Highly Durable Nanoporous Cu2-xS Films for Efficient Hydrogen Evolution Electrocatalysis under Mild pH Conditions

. 2023 Aug 04 ; 13 (15) : 10457-10467. [epub] 20230726

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37564127

Copper-based hydrogen evolution electrocatalysts are promising materials to scale-up hydrogen production due to their reported high current densities; however, electrode durability remains a challenge. Here, we report a facile, cost-effective, and scalable synthetic route to produce Cu2-xS electrocatalysts, exhibiting hydrogen evolution rates that increase for ∼1 month of operation. Our Cu2-xS electrodes reach a state-of-the-art performance of ∼400 mA cm-2 at -1 V vs RHE under mild conditions (pH 8.6), with almost 100% Faradaic efficiency for hydrogen evolution. The rise in current density was found to scale with the electrode electrochemically active surface area. The increased performance of our Cu2-xS electrodes correlates with a decrease in the Tafel slope, while analyses by X-ray photoemission spectroscopy, operando X-ray diffraction, and in situ spectroelectrochemistry cooperatively revealed the Cu-centered nature of the catalytically active species. These results allowed us to increase fundamental understanding of heterogeneous electrocatalyst transformation and consequent structure-activity relationship. This facile synthesis of highly durable and efficient Cu2-xS electrocatalysts enables the development of competitive electrodes for hydrogen evolution under mild pH conditions.

Zobrazit více v PubMed

Agency I. E.World Energy Outlook 2018; 2018.

Midilli A.; Ay M.; Dincer I.; Rosen M. A. On hydrogen and hydrogen energy strategies: I: current status and needs. Renewable Sustainable Energy Rev. 2005, 9, 255–271. 10.1016/j.rser.2004.05.003. DOI

Lewis N. S.; Nocera D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 2006, 103, 15729–15735. 10.1073/pnas.0603395103. PubMed DOI PMC

Ayers K.; Danilovic N.; Ouimet R.; Carmo M.; Pivovar B.; Bornstein M. Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 219–239. 10.1146/annurev-chembioeng-060718-030241. PubMed DOI

Vesborg P. C. K.; Seger B.; Chorkendorff I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 2015, 6, 951–957. 10.1021/acs.jpclett.5b00306. PubMed DOI

Yu P.; Wang F.; Shifa T. A.; Zhan X.; Lou X.; Xia F.; He J. Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 2019, 58, 244–276. 10.1016/j.nanoen.2019.01.017. DOI

Popczun E. J.; McKone J. R.; Read C. G.; Biacchi A. J.; Wiltrout A. M.; Lewis N. S.; Schaak R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270. 10.1021/ja403440e. PubMed DOI

Anantharaj S.; Kundu S.; Noda S. Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 4174–4192. 10.1039/C9TA14037A. DOI

Kuznetsov D. A.; Chen Z.; Kumar P. V.; Tsoukalou A.; Kierzkowska A.; Abdala P. M.; Safonova O. V.; Fedorov A.; Müller C. R. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 2019, 141, 17809–17816. 10.1021/jacs.9b08897. PubMed DOI

Nadar A.; Banerjee A. M.; Pai M. R.; Antony R. P.; Patra A. K.; Sastry P. U.; Donthula H.; Tewari R.; Tripathi A. K. Effect of Mo content on hydrogen evolution reaction activity of Mo2C/C electrocatalysts. Int. J. Hydrogen Energy 2020, 45, 12691–12701. 10.1016/j.ijhydene.2020.02.156. DOI

Piontek S.; Andronescu C.; Zaichenko A.; Konkena B.; Junge Puring K.; Marler B.; Antoni H.; Sinev I.; Muhler M.; Mollenhauer D.; Roldan Cuenya B.; Schuhmann W.; Apfel U.-P. Influence of the Fe:Ni Ratio and Reaction Temperature on the Efficiency of (FexNi1–x)9S8 Electrocatalysts Applied in the Hydrogen Evolution Reaction. ACS Catal. 2018, 8, 987–996. 10.1021/acscatal.7b02617. DOI

Wei Y.; He W.; Sun P.; Yin J.; Deng X.; Xu X. Synthesis of hollow Cu/Cu2O/Cu2S nanotubes for enhanced electrocatalytic hydrogen evolution. Appl. Surf. Sci. 2019, 476, 966–971. 10.1016/j.apsusc.2019.01.244. DOI

Shen Y.; Zhou Y.; Wang D.; Wu X.; Li J.; Xi J. Nickel–copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1701759.10.1002/aenm.201701759. DOI

Zignani S. C.; Faro M. L.; Carbone A.; Italiano C.; Trocino S.; Monforte G.; Aricò A. S. Performance and stability of a critical raw materials-free anion exchange membrane electrolysis cell. Electrochim. Acta 2022, 413, 14007810.1016/j.electacta.2022.140078. DOI

Anichini C.; Czepa W.; Aliprandi A.; Consolaro V. G.; Ersen O.; Ciesielski A.; Samorì P. Synthesis and characterization of ultralong copper sulfide nanowires and their electrical properties. J. Mater. Chem. C 2021, 9, 12133–12140. 10.1039/D1TC03004C. DOI

Shinagawa T.; Larrazábal G. O.; Martín A. J.; Krumeich F.; Perez-Ramirez J. Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to formate. ACS Catal. 2018, 8, 837–844. 10.1021/acscatal.7b03161. DOI

Ampelli C.; Giusi D.; Miceli M.; Merdzhanova T.; Smirnov V.; Chime U.; Astakhov O.; Martín A. J.; Veenstra F. L. P.; Pineda F. A. G.; González-Cobos J.; García-Tecedor M.; Giménez S.; Jaegermann W.; Centi G.; Pérez-Ramírez J.; Galán-Mascarós J. R.; Perathoner S. An artificial leaf device built with earth-abundant materials for combined H2 production and storage as formate with efficiency> 10%. Energy Environ. Sci. 2023, 16, 1644–1661. 10.1039/D2EE03215E. DOI

Bae C.; Ho T. A.; Kim H.; Lee S.; Lim S.; Kim M.; Yoo H.; Montero-Moreno J. M.; Park J. H.; Shin H. Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution. Sci. Adv. 2017, 3, e160221510.1126/sciadv.1602215. PubMed DOI PMC

Bhat K. S.; Nagaraja H. S. Hydrogen evolution reaction at extreme pH conditions of copper sulfide micro-hexagons. J. Sci.: Adv. Mater. Devices 2020, 5, 361–367. 10.1016/j.jsamd.2020.06.004. DOI

Xu F.; Lu J.; Luo L.; Yu C.; Tang Z.; Abbo H. S.; Titinchi S. J. J.; Zhu J.; Kang Shen P.; Yin S. Cu2S-Cu3P nanowire arrays self-supported on copper foam as boosting electrocatalysts for hydrogen evolution. Energy Technol. 2019, 7, 180099310.1002/ente.201800993. DOI

Wang X.; Wang J.; Zhang X.; Tian Q.; Liu M.; Cai N.; Xue Y.; Chen W.; Li W.; Yu F. Nitrogen-doped Cu2S/MoS2 heterojunction nanorod arrays on copper foam for efficient hydrogen evolution reaction. ChemCatChem 2019, 11, 1354–1361. 10.1002/cctc.201801819. DOI

Yang D.; Cao L.; Huang J.; Liu Q.; Li G.; He D.; Wang J.; Feng L. Vanadium-doped hierarchical Cu2S nanowall arrays assembled by nanowires on copper foam as an efficient electrocatalyst for hydrogen evolution reaction. Scr. Mater. 2021, 196, 11375610.1016/j.scriptamat.2021.113756. DOI

Zuo Y.; Liu Y.; Li J.; Du R.; Han X.; Zhang T.; Arbiol J.; Divins N. J.; Llorca J.; Guijarro N.; Sivula K.; Cabot A. In situ electrochemical oxidation of Cu2S into CuO nanowires as a durable and efficient electrocatalyst for oxygen evolution reaction. Chem. Mater. 2019, 31, 7732–7743. 10.1021/acs.chemmater.9b02790. DOI

Wang Y.; Ge Z.; Li X.; Zhao J.; Ma B.; Chen Y. Cu2S nanorod arrays with coarse surfaces to enhance the electrochemically active surface area for water oxidation. J. Colloid Interface Sci. 2020, 567, 308–315. 10.1016/j.jcis.2020.02.030. PubMed DOI

He L.; Zhou D.; Lin Y.; Ge R.; Hou X.; Sun X.; Zheng C. Ultrarapid in situ synthesis of Cu2S nanosheet arrays on copper foam with room-temperature-active iodine plasma for efficient and cost-effective oxygen evolution. ACS Catal. 2018, 8, 3859–3864. 10.1021/acscatal.8b00032. DOI

Zhou Q.; Li T.-T.; Wang J.; Guo F.; Zheng Y.-Q. Hierarchical Cu2S NRs@ CoS core-shell structure and its derivative towards synergistic electrocatalytic water splitting. Electrochim. Acta 2019, 296, 1035–1041. 10.1016/j.electacta.2018.11.183. DOI

Wang D.; Li J.; Zhao Y.; Xu H.; Zhao J. Bifunctional Cu2S–Co(OH)2 nanotube array/Cu foam electrocatalyst for overall water splitting. Electrochim. Acta 2019, 316, 8–18. 10.1016/j.electacta.2019.05.118. DOI

Fan M.; Gao R.; Zou Y.-C.; Wang D.; Bai N.; Li G.-D.; Zou X. An efficient nanostructured copper (I) sulfide-based hydrogen evolution electrocatalyst at neutral pH. Electrochim. Acta 2016, 215, 366–373. 10.1016/j.electacta.2016.08.129. DOI

Yu J.; Guo Y.; She S.; Miao S.; Ni M.; Zhou W.; Liu M.; Shao Z. Bigger is surprisingly better: agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30, 1800047.10.1002/adma.201800047. PubMed DOI

Durairaj A.; Sakthivel T.; Ramanathan S.; Obadiah A.; Vasanthkumar S. Hierarchical Cu2Se nanostructures film for peroxymonosulfate activation and electrocatalytic hydrogen evolution. J. Taiwan Inst. Chem. Eng. 2019, 99, 66–73. 10.1016/j.jtice.2019.03.001. DOI

Zhang L.; Guo Y.; Iqbal A.; Li B.; Gong D.; Liu W.; Iqbal K.; Liu W.; Qin W. One-step synthesis of the 3D flower-like heterostructure MoS2/CuS nanohybrid for electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 1251–1260. 10.1016/j.ijhydene.2017.09.184. DOI

Li M.; Qian Y.; Du J.; Wu H.; Zhang L.; Li G.; Li K.; Wang W.; Kang D. J. CuS nanosheets decorated with CoS2 nanoparticles as an efficient electrocatalyst for enhanced hydrogen evolution at all pH values. ACS Sustainable Chem. Eng. 2019, 7, 14016–14022. 10.1021/acssuschemeng.9b02519. DOI

Marimuthu T.; Yuvakkumar R.; Ravi G.; Zheng Y.; Bi Z.; Xu X.; Xu G.; Velauthapillai D. One-step fabrication of copper sulfide catalysts for HER in natural seawater and their bifunctional properties in freshwater splitting. Fuel 2022, 322, 12407310.1016/j.fuel.2022.124073. DOI

Ma B.; Yang Z.; Yuan Z.; Chen Y. Effective surface roughening of three-dimensional copper foam via sulfurization treatment as a bifunctional electrocatalyst for water splitting. Int. J. Hydrogen Energy 2019, 44, 1620–1626. 10.1016/j.ijhydene.2018.11.115. DOI

Xie Y.; Huang J.; Xu R.; He D.; Niu M.; Li X.; Xu G.; Cao L.; Feng L. Mo-doped Cu2S multilayer nanosheets grown in situ on copper foam for efficient hydrogen evolution reaction. Molecules 2022, 27, 5961.10.3390/molecules27185961. PubMed DOI PMC

Marimuthu T.; Yuvakkumar R.; Kumar P. S.; Ravi G.; Xu X.; Velauthapillai D.; Dai Viet N. V. Cost effective and facile low temperature hydrothermal fabrication of Cu2S thin films for hydrogen evolution reaction in seawater splitting. Int. J. Hydrogen Energy 2022, 47, 30819–30829. 10.1016/j.ijhydene.2021.06.153. DOI

Hodes G.; Manassen J.; Cahen D. Electrocatalytic electrodes for the polysulfide redox system. J. Electrochem. Soc. 1980, 127, 544.10.1149/1.2129709. DOI

Zhao P.; Zhang H.; Zhou H.; Yi B. Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes. Electrochim. Acta 2005, 51, 1091–1098. 10.1016/j.electacta.2005.06.008. DOI

Kim J.-H.; Kim R.-H.; Kwon H.-S. Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition. Electrochem. Commun. 2008, 10, 1148–1151. 10.1016/j.elecom.2008.05.035. DOI

Qazi U. Y.; Javaid R.; Tahir N.; Jamil A.; Afzal A. Design of advanced self-supported electrode by surface modification of copper foam with transition metals for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 33396–33406. 10.1016/j.ijhydene.2020.09.026. DOI

Chen Y.; Qin Z.; Wang X.; Guo X.; Guo L. Noble-metal-free Cu2S-modified photocatalysts for enhanced photocatalytic hydrogen production by forming nanoscale p–n junction structure. RSC Adv. 2015, 5, 18159–18166. 10.1039/C5RA00091B. DOI

An L.; Zhou P.; Yin J.; Liu H.; Chen F.; Liu H.; Du Y.; Xi P. Phase transformation fabrication of a Cu2S nanoplate as an efficient catalyst for water oxidation with glycine. Inorg. Chem. 2015, 54, 3281–3289. 10.1021/ic502920r. PubMed DOI

Kooti M.; Matouri L. Fabrication of nanosized cuprous oxide using fehling’s solution. Sci. Iran. 2010, 17, 73–78.

Luther J. M.; Jain P. K.; Ewers T.; Alivisatos A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361–366. 10.1038/nmat3004. PubMed DOI

Van Der Stam W.; Gudjonsdottir S.; Evers W. H.; Houtepen A. J. Switching between plasmonic and fluorescent copper sulfide nanocrystals. J. Am. Chem. Soc. 2017, 139, 13208–13217. 10.1021/jacs.7b07788. PubMed DOI PMC

Velásquez P.; Leinen D.; Pascual J.; Ramos-Barrado J. R.; Cordova R.; Gómez H.; Schrebler R. XPS, SEM, EDX and EIS study of an electrochemically modified electrode surface of natural chalcocite (Cu2S). J. Electroanal. Chem. 2001, 510, 20–28. 10.1016/S0022-0728(01)00533-2. DOI

Biesinger M. C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334. 10.1002/sia.6239. DOI

Biesinger M. C.; Lau L. W. M.; Gerson A. R.; Smart R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. 10.1016/j.apsusc.2010.07.086. DOI

Roger I.; Shipman M. A.; Symes M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.10.1038/s41570-016-0003. DOI

Lu J.; Yin S.; Shen P. K. Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2019, 2, 105–127. 10.1007/s41918-018-0025-9. DOI

Zhao G.; Rui K.; Dou S. X.; Sun W. Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 2018, 28, 1803291.10.1002/adfm.201803291. DOI

McCrory C. C. L.; Jung S.; Peters J. C.; Jaramillo T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. 10.1021/ja407115p. PubMed DOI

Safshekan S.; Herraiz-Cardona I.; Cardenas-Morcoso D.; Ojani R.; Haro M.; Gimenez S. Solar energy storage by a heterostructured BiVO4–PbOx photocapacitive device. ACS Energy Lett. 2017, 2, 469–475. 10.1021/acsenergylett.6b00728. DOI

Li Q.; Xing Z.; Wang D.; Sun X.; Yang X. In situ electrochemically activated CoMn-S@ NiO/CC nanosheets array for enhanced hydrogen evolution. ACS Catal. 2016, 6, 2797–2801. 10.1021/acscatal.6b00014. DOI

Verma S.; Lu X.; Ma S.; Masel R. I.; Kenis P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 2016, 18, 7075–7084. 10.1039/C5CP05665A. PubMed DOI

Marcandalli G.; Goyal A.; Koper M. T. M. Electrolyte effects on the faradaic efficiency of CO2 reduction to CO on a gold electrode. ACS Catal. 2021, 11, 4936–4945. 10.1021/acscatal.1c00272. PubMed DOI PMC

Garcés-Pineda F. A.; Nguyën H. C.; Blasco-Ahicart M.; García-Tecedor M.; de Fez Febré M.; Tang P.-Y.; Arbiol J.; Giménez S.; Galán-Mascarós J. R.; López N. Push-pull electronic effects in surface active sites enhance electrocatalytic oxygen evolution on transition metal oxides. ChemSusChem 2021, 14, 1595–1601. 10.1002/cssc.202002782. PubMed DOI

Anantharaj S.; Noda S.; Driess M.; Menezes P. W. The pitfalls of using potentiodynamic polarization curves for Tafel analysis in electrocatalytic water splitting. ACS Energy Lett. 2021, 6, 1607–1611. 10.1021/acsenergylett.1c00608. DOI

Zhou L.; Han Z.; Li W.; Leng W.; Yu Z.; Zhao Z. Hierarchical Co–Mo–S nanoflowers as efficient electrocatalyst for hydrogen evolution reaction in neutral media. J. Alloys Compd. 2020, 844, 15610810.1016/j.jallcom.2020.156108. DOI

Liu C.; Zhang G.; Yu L.; Qu J.; Liu H. Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution. Small 2018, 14, 1800421.10.1002/smll.201800421. PubMed DOI

Gupta S.; Patel N.; Miotello A.; Kothari D. C. Cobalt-boride: An efficient and robust electrocatalyst for hydrogen evolution reaction. J. Power Sources 2015, 279, 620–625. 10.1016/j.jpowsour.2015.01.009. DOI

Mesa C. A.; Pastor E.; Francàs L. UV-Vis operando spectroelectrochemistry for (photo) electrocatalysis: principles and guidelines. Curr. Opin. Electrochem. 2022, 35, 10109810.1016/j.coelec.2022.101098. DOI

Xie Y.; Riedinger A.; Prato M.; Casu A.; Genovese A.; Guardia P.; Sottini S.; Sangregorio C.; Miszta K.; Ghosh S.; Pellegrino T.; Manna L. Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions. J. Am. Chem. Soc. 2013, 135, 17630–17637. 10.1021/ja409754v. PubMed DOI

Salzemann C.; Lisiecki I.; Brioude A.; Urban J.; Pileni M. P. Collections of copper nanocrystals characterized by different sizes and shapes: optical response of these nanoobjects. J. Phys. Chem. C 2004, 108, 13242–13248. 10.1021/jp048491n. DOI

Wieder H.; Czanderna A. W. Optical properties of copper oxide films. J. Appl. Phys. 1966, 37, 184–187. 10.1063/1.1707803. DOI

Wave G.Process Insights – Optical Absorption Spectroscopy. (2023, March 10). An Introduction to Online NIR Water Measurements in Liquid Samples; AZoM. Retrieved on May 31, 2023 from https://www.azom.com/article.aspx?ArticleID=17511.

Krylova V.; Andrulevičius M. Optical, XPS and XRD studies of semiconducting copper sulfide layers on a polyamide film. Int. J. Photoenergy 2009, 2009, 1–8. 10.1155/2009/304308. DOI

Kundu A.; Adak M. K.; Kumar Y.; Chakraborty B. Electrochemically derived crystalline CuO from covellite CuS nanoplates: a multifunctional anode material. Inorg. Chem. 2022, 61, 4995–5009. 10.1021/acs.inorgchem.1c03830. PubMed DOI

Young J. L.; Steiner M. A.; Döscher H.; France R. M.; Turner J. A.; Deutsch T. G. Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat. Energy 2017, 2, 1–8. 10.1038/nenergy.2017.28. DOI

Murthy A. P.; Theerthagiri J.; Madhavan J. Insights on Tafel constant in the analysis of hydrogen evolution reaction. J. Phys. Chem. C 2018, 122, 23943–23949. 10.1021/acs.jpcc.8b07763. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...