A Perovskite Photovoltaic Mini-Module-CsPbBr3 Photoelectrochemical Cell Tandem Device for Solar-Driven Degradation of Organic Compounds
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37854043
PubMed Central
PMC10580309
DOI
10.1021/acsenergylett.3c01361
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Recently, halide perovskites have been widely explored for high-efficiency photocatalysis or photoelectrochemical (PEC) cells. Here, in order to make an efficient photoanode electrode for the degradation of pollutants, concretely 2-mercaptobenzothiazole (MBT), nanoscale cesium lead bromide (CsPbBr3) perovskite was directly formed on the surface of mesoporous titanium dioxide (meso-TiO2) film using a two-step spin-coating process. This photoelectrode recorded a photocurrent of up to 3.02 ± 0.03 mA/cm2 under standard AM 1.5G (100 mW/cm2) illumination through an optimization process such as introducing a thin aluminum oxide (Al2O3) coating layer. Furthermore, to supply high voltage for efficient oxidation of MBT without an external bias, we developed a new photovoltaic/PEC tandem system using a methylammonium lead iodide (MAPbI3) based mini-module consisting of three solar cells interconnected in series and confirmed its successful operation. This approach looks very promising due to its applicability to various PEC reactions.
Zobrazit více v PubMed
Dahl S.; Chorkendorff I. Towards Practical Implementation. Nat. Mater. 2012, 11 (2), 100–101. 10.1038/nmat3233. PubMed DOI
National Renewable Energy Laboratory . https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf. Downloaded July 18, 2023.
Park S.; Chang W. J.; Lee C. W.; Park S.; Ahn H.-Y.; Nam K. T. Photocatalytic Hydrogen Generation from Hydriodic Acid Using Methylammonium Lead Iodide in Dynamic Equilibrium with Aqueous Solution. Nat. Energy 2017, 2 (1), 16185 10.1038/nenergy.2016.185. DOI
Xu Y.-F.; Yang M.-Z.; Chen B.-X.; Wang X.-D.; Chen H.-Y.; Kuang D.-B.; Su C.-Y. A CsPbBr PubMed DOI
Da P.; Cha M.; Sun L.; Wu Y.; Wang Z.-S.; Zheng G. High-Performance Perovskite Photoanode Enabled by Ni Passivation and Catalysis. Nano Lett. 2015, 15 (5), 3452–3457. 10.1021/acs.nanolett.5b00788. PubMed DOI
Singh S.; Chen H.; Shahrokhi S.; Wang L. P.; Lin C. H.; Hu L.; Guan X.; Tricoli A.; Xu Z. J.; Wu T. Hybrid Organic-Inorganic Materials and Composites for Photoelectrochemical Water Splitting. ACS Energy Lett. 2020, 5 (5), 1487–1497. 10.1021/acsenergylett.0c00327. DOI
Wang X.-D.; Huang Y.-H.; Liao J.-F.; Wei Z.-F.; Li W.-G.; Xu Y.-F.; Chen H.-Y.; Kuang D.-B. Surface Passivated Halide Perovskite Single-Crystal for Efficient Photoelectrochemical Synthesis of Dimethoxydihydrofuran. Nat. Commun. 2021, 12 (1), 1202. 10.1038/s41467-021-21487-8. PubMed DOI PMC
Gualdrón-Reyes A. F.; Mesa C. A.; Giménez S.; Mora-Seró I. Application of Halide Perovskite Nanocrystals in Solar-Driven Photo(Electro)Catalysis. Solar RRL 2022, 6 (7), 2200012 10.1002/solr.202200012. DOI
DuBose J. T.; Kamat P. V. Efficacy of Perovskite Photocatalysis: Challenges to Overcome. ACS Energy Lett. 2022, 7 (6), 1994–2011. 10.1021/acsenergylett.2c00765. DOI
Han H. S.; Shin S.; Kim D. H.; Park I. J.; Kim J. S.; Huang P.-S.; Lee J.-K.; Cho I. S.; Zheng X. Boosting the Solar Water Oxidation Performance of a BiVO DOI
Lee D. K.; Choi K.-S. Enhancing Long-Term Photostability of BiVO DOI
Kim T. W.; Ping Y.; Galli G. A.; Choi K.-S. Simultaneous Enhancements in Photon Absorption and Charge Transport of Bismuth Vanadate Photoanodes for Solar Water Splitting. Nat. Commun. 2015, 6 (1), 8769. 10.1038/ncomms9769. PubMed DOI PMC
Kim J. H.; Jang J.-W.; Jo Y. H.; Abdi F. F.; Lee Y. H.; van de Krol R.; Lee J. S. Hetero-Type Dual Photoanodes for Unbiased Solar Water Splitting with Extended Light Harvesting. Nat. Commun. 2016, 7 (1), 13380 10.1038/ncomms13380. PubMed DOI PMC
Pulignani C.; Mesa C. A.; Hillman S. A. J.; Uekert T.; Giménez S.; Durrant J. R.; Reisner E. Rational Design of Carbon Nitride Photoelectrodes with High Activity Toward Organic Oxidations. Angew. Chem., Int. Ed. 2022, 61 (50), 202211587 10.1002/anie.202211587. PubMed DOI PMC
Zhang L.; Liardet L.; Luo J.; Ren D.; Grätzel M.; Hu X. Photoelectrocatalytic Arene C–H Amination. Nat. Catal. 2019, 2 (4), 366–373. 10.1038/s41929-019-0231-9. PubMed DOI PMC
Chen J.; Yin J.; Zheng X.; Ait Ahsaine H.; Zhou Y.; Dong C.; Mohammed O. F.; Takanabe K.; Bakr O. M. Compositionally Screened Eutectic Catalytic Coatings on Halide Perovskite Photocathodes for Photoassisted Selective CO DOI
Song J.; Li J.; Li X.; Xu L.; Dong Y.; Zeng H. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX PubMed DOI
Cardenas-Morcoso D.; Gualdrón-Reyes A. F.; Ferreira Vitoreti A. B.; García-Tecedor M.; Yoon S. J.; Solis De La Fuente M.; Mora-Seró I.; Gimenez S. Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. J. Phys. Chem. Lett. 2019, 10 (3), 630–636. 10.1021/acs.jpclett.8b03849. PubMed DOI
Clarke B. O.; Smith S. R. Review of ‘Emerging’ Organic Contaminants in Biosolids and Assessment of International Research Priorities for the Agricultural Use of Biosolids. Environ. Int. 2011, 37 (1), 226–247. 10.1016/j.envint.2010.06.004. PubMed DOI
De Wever H.; Verachtert H. Biodegradation and toxicity of benzothiazoles. Wat. Res. 1997, 31 (11), 2673–2684. 10.1016/S0043-1354(97)00138-3. DOI
Sorahan T. Cancer Risks in Chemical Production Workers Exposed to 2-Mercaptobenzothiazole. Occup Environ. Med. 2008, 66 (4), 269–273. 10.1136/oem.2008.041400. PubMed DOI
Hagfeldt A.; Boschloo G.; Sun L.; Kloo L.; Pettersson H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110 (11), 6595–6663. 10.1021/cr900356p. PubMed DOI
Pan Z.; Rao H.; Mora-Seró I.; Bisquert J.; Zhong X. Quantum Dot-Sensitized Solar Cells. Chem. Soc. Rev. 2018, 47 (20), 7659–7702. 10.1039/C8CS00431E. PubMed DOI
Chebrolu V. T.; Kim H.-J. Recent Progress in Quantum Dot Sensitized Solar Cells: An Inclusive Review of Photoanode, Sensitizer, Electrolyte, and the Counter Electrode. J. Mater. Chem. C 2019, 7 (17), 4911–4933. 10.1039/C8TC06476H. DOI
Liu F.; Zhang Y.; Ding C.; Toyoda T.; Ogomi Y.; Ripolles T. S.; Hayase S.; Minemoto T.; Yoshino K.; Dai S.; Shen Q. Ultrafast Electron Injection from Photoexcited Perovskite CsPbI PubMed DOI
Lee H. J.; Cho K. T.; Paek S.; Lee Y.; Huckaba A. J.; Queloz V. I. E.; Zimmermann I.; Grancini G.; Oveisi E.; Yoo S. M.; Lee S. Y.; Shin T.; Kim M.; Nazeeruddin M. K. A Facile Preparative Route of Nanoscale Perovskites over Mesoporous Metal Oxide Films and Their Applications to Photosensitizers and Light Emitters. Adv. Funct. Mater. 2018, 28 (39), 1803801 10.1002/adfm.201803801. DOI
Kim M.; Lee S. Y.; Yoo S. M.; Paek S.; Lee Y.; Cho K. T.; Zimmermann I.; Kim H. Y.; Kim B. S.; Song M. K.; Shin T.; Kim K.; Huckaba A. J.; Nazeeruddin M. K.; Lee H. J. Effective Preparation of Nanoscale CH DOI
Yoo S. M.; Lee S. Y.; Velilla Hernandez E.; Kim M.; Kim G.; Shin T.; Nazeeruddin M. K.; Mora-Seró I.; Lee H. J. Nanoscale Perovskite-Sensitized Solar Cell Revisited: Dye-Cell or Perovskite-Cell?. ChemSusChem 2020, 13 (10), 2571–2576. 10.1002/cssc.202000223. PubMed DOI PMC
Yoo S. M.; Yoon S. J.; Anta J. A.; Lee H. J.; Boix P. P.; Mora-Seró I. An Equivalent Circuit for Perovskite Solar Cell Bridging Sensitized to Thin Film Architectures. Joule 2019, 3 (10), 2535–2549. 10.1016/j.joule.2019.07.014. DOI
Roelofs K. E.; Brennan T. P.; Dominguez J. C.; Bailie C. D.; Margulis G. Y.; Hoke E. T.; McGehee M. D.; Bent S. F. Effect of Al DOI
Loiudice A.; Saris S.; Oveisi E.; Alexander D. T. L.; Buonsanti R. CsPbBr PubMed DOI
Zhang K.; Ma M.; Li P.; Wang D. H.; Park J. H. Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis. Adv. Energy Mater. 2016, 6 (15), 1600602 10.1002/aenm.201600602. DOI
Chen Y. S.; Manser J. S.; Kamat P. V. All Solution-Processed Lead Halide Perovskite-BiVO PubMed DOI
Gurudayal; Sabba D.; Kumar M. H.; Wong L. H.; Barber J.; Grätzel M.; Mathews N. Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting. Nano Lett. 2015, 15 (6), 3833–3839. 10.1021/acs.nanolett.5b00616. PubMed DOI
Yoo S. M.; Lee S. Y.; Kim G.; Hernandez E. V.; Mora-Seró I.; Yoon S. J.; Shin T.; Lee S. H.; Ahn S.; Song M. K.; Kim M.; Lee H. J. Preparation of Nanoscale Inorganic CsPbI DOI
Zhang H.; Mao J.; He H.; Zhang D.; Zhu H. L.; Xie F.; Wong K. S.; Grätzel M.; Choy W. C. H. A Smooth CH DOI
Shi Y.; Wang X.; Zhang H.; Li B.; Lu H.; Ma T.; Hao C. Effects of 4- DOI
Shahrokhian S.; Amini M. K.; Mohammadpoor-Baltork I.; Tangestaninejad S. Potentiometric Detection of 2-Mercaptobenzimidazole and 2-Mercaptobenzothiazole at Cobalt Phthalocyanine Modified Carbon-Paste Electrode. Electroanalysis 2000, 12 (11), 863–867. 10.1002/1521-4109(200007)12:11<863::AID-ELAN863>3.0.CO;2-H. DOI
Abdi F. F.; Savenije T. J.; May M. M.; Dam B.; Van De Krol R. The Origin of Slow Carrier Transport in BiVO DOI
Seabold J. A.; Choi K. S. Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst. J. Am. Chem. Soc. 2012, 134 (4), 2186–2192. 10.1021/ja209001d. PubMed DOI
Xiao S.; Chen H.; Yang Z.; Long X.; Wang Z.; Zhu Z.; Qu Y.; Yang S. Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO DOI
Bisquert J.; Vikhrenko V. S. Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells. J. Phys. Chem. B 2004, 108 (7), 2313–2322. 10.1021/jp035395y. DOI
Liu D.; Hu Z.; Hu W.; Wangyang P.; Yu K.; Wen M.; Zu Z.; Liu J.; Wang M.; Chen W.; Zhou M.; Tang X.; Zang Z. Two-Step Method for Preparing All-Inorganic CsPbBr DOI
Duan J.; Zhao Y.; He B.; Tang Q. Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr PubMed DOI
Ma Y.; Zhao Q. A Strategic Review on Processing Routes towards Scalable Fabrication of Perovskite Solar Cells. J. Energy Chem. 2022, 64, 538–560. 10.1016/j.jechem.2021.05.019. DOI
Wang H.; Qin Z.; Miao Y.; Zhao Y. Recent Progress in Large-Area Perovskite Photovoltaic Modules. Trans. Tianjin Univ. 2022, 28, 323–340. 10.1007/s12209-022-00341-y. DOI
Di Giacomo F.; Castriotta L. A.; Kosasih F. U.; Di Girolamo D.; Ducati C.; Di Carlo A. Upscaling Inverted Perovskite Solar Cells: Optimization of Laser Scribing for Highly Efficient Mini-Modules. Micromachines 2020, 11 (12), 1127. 10.3390/mi11121127. PubMed DOI PMC
Li D.; Zhang D.; Lim K. S.; Hu Y.; Rong Y.; Mei A.; Park N. G.; Han H. A Review on Scaling Up Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31 (12), 2008621 10.1002/adfm.202008621. DOI
Bu T.; Liu X.; Li J.; Huang W.; Wu Z.; Huang F.; Cheng Y. B.; Zhong J. Dynamic Antisolvent Engineering for Spin Coating of 10 × 10 cm DOI
Ding C.; Qin W.; Wang N.; Liu G.; Wang Z.; Yan P.; Shi J.; Li C. Solar-to-Hydrogen Efficiency Exceeding 2.5% Achieved for Overall Water Splitting with an All Earth-Abundant Dual-Photoelectrode. Phys. Chem. Chem. Phys. 2014, 16 (29), 15608–15614. 10.1039/C4CP02391A. PubMed DOI