High-energy photoemission final states beyond the free-electron approximation
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
37563126
PubMed Central
PMC10415355
DOI
10.1038/s41467-023-40432-5
PII: 10.1038/s41467-023-40432-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Three-dimensional (3D) electronic band structure is fundamental for understanding a vast diversity of physical phenomena in solid-state systems, including topological phases, interlayer interactions in van der Waals materials, dimensionality-driven phase transitions, etc. Interpretation of ARPES data in terms of 3D electron dispersions is commonly based on the free-electron approximation for the photoemission final states. Our soft-X-ray ARPES data on Ag metal reveals, however, that even at high excitation energies the final states can be a way more complex, incorporating several Bloch waves with different out-of-plane momenta. Such multiband final states manifest themselves as a complex structure and added broadening of the spectral peaks from 3D electron states. We analyse the origins of this phenomenon, and trace it to other materials such as Si and GaN. Our findings are essential for accurate determination of the 3D band structure over a wide range of materials and excitation energies in the ARPES experiment.
London Centre for Nanotechnology University College London London WC1H 0AH UK
Moscow Institute of Physics and Technology 141701 Dolgoprudny Russia
Swiss Light Source Paul Scherrer Institute 5232 Villigen PSI Switzerland
University of West Bohemia New Technologies Research Centre 301 00 Plzeň Czech Republic
Zobrazit více v PubMed
Weng H, Fang C, Fang Z, Andrei Bernevig B, Dai X. Weyl Semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X. 2015;5:011029.
Lv BQ, et al. Observation of Weyl nodes in TaAs. Nat. Phys. 2015;11:724.
Schröter NBM, et al. Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 2019;15:759.
Schröter NBM, et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science. 2020;369:179. PubMed
Armitage NP, Mele EJ, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018;90:015001. doi: 10.1103/RevModPhys.90.015001. DOI
Yan B, Felser C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 2017;8:337.
Lv B, Qian T, Ding H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 2019;1:609.
Hasan MZ, et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat. Rev. Mater. 2021;6:784.
Strocov VN, et al. Three-dimensional electron realm in VSe2 by soft-x-ray photoelectron spectroscopy: origin of charge-density waves. Phys. Rev. Lett. 2012;109:086401. PubMed
Weber F, et al. Three-dimensional Fermi surface of 2H−NbSe2: Implications for the mechanism of charge density waves. Phys. Rev. B. 2018;97:235122.
Wang Z, et al. Three-dimensional charge density wave observed by angle-resolved photoemission spectroscopy in 1T-VSe2. Phys. Rev. B Condens. Matter. 2021;104:155134.
King PDC, et al. Surface band-gap narrowing in quantized electron accumulation layers. Phys. Rev. Lett. 2010;104:256803. PubMed
Lev LL, et al. k-space imaging of anisotropic 2D electron gas in GaN/GaAlN high-electron-mobility transistor heterostructures. Nat. Commun. 2018;9:2653. PubMed PMC
Strocov VN. Photoemission response of 2D electron states. J. Electron. Spectrosc. Relat. Phenom. 2018;229:100.
Moser S, et al. How to extract the surface potential profile from the ARPES signature of a 2DEG. J. Electron. Spectrosc. Relat. Phenom. 2018;225:16.
Schuwalow S, et al. Band structure extraction at hybrid narrow-gap semiconductor-metal interfaces. Adv. Sci. 2021;8:2003087. PubMed PMC
Smith DL, Mailhiot C. Theory of semiconductor superlattice electronic structure. Rev. Mod. Phys. 1990;62:173.
Husanu M-A, et al. Electron-polaron dichotomy of charge carriers in perovskite oxides. Commun. Phys. 2020;3:62.
Berner G, et al. Dimensionality-tuned electronic structure of nickelate superlattices explored by soft-x-ray angle-resolved photoelectron spectroscopy. Phys. Rev. B. 2015;92:125130.
Schütz P, et al. Dimensionality-driven metal-insulator transition in spin-orbit-coupled SrIrO3. Phys. Rev. Lett. 2017;119:256404. PubMed
Tang F, et al. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature. 2019;569:537. PubMed
Suga S, Tusche C. Photoelectron spectroscopy in a wide hν region from 6eV to 8keV with full momentum and spin resolution. J. Electron. Spectrosc. Relat. Phenom. 2015;200:119.
Fadley CS. Looking deeper: angle-resolved photoemission with soft and hard X-rays. Synchrotron Radiat. N. 2012;25:26.
Gray AX, et al. Bulk electronic structure of the dilute magnetic semiconductor Ga1−xMnxAs through hard X-ray angle-resolved photoemission. Nat. Mater. 2012;11:957. PubMed
Strocov VN, et al. Soft-X-ray ARPES at the Swiss Light Source: from 3D materials to buried interfaces and impurities. Synchrotron Radiat. N. 2014;27:31.
Strocov VN, et al. k-resolved electronic structure of buried heterostructure and impurity systems by soft-X-ray ARPES. J. Electron. Spectrosc. Relat. Phenom. 2019;236:1.
Powell CJ, Jablonski A. Surface sensitivity of Auger-electron spectroscopy and X-ray photoelectron spectroscopy. J. Surf. Anal. 2011;17:170.
Feibelman PJ, Eastman DE. Photoemission spectroscopy—Correspondence between quantum theory and experimental phenomenology. Phys. Rev. B. 1974;10:4932.
Hansen ED, Miller T, Chiang T-C. Surface photoemission in Ag(100) Phys. Rev. B Condens. Matter. 1997;55:1871.
Matsui F, Suga S. Coupling of kz -dispersing π bands with surface localized states in graphite. Phys. Rev. B Condens. Matter. 2022;105:235126.
Strocov VN. Intrinsic accuracy in 3-dimensional photoemission band mapping. J. Electron. Spectrosc. Relat. Phenom. 2003;130:65.
Lindgren SÅ, Walldén L, Rundgren J, Westrin P, Neve J. Structure of Cu(111)p(2×2)Cs determined by low-energy electron diffraction. Phys. Rev. B. 1983;28:6707.
Rundgren J. Optimized surface-slab excited-state muffin-tin potential and surface core level shifts. Phys. Rev. B. 2003;68:125405.
Strocov VN, Starnberg HI, Nilsson PO. Excited-state bands of Cu determined by VLEED band fitting and their implications for photoemission. Phys. Rev. B. 1997;56:1717.
Strocov VN, et al. Three-dimensional band mapping by angle-dependent very-low-energy electron diffraction and photoemission: Methodology and application to Cu. Phys. Rev. B. 2001;63:205108.
Krasovskii EE, et al. Photoemission from Al(100) and (111): Experiment and ab initio theory. Phys. Rev. B. 2008;78:165406.
Krasovskii EE. Character of the outgoing wave in soft x-ray photoemission. Phys. Rev. B. 2020;102:245139.
Strocov VN, et al. Very-low-energy electron diffraction on the H-terminated Si(111) surface: ab initio pseudopotential analysis. Phys. Rev. B Condens. Matter. 1999;59:R5296.
Strocov VN, Starnberg HI, Nilsson PO, Brauer HE, Holleboom LJ. New method for absolute band structure determination by combining photoemission with very-low-energy electron diffraction: application to layered VSe2. Phys. Rev. Lett. 1997;79:467.
Strocov VN, et al. Three-dimensional band structure of layered TiTe2: photoemission final-state effects. Phys. Rev. B. 2006;74:195125.
Krasovskii EE, et al. Band mapping in the one-step photoemission theory: multi-Bloch-wave structure of final states and interference effects. Phys. Rev. B. 2007;75:045432.
Venturini F, Minár J, Braun J, Ebert H, Brookes NB. Soft x-ray angle-resolved photoemission spectroscopy on Ag(001): band mapping, photon momentum effects, and circular dichroism. Phys. Rev. B. 2008;77:045126.
Strocov VN, Claessen R, Aryasetiawan F, Blaha P, Nilsson PO. Band- and k-dependent self-energy effects in the unoccupied and occupied quasiparticle band structure of Cu. Phys. Rev. B. 2002;66:195104.
Mahan GD. Theory of photoemission in simple metals. Phys. Rev. B. 1970;2:4334.
Hofmann P, et al. Unexpected surface sensitivity at high energies in angle-resolved photoemission. Phys. Rev. B. 2002;66:245422.
Capart G. Band structure calculations of low energy electron diffraction at crystal surfaces. Surf. Sci. 1969;13:361.
Pendry JB. The application of pseudopotentials to low-energy electron diffraction III: The simplifying effect of inelastic scattering. J. Phys. C: Solid. State Phys. 1969;2:2283.
Dederichs, P. H. Dynamical diffraction theory by optical potential methods. in Solid State Physics. (eds. Ehrenreich, H., Seitz, F. & Turnbull, D.) p. 136 (Academic, New York, 1972).
Barrett N, Krasovskii EE, Themlin J-M, Strocov VN. Elastic scattering effects in the electron mean free path in a graphite overlayer studied by photoelectron spectroscopy and LEED. Phys. Rev. B. 2005;71:035427.
Krasovskii EE, Schattke W. Angle-resolved photoemission from surface states. Phys. Rev. Lett. 2004;93:027601. PubMed
Heine V. On the general theory of surface states and scattering of electrons in solids. Proc. Phys. Soc. 1963;81:300.
Strocov VN. On qualitative analysis of the upper band effects in very-low-energy electron diffraction and photoemission. Solid. State Commun. 1998;106:101.
Tanuma S, Powell CJ, Penn DR. Proposed formula for electron inelastic mean free paths based on calculations for 31 materials. Surf. Sci. 1987;192:L849.
della Valle, E. et al. Static disorder in soft X-ray angle-resolved photoemission spectroscopy: theory and application to ion-bombarded InAS(110). arxiv.org/abs/2308.0370 (2023).
Krieger J, et al. Hydrogen-impurity-induced unconventional magnetism in semiconducting molybdenum ditelluride. Phys. Rev. Mater. 2023;7:044414.
Stock TJZ, et al. Atomic-scale patterning of arsenic in silicon by scanning tunnelling microscopy. ACS Nano. 2020;14:3316. PubMed PMC
Moser S. An experimentalist’s guide to the matrix element in angle resolved photoemission. J. Electron. Spectrosc. Relat. Phenom. 2017;214:29.
Fedchenko O, et al. 4D texture of circular dichroism in soft-x-ray photoemission from tungsten. N. J. Phys. 2019;21:013017.
Krüger P, Matsui F. Observation and theory of strong circular dichroism in angle-revolved photoemission from graphite. J. Electron. Spectrosc. Relat. Phenom. 2022;257:147219.
Puschnig P, et al. Reconstruction of molecular orbital densities from photoemission data. Science. 2009;326:702. PubMed
Kliuiev P, et al. Combined orbital tomography study of multi-configurational molecular adsorbate systems. Nat. Commun. 2019;10:5255. PubMed PMC
Bradshaw AM, Woodruff DP. Molecular orbital tomography for adsorbed molecules: is a correct description of the final state really unimportant? N. J. Phys. 2015;17:013033.
Fadley CS, Van Hove MA, Hussain Z, Kaduwela AP. Photoelectron diffraction: new dimensions in space, time, and spin. J. Electron. Spectrosc. Relat. Phenom. 1995;75:273.
Woodruff D. Adsorbate structure determination using photoelectron diffraction: methods and applications. Surf. Sci. Rep. 2007;62:1.
Fedchenko O, Winkelmann A, Schönhense G. Structure analysis using time-of-flight momentum microscopy with hard X-rays: status and prospects. J. Phys. Soc. Jpn. 2022;91:091006.
Osterwalder J, Greber T, Hüfner S, Schlapbach L. X-ray photoelectron diffraction from a free-electron-metal valence band: evidence for hole-state localization. Phys. Rev. Lett. 1990;64:2683. PubMed
Osterwalder J, Greber T, Aebi P, Fasel R, Schlapbach L. Final-state scattering in angle-resolved ultraviolet photoemission from copper. Phys. Rev. B. 1996;53:10209. PubMed
Strocov VN, et al. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 2014;21:32. PubMed
Strocov VN, et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 2010;17:631. PubMed PMC
Braun J, et al. Exploring the XPS limit in soft and hard x-ray angle-resolved photoemission using a temperature-dependent one-step theory. Phys. Rev. B. 2013;88:205409.
Ebert H, Ködderitzsch D, Minár J. Calculating condensed matter properties using the KKR-Green’s function method—recent developments and applications. Rep. Prog. Phys. 2011;74:096501.
Braun J, Minár J, Ebert H. Correlation, temperature and disorder: recent developments in the one-step description of angle-resolved photoemission. Phys. Rep. 2018;740:1.