Continuous-Flow Synthesis of BiVO4 Nanoparticles: From Laboratory Scale to Practical Systems

. 2025 Jun 02 ; 18 (11) : e202402583. [epub] 20250221

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39907173

Grantová podpora
884444 Directorate-General XII, Science, Research, and Development
PID2020-116093RB-C41 Ministerio de Ciencia e Innovación
PID2020-116093RB-C43 Ministerio de Ciencia e Innovación
PID2020-116093RB-C44 Ministerio de Ciencia e Innovación
RED2022-134508-T Ministerio de Ciencia e Innovación
PRE2021-098790 Ministerio de Ciencia e Innovación
PRTR-C17.I1 Ministerio de Ciencia e Innovación
CEX2021-001214-S Ministerio de Ciencia e Innovación
RYC-2017-21931 Ministerio de Ciencia e Innovación
MGS/2022/02(UP2021-021) Ministerio de Universidades
UJI-2023-15 Universitat Jaume I
UJI-B2020-50 Universitat Jaume I
APOSTD/2021/251 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
2021SGR00457 Direcció General de Recerca, Generalitat de Catalunya

Cost-effective and efficient photoelectrochemical (PEC) water splitting stands out as one of the most promising strategies to address sustainable energy supply in the form of green H2. Large-area photoelectrodes featuring precise chemical and morphological control are key components for a practical solar-to-hydrogen conversion. Herein, we report the continuous flow synthesis of BiVO4 nanoparticles (NPs) by using a simple microreactor configuration. The solution containing the as-prepared NPs enables the deposition of BiVO4 photoanodes with areas up to 52 cm2 through a simple and scalable chemical bath deposition method. On the other hand, surface protection by an ultrathin Al2O3 overlayer grown by atomic layer deposition (ALD) increases the performance of the 1 cm2 BiVO4 photoanodes ~30 %, exhibiting a photocurrent density of ~2.0 mA⋅cm-2 at 1.23 V vs. the Reversible Hydrogen Electrode in the presence of a sacrificial hole scavenger. The optimized continuous flow synthesis provides an affordable methodology for the fabrication of cost-effective, large-scale photoanodes, which could potentially be applied for different photoelectrochemical reactions.

Zobrazit více v PubMed

van de Krol R., Parkinson B. A., MRS Energy Sustain. 2017, 4, E13.

Walsh A., Yan Y., Huda M. N., Al-Jassim M. M., Wei S. H., Chem. Mater. 2009, 21, 547–551.

Kim J. H., Lee J. S., Adv. Mater. 2019, 31, Doi: 10.1002/adma.201806938. PubMed DOI

Lamm B., Trześniewski B. J., Döscher H., Smith W. A., Stefik M., ACS Energy Lett. 2018, 3, 112–124.

S. Wang, P. Chen, J.-H. Yun, Y. Hu, L. Wang, Angewandte Chemie 2017, 129, 8620–8624.

Su J., Guo L., Bao N., Grimes C. A., Nano Lett. 2011, 11, 1928–1933. PubMed

Q. Meng, B. Zhang, L. Fan, H. Liu, M. Valvo, K. Edström, M. Cuartero, R. Marco, G. A. Crespo, L. Sun, Angewandte Chemie 2019, 131, 19203–19209. PubMed PMC

Ahmet I. Y., Ma Y., Jang J. W., Henschel T., Stannowski B., Lopes T., Vilanova A., Mendes A., Abdi F. F., Van De Krol R., Sustain. Energy Fuels 2019, 3, 2366–2379.

H. Song, S. Luo, H. Huang, B. Deng, J. Ye, 2023, 5, 57.

Montañés L., Mesa C. A., Gutiérrez-Blanco A., Robles C., Julián-López B., Giménez S., Catalysts 2021, 11, Doi: 10.3390/catal11101244. DOI

Helal A., El-Sheikh S. M., Yu J., Eid A. I., El-Haka S. A., Samra S. E., J. Nanoparticle Res. 2020, 22, Doi: 10.1007/s11051-020-04861-3. DOI

Seabold J. A., Zhu K., Neale N. R., Phys. Chem. Chem. Phys. 2013, 16, 1121–1131. PubMed

S. Moran, M. Zlokarnik, Ullmann′s Encycl. Ind. Chem. 2017, 1–33.

Kim J. H., Hansora D., Sharma P., Jang J. W., Lee J. S., Chem. Soc. Rev. 2019, 48, 1908–1971. PubMed

Iglesias D., Haddad D., Sans V., Chemistry–Methods 2022, 202200031, Doi: 10.1002/cmtd.202200031. DOI

Besenhard M. O., Lagrow A. P., Famiani S., Pucciarelli M., Lettieri P., Thanh N. T. K., Gavriilidis A., React. Chem. Eng. 2020, 5, 1474–1483.

Mahin J., Torrente-Murciano L., Chem. Eng. J. 2020, 396, 125299.

Tomida Y., Nagaki A., Yoshida J. I., J. Am. Chem. Soc. 2011, 133, 3744–3747. PubMed

Mallia C. J., Baxendale I. R., Org. Process Res. Dev. 2016, 20, 327–360.

Richmond C. J., Miras H. N., De La Oliva A. R., Zang H., Sans V., Paramonov L., Makatsoris C., Inglis R., Brechin E. K., Long D. L., Cronin L., Nat. Chem. 2012 412 2012, 4, 1037–1043. PubMed

Sebastian V., Nanoscale 2022, 14, 4411–4447. PubMed

Zhang X., Ma S., Li A., Chen L., Lu J., Geng X., Xie M., Liang X., Wan Y., Yang P., Appl. Nanosci. 2020, 10, 661–669.

K. R. Tolod, S. Hernández, N. Russo, Catalysts 2017, 7, DOI 10.3390/catal7010013.

Luo W., Wang Z., Wan L., Li Z., Yu T., Zou Z., J. Phys. D. Appl. Phys. 2010, 43, Doi: 10.1088/0022-3727/43/40/405402. DOI

Rahman G., Akhtar A., Khan N. A., Chae S. Y., Shah A. U. H. A., Joo O. Shim, Optik (Stuttg). 2020, 224, 165516.

Huang M., Lei W., Wang M., Zhao S., Li C., Wang M., Zhu H., J. Mater. Chem. A 2020, 8, 3845–3850.

Ma Y., Pendlebury S. R., Reynal A., Le Formal F., Durrant J. R., Chem. Sci. 2014, 5, 2964–2973.

Ma Y., Mesa C. A., Pastor E., Kafizas A., Francàs L., Le Formal F., Pendlebury S. R., Durrant J. R., ACS Energy Lett. 2016, 1, 618–623.

Pihosh Y., Turkevych I., Mawatari K., Uemura J., Kazoe Y., Kosar S., Makita K., Sugaya T., Matsui T., Fujita D., Tosa M., Kondo M., Kitamori T., Sci. Reports 2015 51 2015, 5, 1–10. PubMed PMC

Parmar K. P. S., Kang H. J., Bist A., Dua P., Jang J. S., Lee J. S., ChemSusChem 2012, 5, 1926–1934. PubMed

Kim T. W., Choi K. S., Science (80-.). 2014, 343, 990–994. PubMed

Neuderth P., Hille P., Schörmann J., Frank A., Reitz C., Martí-Sánchez S., De La Mata M., Coll M., Arbiol J., Marschall R., Eickhoff M., J. Mater. Chem. A 2018, 6, 565–573.

Lichterman M. F., Shaner M. R., Handler S. G., Brunschwig B. S., Gray H. B., Lewis N. S., Spurgeon J. M., J. Phys. Chem. Lett. 2013, 4, 4188–4191.

Kim T. W., Choi K. S., J. Phys. Chem. Lett. 2016, 7, 447–451. PubMed

McDowell M. T., Lichterman M. F., Spurgeon J. M., Hu S., Sharp I. D., Brunschwig B. S., Lewis N. S., J. Phys. Chem. C 2014, 118, 19618–19624.

Zhong M., Hisatomi T., Kuang Y., Zhao J., Liu M., Iwase A., Jia Q., Nishiyama H., Minegishi T., Nakabayashi M., Shibata N., Niishiro R., Katayama C., Shibano H., Katayama M., Kudo A., Yamada T., Domen K., J. Am. Chem. Soc. 2015, 137, 5053–5060. PubMed

Gromboni M. F., Coelho D., Mascaro L. H., Pockett A., Marken F., Appl. Catal. B Environ. 2017, 200, 133–140.

Lee S.-Y., Serafini P., Masi S., Gualdrón-Reyes A. F., Mesa C. A., Rodríguez-Pereira J., Giménez S., Lee H. J., Mora-Seró I., Cite This ACS Energy Lett 2023, 8, 4488–4495. PubMed PMC

A. Kafizas, X. Xing, S. Selim, C. A. Mesa, Y. Ma, C. Burgess, M. A. McLachlan, J. R. Durrant, Catal. Today 2019, 321–322, 59–66.

Pulignani C., Mesa C. A., Hillman S. A. J., Uekert T., Giménez S., Durrant J. R., Reisner E., Angew. Chemie Int. Ed. 2022, 61, e202211587. PubMed PMC

Bhattacharya A. K., Mallick K. K., Hartridge A., Mater. Lett. 1997, 30, 7–13.

Fernández-Climent R., Redondo J., García-Tecedor M., Spadaro M. C., Li J., Chartrand D., Schiller F., Pazos J., Hurtado M. F., de la Peña O′Shea V., Kornienko N., Arbiol J., Barja S., Mesa C. A., Giménez S., ACS Catal. 2023, 13, 10457–10467. PubMed PMC

A. Y. Lee, “NIST X-ray Photoelectron Spectroscopy Database,” n.d.

J. I. Pankove, D. A. Kiewit, J. Electrochem. Soc. 1972, 119, 156Ca.

Xi G., Ye J., Chem. Commun. 2010, 46, 1893–1895. PubMed

Dabodiya T. S., Selvarasu P., Murugan A. V., Inorg. Chem. 2019, 58, 5096–5110. PubMed

Suttipong M., Tummala N. R., Kitiyanan B., Striolo A., J. Phys. Chem. C 2011, 115, 17286–17296.

S. Ghosh, A. Ray, N. Pramanik, 2020, DOI 10.1016/j.bpc.2020.106429. PubMed

Sun H., Yang X., Physicochem. Eng. Asp. 2014, 462, 82–89.

Yao M., Liu M., Gan L., Zhao F., Fan X., Zhu D., Xu Z., Hao Z., Chen L., Colloids Surfaces A Physicochem. Eng. Asp. 2013, 433, 132–138.

B. O. Orimolade, O. A. Arotiba, J. Electroanal. Chem. 2020, 878, Doi: 10.1016/j.jelechem.2020.114724. DOI

Kudo A., Omori K., Kato H., J. Am. Chem. Soc. 1999, 121, 11459–11467.

Puurunen R. L., J. Appl. Phys. 2005, 97, 121301.

Hardcastle F. D., Wachs I. E., J. Phys. Chem. 2002, 95, 5031–5041.

Phu N. D., Hoang L. H., Vu P. K., Kong M. H., Chen X. B., Wen H. C., Chou W. C., J. Mater. Sci. Mater. Electron. 2016, 27, 6452–6456.

Liu J. B., Wang H., Wang S., Yan H., Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2003, 104, 36–39.

Gotić M., Musić S., Ivanda M., Šoufek M., Popović S., J. Mol. Struct. 2005, 744–747, 535–540.

Shukla A., Bhat S. D., Pillai V. K., J. Memb. Sci. 2016, 520, 657–670.

Usai S., Obregón S., Becerro A. I., Colón G., J. Phys. Chem. C 2013, 117, 24479–24484.

Tokunaga S., Kato H., Kudo A., Chem. Mater. 2001, 13, 4624–4628.

Kudo A., Omori K., Kato H., J. Am. Chem. Soc. 1999, 121, 11459–11467.

E. Yücelen, I. Lazić, E. G. T. Bosch, Sci Rep 2018, 8, DOI 10.1038/s41598-018-20377-2. PubMed DOI PMC

Mendialdua J., Casanova R., Barbaux Y., J. Electron Spectros. Relat. Phenomena 1995, 71, 249–261.

Willis S. A., McGuinness E. K., Li Y., Losego M. D., Langmuir 2021, 37, 14509–14519. PubMed

Antony R. P., Bassi P. S., Abdi F. F., Chiam S. Y., Ren Y., Barber J., Loo J. S. C., Wong L. H., Electrochim. Acta 2016, 211, 173–182.

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, R. Van De Krol, 2013.

J. Eichhorn, C. Kastl, J. K. Cooper, D. Ziegler, A. M. Schwartzberg, I. D. Sharp, F. M. Toma, n.d., Doi: 10.1038/s41467-018-04856-8. DOI

Holmes-Gentle I., Agarwal H., Alhersh F., Hellgardt K., Phys. Chem. Chem. Phys. 2018, 20, 12422–12429. PubMed

Vilanova A., Lopes T., Mendes A., J. Power Sources 2018, 398, 224–232.

Turan B., Becker J. P., Urbain F., Finger F., Rau U., Haas S., Nat. Commun. 2016, 7, 1–9. PubMed PMC

Singh A., De B. S., Karmakar S., Basu S., ACS Appl. Energy Mater. 2023, 6, 4642–4656.

Xu Z., Chen L., Brabec C. J., Guo F., Small Methods 2023, 7, 1–9. PubMed

Qayum A., Guo M., Wei J., Dong S., Jiao X., Chen D., Wang T., J. Mater. Chem. A 2020, 8, 10989–10997.

S. Ho-kimura, W. Soontornchaiyakul, Y. Yamaguchi, A. Kudo, 2021.

Ju S., Jun J., Son S., Park J., Lim H., Kim W., Chae D., Lee H., ACS Sustain. Chem. Eng. 2020, 8, 17923–17932.

Ciancio R., Dunin-Borkowski R. E., Etienne S., Mathieu K., Holmestad R., Verbeeck J., Kirkland A. I., Kothleitner G., Arbiol J., Microsc. Microanal. 2022, 28, 2900–2902.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...