Continuous-Flow Synthesis of BiVO4 Nanoparticles: From Laboratory Scale to Practical Systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
884444
Directorate-General XII, Science, Research, and Development
PID2020-116093RB-C41
Ministerio de Ciencia e Innovación
PID2020-116093RB-C43
Ministerio de Ciencia e Innovación
PID2020-116093RB-C44
Ministerio de Ciencia e Innovación
RED2022-134508-T
Ministerio de Ciencia e Innovación
PRE2021-098790
Ministerio de Ciencia e Innovación
PRTR-C17.I1
Ministerio de Ciencia e Innovación
CEX2021-001214-S
Ministerio de Ciencia e Innovación
RYC-2017-21931
Ministerio de Ciencia e Innovación
MGS/2022/02(UP2021-021)
Ministerio de Universidades
UJI-2023-15
Universitat Jaume I
UJI-B2020-50
Universitat Jaume I
APOSTD/2021/251
Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
2021SGR00457
Direcció General de Recerca, Generalitat de Catalunya
PubMed
39907173
PubMed Central
PMC12131676
DOI
10.1002/cssc.202402583
Knihovny.cz E-zdroje
- Klíčová slova
- Bismuth vanadate, Flow synthesis, Photoanode, Solar hydrogen, Upscaling,
- Publikační typ
- časopisecké články MeSH
Cost-effective and efficient photoelectrochemical (PEC) water splitting stands out as one of the most promising strategies to address sustainable energy supply in the form of green H2. Large-area photoelectrodes featuring precise chemical and morphological control are key components for a practical solar-to-hydrogen conversion. Herein, we report the continuous flow synthesis of BiVO4 nanoparticles (NPs) by using a simple microreactor configuration. The solution containing the as-prepared NPs enables the deposition of BiVO4 photoanodes with areas up to 52 cm2 through a simple and scalable chemical bath deposition method. On the other hand, surface protection by an ultrathin Al2O3 overlayer grown by atomic layer deposition (ALD) increases the performance of the 1 cm2 BiVO4 photoanodes ~30 %, exhibiting a photocurrent density of ~2.0 mA⋅cm-2 at 1.23 V vs. the Reversible Hydrogen Electrode in the presence of a sacrificial hole scavenger. The optimized continuous flow synthesis provides an affordable methodology for the fabrication of cost-effective, large-scale photoanodes, which could potentially be applied for different photoelectrochemical reactions.
Centro de Física de Materiales UPV EHU CSIC 20018 San Sebastián Spain
Donostia International Physics Center DIPC 20018 San Sebastián Spain
ICREA Pg Lluís Companys 23 08010 Barcelona Catalonia Spain
IKERBASQUE Basque Foundation for Science 48009 Bilbao Spain
Institute of Advanced Materials Universitat Jaume 1 Av Vicente Sos Baynat s n 12006 Castellón Spain
Zobrazit více v PubMed
van de Krol R., Parkinson B. A., MRS Energy Sustain. 2017, 4, E13.
Walsh A., Yan Y., Huda M. N., Al-Jassim M. M., Wei S. H., Chem. Mater. 2009, 21, 547–551.
Kim J. H., Lee J. S., Adv. Mater. 2019, 31, Doi: 10.1002/adma.201806938. PubMed DOI
Lamm B., Trześniewski B. J., Döscher H., Smith W. A., Stefik M., ACS Energy Lett. 2018, 3, 112–124.
S. Wang, P. Chen, J.-H. Yun, Y. Hu, L. Wang, Angewandte Chemie 2017, 129, 8620–8624.
Su J., Guo L., Bao N., Grimes C. A., Nano Lett. 2011, 11, 1928–1933. PubMed
Q. Meng, B. Zhang, L. Fan, H. Liu, M. Valvo, K. Edström, M. Cuartero, R. Marco, G. A. Crespo, L. Sun, Angewandte Chemie 2019, 131, 19203–19209. PubMed PMC
Ahmet I. Y., Ma Y., Jang J. W., Henschel T., Stannowski B., Lopes T., Vilanova A., Mendes A., Abdi F. F., Van De Krol R., Sustain. Energy Fuels 2019, 3, 2366–2379.
H. Song, S. Luo, H. Huang, B. Deng, J. Ye, 2023, 5, 57.
Montañés L., Mesa C. A., Gutiérrez-Blanco A., Robles C., Julián-López B., Giménez S., Catalysts 2021, 11, Doi: 10.3390/catal11101244. DOI
Helal A., El-Sheikh S. M., Yu J., Eid A. I., El-Haka S. A., Samra S. E., J. Nanoparticle Res. 2020, 22, Doi: 10.1007/s11051-020-04861-3. DOI
Seabold J. A., Zhu K., Neale N. R., Phys. Chem. Chem. Phys. 2013, 16, 1121–1131. PubMed
S. Moran, M. Zlokarnik, Ullmann′s Encycl. Ind. Chem. 2017, 1–33.
Kim J. H., Hansora D., Sharma P., Jang J. W., Lee J. S., Chem. Soc. Rev. 2019, 48, 1908–1971. PubMed
Iglesias D., Haddad D., Sans V., Chemistry–Methods 2022, 202200031, Doi: 10.1002/cmtd.202200031. DOI
Besenhard M. O., Lagrow A. P., Famiani S., Pucciarelli M., Lettieri P., Thanh N. T. K., Gavriilidis A., React. Chem. Eng. 2020, 5, 1474–1483.
Mahin J., Torrente-Murciano L., Chem. Eng. J. 2020, 396, 125299.
Tomida Y., Nagaki A., Yoshida J. I., J. Am. Chem. Soc. 2011, 133, 3744–3747. PubMed
Mallia C. J., Baxendale I. R., Org. Process Res. Dev. 2016, 20, 327–360.
Richmond C. J., Miras H. N., De La Oliva A. R., Zang H., Sans V., Paramonov L., Makatsoris C., Inglis R., Brechin E. K., Long D. L., Cronin L., Nat. Chem. 2012 412 2012, 4, 1037–1043. PubMed
Sebastian V., Nanoscale 2022, 14, 4411–4447. PubMed
Zhang X., Ma S., Li A., Chen L., Lu J., Geng X., Xie M., Liang X., Wan Y., Yang P., Appl. Nanosci. 2020, 10, 661–669.
K. R. Tolod, S. Hernández, N. Russo, Catalysts 2017, 7, DOI 10.3390/catal7010013.
Luo W., Wang Z., Wan L., Li Z., Yu T., Zou Z., J. Phys. D. Appl. Phys. 2010, 43, Doi: 10.1088/0022-3727/43/40/405402. DOI
Rahman G., Akhtar A., Khan N. A., Chae S. Y., Shah A. U. H. A., Joo O. Shim, Optik (Stuttg). 2020, 224, 165516.
Huang M., Lei W., Wang M., Zhao S., Li C., Wang M., Zhu H., J. Mater. Chem. A 2020, 8, 3845–3850.
Ma Y., Pendlebury S. R., Reynal A., Le Formal F., Durrant J. R., Chem. Sci. 2014, 5, 2964–2973.
Ma Y., Mesa C. A., Pastor E., Kafizas A., Francàs L., Le Formal F., Pendlebury S. R., Durrant J. R., ACS Energy Lett. 2016, 1, 618–623.
Pihosh Y., Turkevych I., Mawatari K., Uemura J., Kazoe Y., Kosar S., Makita K., Sugaya T., Matsui T., Fujita D., Tosa M., Kondo M., Kitamori T., Sci. Reports 2015 51 2015, 5, 1–10. PubMed PMC
Parmar K. P. S., Kang H. J., Bist A., Dua P., Jang J. S., Lee J. S., ChemSusChem 2012, 5, 1926–1934. PubMed
Kim T. W., Choi K. S., Science (80-.). 2014, 343, 990–994. PubMed
Neuderth P., Hille P., Schörmann J., Frank A., Reitz C., Martí-Sánchez S., De La Mata M., Coll M., Arbiol J., Marschall R., Eickhoff M., J. Mater. Chem. A 2018, 6, 565–573.
Lichterman M. F., Shaner M. R., Handler S. G., Brunschwig B. S., Gray H. B., Lewis N. S., Spurgeon J. M., J. Phys. Chem. Lett. 2013, 4, 4188–4191.
Kim T. W., Choi K. S., J. Phys. Chem. Lett. 2016, 7, 447–451. PubMed
McDowell M. T., Lichterman M. F., Spurgeon J. M., Hu S., Sharp I. D., Brunschwig B. S., Lewis N. S., J. Phys. Chem. C 2014, 118, 19618–19624.
Zhong M., Hisatomi T., Kuang Y., Zhao J., Liu M., Iwase A., Jia Q., Nishiyama H., Minegishi T., Nakabayashi M., Shibata N., Niishiro R., Katayama C., Shibano H., Katayama M., Kudo A., Yamada T., Domen K., J. Am. Chem. Soc. 2015, 137, 5053–5060. PubMed
Gromboni M. F., Coelho D., Mascaro L. H., Pockett A., Marken F., Appl. Catal. B Environ. 2017, 200, 133–140.
Lee S.-Y., Serafini P., Masi S., Gualdrón-Reyes A. F., Mesa C. A., Rodríguez-Pereira J., Giménez S., Lee H. J., Mora-Seró I., Cite This ACS Energy Lett 2023, 8, 4488–4495. PubMed PMC
A. Kafizas, X. Xing, S. Selim, C. A. Mesa, Y. Ma, C. Burgess, M. A. McLachlan, J. R. Durrant, Catal. Today 2019, 321–322, 59–66.
Pulignani C., Mesa C. A., Hillman S. A. J., Uekert T., Giménez S., Durrant J. R., Reisner E., Angew. Chemie Int. Ed. 2022, 61, e202211587. PubMed PMC
Bhattacharya A. K., Mallick K. K., Hartridge A., Mater. Lett. 1997, 30, 7–13.
Fernández-Climent R., Redondo J., García-Tecedor M., Spadaro M. C., Li J., Chartrand D., Schiller F., Pazos J., Hurtado M. F., de la Peña O′Shea V., Kornienko N., Arbiol J., Barja S., Mesa C. A., Giménez S., ACS Catal. 2023, 13, 10457–10467. PubMed PMC
A. Y. Lee, “NIST X-ray Photoelectron Spectroscopy Database,” n.d.
J. I. Pankove, D. A. Kiewit, J. Electrochem. Soc. 1972, 119, 156Ca.
Xi G., Ye J., Chem. Commun. 2010, 46, 1893–1895. PubMed
Dabodiya T. S., Selvarasu P., Murugan A. V., Inorg. Chem. 2019, 58, 5096–5110. PubMed
Suttipong M., Tummala N. R., Kitiyanan B., Striolo A., J. Phys. Chem. C 2011, 115, 17286–17296.
S. Ghosh, A. Ray, N. Pramanik, 2020, DOI 10.1016/j.bpc.2020.106429. PubMed
Sun H., Yang X., Physicochem. Eng. Asp. 2014, 462, 82–89.
Yao M., Liu M., Gan L., Zhao F., Fan X., Zhu D., Xu Z., Hao Z., Chen L., Colloids Surfaces A Physicochem. Eng. Asp. 2013, 433, 132–138.
B. O. Orimolade, O. A. Arotiba, J. Electroanal. Chem. 2020, 878, Doi: 10.1016/j.jelechem.2020.114724. DOI
Kudo A., Omori K., Kato H., J. Am. Chem. Soc. 1999, 121, 11459–11467.
Puurunen R. L., J. Appl. Phys. 2005, 97, 121301.
Hardcastle F. D., Wachs I. E., J. Phys. Chem. 2002, 95, 5031–5041.
Phu N. D., Hoang L. H., Vu P. K., Kong M. H., Chen X. B., Wen H. C., Chou W. C., J. Mater. Sci. Mater. Electron. 2016, 27, 6452–6456.
Liu J. B., Wang H., Wang S., Yan H., Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2003, 104, 36–39.
Gotić M., Musić S., Ivanda M., Šoufek M., Popović S., J. Mol. Struct. 2005, 744–747, 535–540.
Shukla A., Bhat S. D., Pillai V. K., J. Memb. Sci. 2016, 520, 657–670.
Usai S., Obregón S., Becerro A. I., Colón G., J. Phys. Chem. C 2013, 117, 24479–24484.
Tokunaga S., Kato H., Kudo A., Chem. Mater. 2001, 13, 4624–4628.
Kudo A., Omori K., Kato H., J. Am. Chem. Soc. 1999, 121, 11459–11467.
E. Yücelen, I. Lazić, E. G. T. Bosch, Sci Rep 2018, 8, DOI 10.1038/s41598-018-20377-2. PubMed DOI PMC
Mendialdua J., Casanova R., Barbaux Y., J. Electron Spectros. Relat. Phenomena 1995, 71, 249–261.
Willis S. A., McGuinness E. K., Li Y., Losego M. D., Langmuir 2021, 37, 14509–14519. PubMed
Antony R. P., Bassi P. S., Abdi F. F., Chiam S. Y., Ren Y., Barber J., Loo J. S. C., Wong L. H., Electrochim. Acta 2016, 211, 173–182.
F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, R. Van De Krol, 2013.
J. Eichhorn, C. Kastl, J. K. Cooper, D. Ziegler, A. M. Schwartzberg, I. D. Sharp, F. M. Toma, n.d., Doi: 10.1038/s41467-018-04856-8. DOI
Holmes-Gentle I., Agarwal H., Alhersh F., Hellgardt K., Phys. Chem. Chem. Phys. 2018, 20, 12422–12429. PubMed
Vilanova A., Lopes T., Mendes A., J. Power Sources 2018, 398, 224–232.
Turan B., Becker J. P., Urbain F., Finger F., Rau U., Haas S., Nat. Commun. 2016, 7, 1–9. PubMed PMC
Singh A., De B. S., Karmakar S., Basu S., ACS Appl. Energy Mater. 2023, 6, 4642–4656.
Xu Z., Chen L., Brabec C. J., Guo F., Small Methods 2023, 7, 1–9. PubMed
Qayum A., Guo M., Wei J., Dong S., Jiao X., Chen D., Wang T., J. Mater. Chem. A 2020, 8, 10989–10997.
S. Ho-kimura, W. Soontornchaiyakul, Y. Yamaguchi, A. Kudo, 2021.
Ju S., Jun J., Son S., Park J., Lim H., Kim W., Chae D., Lee H., ACS Sustain. Chem. Eng. 2020, 8, 17923–17932.
Ciancio R., Dunin-Borkowski R. E., Etienne S., Mathieu K., Holmestad R., Verbeeck J., Kirkland A. I., Kothleitner G., Arbiol J., Microsc. Microanal. 2022, 28, 2900–2902.