caves (Imereti, Georgia) PLoS One. 2021;16 PubMed PMC
Goss R.J. Academic Press; 1983. Deer Antlers: Regeneration, Function and Evolution.
Kierdorf U., Kierdorf H. Advances in Antler Science and Product Technology. Proc 2nd ASPT Symp, Queenstown. 2004. Bone formation in antlers; pp. 55–63. New Zealand.
Crigel M.H., Balligand M., Heinen E. Les bois de cerf : revue de littérature scientifique. Ann. Med. Vet. 2001;145:25–38.
Kierdorf U., Kierdorf H., Boyde A. Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study. J. Anat. 2000;196(Pt 1):71–83. PubMed PMC
Gupta H.S., Krauss S., Kerschnitzki M., Karunaratne A., Dunlop J.W.C., Barber A.H., Boesecke P., Funari S.S., Fratzl P. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. J. Mech. Behav. Biomed. Mater. 2013;28:366–382. PubMed
Croitor R. Phylogeny, Institute of Zoology of the Academy of Sciences of Moldova. 2018. Plio-Pleistocene deer of western palearctic: taxonomy, systematics.https://hal.science/hal-01737207/document
Erostarbe-Tome A., Tejero J.-M., Arrizabalaga A. Technical and conceptual behaviours of bone and antler exploitation of last hunter-gatherers in Northern Iberia. The osseous industry from the Magdalenian layers of Ekain cave (Basque Country, Spain) J. Archaeol. Sci. Rep. 2022;41
Sommer R.S., Nadachowski A. Glacial refugia of mammals in Europe: evidence from fossil records, Mamm. Rev. 2006;36:251–265.
Sommer R.S., Zachos F.E., Street M., Jöris O., Skog A., Benecke N. Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quat. Sci. Rev. 2008;27:714–733.
Clutton-Brock T.H., Guinness F.E., Albon S.D. University of Chicago Press; 1982. Red Deer: Behavior and Ecology of Two Sexes.
Niedziałkowska M., Doan K., Górny M., Sykut M., Stefaniak K., Piotrowska N., Jędrzejewska B., Ridush B., Pawełczyk S., Mackiewicz P., Schmölcke U., Kosintsev P., Makowiecki D., Charniauski M., Krasnodębski D., Rannamäe E., Saarma U., Arakelyan M., Manaseryan N., Titov V.V., Hulva P., Bălășescu A., Fyfe R., Woodbridge J., Trantalidou K., Dimitrijević V., Kovalchuk O., Wilczyński J., Obadă T., Lipecki G., Arabey A., Stanković A. Winter temperature and forest cover have shaped red deer distribution in Europe and the Ural Mountains since the Late Pleistocene. J. Biogeogr. 2021;48:147–159.
Gravel-Miguel C. 2011. Exoticism of Portable Art and Ornaments: A Study of Social Networks Around the Last Glacial Maximum, Library and Archives Canada = Bibliothèque et Archives Canada.
Shemer M., Boaretto E., Greenbaum N., Bar-Yosef Mayer D.E., Tejero J.-M., Dafna Langgut D., Lokshin Gnezdilov D., Barzilai O., Marder O., Marom N. Early upper paleolithic cultural variability in the Southern levant: new evidence from Nahal Rahaf 2 rockshelter, judean desert, Israel. J. Hum. Evol. 2023;178 PubMed
Chapman Donald, Chapman Norma. 1975. Fallow Deer : Their History, Distribution, and Biology, cir.nii.ac.Jp.
Lister A.M. The evolution of the giant deer, Megaloceros giganteus (Blumenbach), Zool. J. Linn. Soc. 1994;112:65–100.
Croitor R., Stefaniak K., Pawłowska K., Ridush B., Wojtal P., Stach M. Giant deer Megaloceros giganteus blumenbach, 1799 (cervidae, Mammalia) from palaeolithic of eastern Europe. Quat. Int. 2014;326–327:91–104.
Stuart A.J., Kosintsev P.A., Higham T.F.G., Lister A.M. Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth. Nature. 2004;431:684–689. PubMed
Lister A.M., Stuart A.J. The extinction of the giant deer Megaloceros giganteus (Blumenbach): new radiocarbon evidence. Quat. Int. 2019;500:185–203.
Lefebvre A., Rochefort G.Y., Santos F., Le Denmat D., Salmon B., Pétillon J.-M. A non-destructive method for distinguishing reindeer antler (Rangifer tarandus) from red deer antler (Cervus elaphus) using X-ray micro-tomography coupled with SVM classifiers. PLoS One. 2016;11 PubMed PMC
Buckley M., Collins M., Thomas-Oates J., Wilson J.C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:3843–3854. PubMed
Collins M., Buckley M., Grundy H.H., Thomas-Oates J., Wilson J., van Doorn N. 2010. ZooMS: the Collagen Barcode and Fingerprints.https://www.spectroscopyeurope.com/system/files/pdf/MS_22_2.pdf
Brandt L.Ø., Haase K., Collins M.J. Species identification using ZooMS, with reference to the exploitation of animal resources in the medieval town of Odense. Danish Journal of Archaeology. 2018;7:139–153.
Pacher M., Hofreiter M. Using ancient DNA to elucidate raw material origin of bone points from Potočka zijalka (Slovenia): preliminary results. Mitt. Komm. Quartärforsch. Österr. Akad. 2004;13:201–210.
Bi X., Zhai J., Xia Y., Li H. Analysis of genetic information from the antlers of Rangifer tarandus (reindeer) at the rapid growth stage. PLoS One. 2020;15 PubMed PMC
Greco C., De Marinis A.M., Riga F., Mucci N. Weathered antlers: a valuable source of DNA useful for conservation purposes for cervids. 2021. DOI
Hoffmann G.S., Johannesen J., Griebeler E.M. Species cross-amplification, identification and genetic variation of 17 species of deer (Cervidae) with microsatellite and mitochondrial DNA from antlers. Mol. Biol. Rep. 2015;42:1059–1067. PubMed
Venegas C., Varas V., Vásquez J.P., Marín J.C. Non-invasive genetic sampling of deer: a method for DNA extraction and genetic analysis from antlers. Gayana. 2020;84:75–82.
Kuehn R., Ludt C.J., Schroeder W., Rottmann O. Molecular phylogeny of Megaloceros giganteus--the giant deer or just a giant red deer? Zoolog. Sci. 2005;22:1031–1044. PubMed
Doan K., Niedziałkowska M., Stefaniak K., Sykut M., Jędrzejewska B., Ratajczak-Skrzatek U., Piotrowska N., Ridush B., Zachos F.E., Popović D., Baca M., Mackiewicz P., Kosintsev P., Makowiecki D., Charniauski M., Boeskorov G., Bondarev A.A., Danila G., Kusak J., Rannamäe E., Saarma U., Arakelyan M., Manaseryan N., Krasnodębski D., Titov V., Hulva P., Bălășescu A., Trantalidou K., Dimitrijević V., Shpansky A., Kovalchuk O., Klementiev A.M., Foronova I., Malikov D.G., Juras A., Nikolskiy P., Grigoriev S.E., Cheprasov M.Y., Novgorodov G.P., Sorokin A.D., Wilczyński J., Protopopov A.V., Lipecki G., Stanković A. Phylogenetics and phylogeography of red deer mtDNA lineages during the last 50 000 years in Eurasia. Zool. J. Linn. Soc. 2022;194:431–456.
Meiri M., Lister A.M., Higham T.F.G., Stewart J.R., Straus L.G., Obermaier H., González Morales M.R., Marín-Arroyo A.B., Barnes I. Late-glacial recolonization and phylogeography of European red deer (Cervus elaphus L.) Mol. Ecol. 2013;22:4711–4722. PubMed
von Holstein I.C.C., Ashby S.P., van Doorn N.L., Sachs S.M., Buckley M., Meiri M., Barnes I., Brundle A., Collins M.J. Searching for scandinavians in pre-viking Scotland: molecular fingerprinting of early medieval combs. J. Archaeol. Sci. 2014;41:1–6.
Rosvold J., Hansen G., Røed K.H. From mountains to towns: DNA from ancient reindeer antlers as proxy for domestic procurement networks in medieval Norway. J. Archaeol. Sci.: Reports. 2019;26
Schellmann N.C. Animal glues: a review of their key properties relevant to conservation. Stud. Conserv. 2007;52:55–66.
Jónsson H., Ginolhac A., Schubert M., Johnson P.L.F., Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–1684. PubMed PMC
Sahle Y., Brooks A.S. Assessment of complex projectiles in the early late Pleistocene at aduma, Ethiopia. PLoS One. 2019;14 PubMed PMC
Gutiérrez-García T.A., Vázquez-Domínguez E., Arroyo-Cabrales J., Kuch M., Enk J., King C., Poinar H.N. Ancient DNA and the tropics: a rodent's tale. Biol. Lett. 2014;10 doi: 10.1098/rsbl.2014.0224. PubMed DOI PMC
Cristiani E., Farbstein R., Miracle P. Ornamental traditions in the eastern adriatic: the upper palaeolithic and mesolithic personal adornments from Vela Spila (Croatia) J. Anthropol. Archaeol. 2014;36:21–31.
Cristiani E., Živaljević I., Borić D. Residue analysis and ornament suspension techniques in prehistory: cyprinid pharyngeal teeth beads from Late Mesolithic burials at Vlasac (Serbia) J. Archaeol. Sci. 2014;46:292–310.
Sauvet G., Wlodarczyk A. Towards a formal grammar of the European Palaeolithic cave art. Rock Art Research: The Journal of the. 2008 doi: 10.3316/ielapa.485811180638079. DOI
Straus L., On the habitat and diet of Cervus elaphus, Munibe Antropologia-Arkeologia Volume 3-4 (1981). pages 175-182.
Villaverde Bonilla V. Atlas de los recursos territoriales valencianos. Universidad de Valencia = Universitat de València; 2015. Pinturas rupestres valencianas; pp. 230–231.
Clottes J. Thematic changes in upper palaeolithic art: a view from the grotte chauvet. Antiquity. 1996;70:276–288.
Braun I.M. The elk/moose (Alces alces) in the upper palaeolithic art of western Europe. Paléo. 2020:58–74.
Sinet-Mathiot V., Martisius N.L., Schulz-Kornas E., van Casteren A., Tsanova T.R., Sirakov N., Spasov R., Welker F., Smith G.M., Hublin J.-J. The effect of eraser sampling for proteomic analysis on Palaeolithic bone surface microtopography. Sci. Rep. 2021;11 PubMed PMC
Mateo-Lomba P., Fernández-Marchena J.L., Cazalla I., Valtierra N., Cáceres I., Ollé A. An assessment of bone tool cleaning procedures in preparation for traceological analysis, Archaeol. Anthropol. Sci. 2022;14:95.
Harney É., Cheronet O., Fernandes D.M., Sirak K., Mah M., Bernardos R., Adamski N., Broomandkhoshbacht N., Callan K., Lawson A.M., Oppenheimer J., Stewardson K., Zalzala F., Anders A., Candilio F., Constantinescu M., Coppa A., Ciobanu I., Dani J., Gallina Z., Genchi F., Nagy E.G., Hajdu T., Hellebrandt M., Horváth A., Király Á., Kiss K., Kolozsi B., Kovács P., Köhler K., Lucci M., Pap I., Popovici S., Raczky P., Simalcsik A., Szeniczey T., Vasilyev S., Virag C., Rohland N., Reich D., Pinhasi R. A minimally destructive protocol for DNA extraction from ancient teeth. Genome Res. 2021 doi: 10.1101/gr.267534.120. PubMed DOI PMC
Hofreiter M. In: Ancient DNA: Methods and Protocols. Shapiro B., Hofreiter M., editors. Humana Press; Totowa, NJ: 2012. Nondestructive DNA extraction from museum specimens; pp. 93–100.
Dabney J., Knapp M., Glocke I., Gansauge M.-T., Weihmann A., Nickel B., Valdiosera C., García N., Pääbo S., Arsuaga J.-L., Meyer M. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U. S. A. 2013;110:15758–15763. PubMed PMC
Korlević P., Gerber T., Gansauge M.-T., Hajdinjak M., Nagel S., Aximu-Petri A., Meyer M. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques. 2015;59:87–93. PubMed
Harney É., Cheronet O., Fernandes D.M., Sirak K., Mah M., Bernardos R., Adamski N., Broomandkhoshbacht N., Callan K., Lawson A.M., Oppenheimer J., Stewardson K., Zalzala F., Anders A., Candilio F., Constantinescu M., Coppa A., Ciobanu I., Dani J., Gallina Z., Genchi F., Nagy E.G., Hajdu T., Hellebrandt M., Horváth A., Király Á., Kiss K., Kolozsi B., Kovács P., Köhler K., Lucci M., Pap I., Popovici S., Raczky P., Simalcsik A., Szeniczey T., Vasilyev S., Virag C., Rohland N., Reich D., Pinhasi R. A minimally destructive protocol for DNA extraction from ancient teeth. Genome Res. 2021;31:472–483. PubMed PMC
Meyer M., Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010;2010 db.prot5448. PubMed
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet. journal. 2011;17:10–12.
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. 1000 genome project data processing subgroup, the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Picard-tools, (n.d.). http://broadinstitute.github.io/picard.
Okonechnikov K., Conesa A., García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–294. PubMed PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: architecture and applications. BMC Bioinf. 2009;10:421. PubMed PMC
Huson D.H., Auch A.F., Qi J., Schuster S.C. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–386. PubMed PMC
Korneliussen T.S., Albrechtsen A., Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinf. 2014;15:356. PubMed PMC
Sievers F., Higgins D.G. Clustal omega. Curr. Protoc. Bioinformatics. 2014;48:3.13.1–3.13.16. PubMed
Gelabert P., Sawyer S., Bergström A., Margaryan A., Collin T.C., Meshveliani T., Belfer-Cohen A., Lordkipanidze D., Jakeli N., Matskevich Z., Bar-Oz G., Fernandes D.M., Cheronet O., Özdoğan K.T., Oberreiter V., Feeney R.N.M., Stahlschmidt M.C., Skoglund P., Pinhasi R. Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment. Curr. Biol. 2021 doi: 10.1016/j.cub.2021.06.023. PubMed DOI PMC
Soubrier J., Gower G., Chen K., Richards S.M., Llamas B., Mitchell K.J., Ho S.Y.W., Kosintsev P., Lee M.S.Y., Baryshnikov G., Bollongino R., Bover P., Burger J., Chivall D., Crégut-Bonnoure E., Decker J.E., Doronichev V.B., Douka K., Fordham D.A., Fontana F., Fritz C., Glimmerveen J., Golovanova L.V., Groves C., Guerreschi A., Haak W., Higham T., Hofman-Kamińska E., Immel A., Julien M.-A., Krause J., Krotova O., Langbein F., Larson G., Rohrlach A., Scheu A., Schnabel R.D., Taylor J.F., Tokarska M., Tosello G., van der Plicht J., van Loenen A., Vigne J.-D., Wooley O., Orlando L., Kowalczyk R., Shapiro B., Cooper A. Early cave art and ancient DNA record the origin of European bison. Nat. Commun. 2016;7:13158. PubMed PMC
Bergström A., Stanton D.W.G., Taron U.H., Frantz L., Sinding M.-H.S., Ersmark E., Pfrengle S., Cassatt-Johnstone M., Lebrasseur O., Girdland-Flink L., Fernandes D.M., Ollivier M., Speidel L., Gopalakrishnan S., Westbury M.V., Ramos-Madrigal J., Feuerborn T.R., Reiter E., Gretzinger J., Münzel S.C., Swali P., Conard N.J., Carøe C., Haile J., Linderholm A., Androsov S., Barnes I., Baumann C., Benecke N., Bocherens H., Brace S., Carden R.F., Drucker D.G., Fedorov S., Gasparik M., Germonpré M., Grigoriev S., Groves P., Hertwig S.T., Ivanova V.V., Janssens L., Jennings R.P., Kasparov A.K., Kirillova I.V., Kurmaniyazov I., Kuzmin Y.V., Kosintsev P.A., Lázničková-Galetová M., Leduc C., Nikolskiy P., Nussbaumer M., O'Drisceoil C., Orlando L., Outram A., Pavlova E.Y., Perri A.R., Pilot M., Pitulko V.V., Plotnikov V.V., Protopopov A.V., Rehazek A., Sablin M., Seguin-Orlando A., Storå J., Verjux C., Zaibert V.F., Zazula G., Crombé P., Hansen A.J., Willerslev E., Leonard J.A., Götherström A., Pinhasi R., Schuenemann V.J., Hofreiter M., Gilbert M.T.P., Shapiro B., Larson G., Krause J., Dalén L., Skoglund P. Grey wolf genomic history reveals a dual ancestry of dogs. Nature. 2022;607:313–320. PubMed PMC
Mackiewicz P., Matosiuk M., Świsłocka M., Zachos F.E., Hajji G.M., Saveljev A.P., Seryodkin I.V., Farahvash T., Rezaei H.R., Torshizi R.V., Mattioli S., Ratkiewicz M. Phylogeny and evolution of the genus Cervus (Cervidae, Mammalia) as revealed by complete mitochondrial genomes. Sci. Rep. 2022;12 PubMed PMC
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. PubMed PMC