Parvalbumin - Positive Neurons in the Neocortex: A Review

. 2023 Jul 31 ; 72 (Suppl 2) : S173-S191.

Jazyk angličtina Země Česko Médium print

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37565421

The calcium binding protein parvalbumin (PV) in the mammalian neocortex is expressed in a subpopulation of cortical GABAergic inhibitory interneurons. PV - producing interneurons represent the largest subpopulation of neocortical inhibitory cells, exhibit mutual chemical and electrical synaptic contacts and are well known to generate gamma oscillation. This review summarizes basic data of the distribution, afferent and efferent connections and physiological properties of parvalbumin expressing neurons in the neocortex. Basic data about participation of PV-positive neurons in cortical microcircuits are presented. Autaptic connections, metabolism and perineuronal nets (PNN) of PV positive neurons are also discussed.

Zobrazit více v PubMed

Filimonov IN. Archicortex and intermediate cortex. Moscow: Publ. Hause of the Acad. Med. Sci., Moscow; 1949. Comparative anatomy of the cerebral cortex of mammals. Paleocortex.

Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Leipzig: Barth; 1909.

Mountcastle VB. The columnar organization of the neocortex. Brain. 1997;120:701–722. doi: 10.1093/brain/120.4.701. PubMed DOI

Wiesel TN, Hubel DH. Ordered arrangement of orientation columns in monkeys lacking visual experience. J Comp Neurol, 1974;158:307–318. doi: 10.1002/cne.901580306. PubMed DOI

Brodal P. The Central nervous System. Oxford University Press; 1992. p. 464.

Szentagothai J. The ‘module-concept’ in cerebral cortex architecture. Brain Res, 1975;95:475–496. doi: 10.1016/0006-8993(75)90122-5. PubMed DOI

Ramón y Cajal S. Histology of the nervous system of man and vertebrates. II. Paris (in French): A Maloine; 1911. pp. 1–993.

Ramón y Cajal S. Recollections of my life. Vol. 1. Cambridge: MIT Press; 1937. p. 50.

Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004;5:793–807. doi: 10.1038/nrn1519. PubMed DOI

Barinka F, Druga R. Calretinin expression in the mammalian neocortex: a review. Physiol Res. 2010;59:665–677. doi: 10.33549/physiolres.931930. PubMed DOI

DeFelipe J, Lopez-Cruz PL, Bielza C, Larranga P, Anderson S, Burkhalter A, Cauli B, et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci. 2013;14:202–216. doi: 10.1038/nrn3444. PubMed DOI PMC

Hof PR, Glezer II, Conde F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM. Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat. 1999;16:77–116. doi: 10.1016/S0891-0618(98)00065-9. PubMed DOI

Kawaguchi Y, Kondo S. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol. 2002;31:277–287. doi: 10.1023/A:1024126110356. PubMed DOI

Petersen CC, Crochet S. Synaptic computation and sensory processing in neocortical layer 2/3. Neuron, 2013;78:28–48. doi: 10.1016/j.neuron.2013.03.020. PubMed DOI

Buzsaki G. Large-scale recording of neuronal ensembles. Nat Neurosci, 2004;7:446–451. doi: 10.1038/nn1233. PubMed DOI

Selten MH, van Bokhoven H, Nadif Kasri N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Res, 2018;7:23. doi: 10.12688/f1000research.12155.1. PubMed DOI PMC

Ferguson BR, Gao WJ. PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders. Front Neural Circuits. 2018;12:37. doi: 10.3389/fncir.2018.00037. PubMed DOI PMC

Taniguch H, Lu J, Huang ZJ. The spatial and temporal origin of chandelier cells in mouse neocortex. Science, 2013;339:70–74. doi: 10.1126/science.1227622. PubMed DOI PMC

Tremblay R, Lee S, Rudy B. GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits. Neuron, 2016;91:260–292. doi: 10.1016/j.neuron.2016.06.033. PubMed DOI PMC

Roux L, Buzsaki G. Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology. 2015;88:10–23. doi: 10.1016/j.neuropharm.2014.09.011. PubMed DOI PMC

Gulyas AI, Hajos N, Freund TN. Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci, 1996;16:3397–3411. doi: 10.1523/JNEUROSCI.16-10-03397.1996. PubMed DOI PMC

Gulyas AI, Hajos N, katona I, Freund TF. Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum. Eur J Neurosci. 2003;17:1861–1872. doi: 10.1046/j.1460-9568.2003.02630.x. PubMed DOI

Ruden JB, Dugan LL, Konradi C. Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology. 2021;46:279–287. doi: 10.1038/s41386-020-0778-9. PubMed DOI PMC

Gabbott PL, Bacon SJ. Local circuit neurons in the medial prefrontal cortex (areas 24a, b, c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions. J Comp Neurol. 1996;364:609–36. doi: 10.1002/(SICI)1096-9861(19960122)364:4<609::AID-CNE2>3.0.CO;2-7. PubMed DOI

Gabbott PL, Dickie BG, Vaid RR, Headlam AJ, Bacon SJ. Local-circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution. J Comp Neurol. 1997;377:465–499. doi: 10.1002/(SICI)1096-9861(19970127)377:4<465::AID-CNE1>3.0.CO;2-0. PubMed DOI

Hendry SH, Jones EG, Emson PC, Lawson DE, Haizmann CW, Streit P. Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res. 1989;76:467–472. doi: 10.1007/BF00247904. PubMed DOI

Gabbott PL, Bacon SJ. Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics. J Comp Neurol. 1996;364:567–608. doi: 10.1002/(SICI)1096-9861(19960122)364:4<567::AID-CNE1>3.0.CO;2-1. PubMed DOI

Kisvarday ZF. GABAergic networks of basket cells in the visual cortex. Prog Brain Res, 1992;90:385–405. doi: 10.1016/S0079-6123(08)63623-7. PubMed DOI

Krimer LS, Zaitsev AV, Czanner G, Kroner S, Gonzales-Burgos G, Povysheva NV, Iyengar S, et al. Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2–3 of monkey dorsolateral prefrontal cortex. J Neurophysiol. 2005;94:3009–3022. doi: 10.1152/jn.00156.2005. PubMed DOI

Fairen A, DeFelipe J, Regidor J. Non-pyramidal neurons: General account. In: Peters A, Jones EG, editors. Cerebral cortex, vol.1, Cellular components of the cerebral cortex. New York: Plenum Press; pp. 201–253.

Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex. 2002;12:395–410. doi: 10.1093/cercor/12.4.395. PubMed DOI

Gupta A, Wang Y, Markram H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science. 2000;287:273–278. doi: 10.1126/science.287.5451.273. PubMed DOI

Povysheva NV, Zaitsev AV, Rotaru Dc, Gonzalez-Burgos G, Lewis DA, Krimer LS. Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. J Neurophysiol. 2008;100:2348–60. doi: 10.1152/jn.90396.2008. PubMed DOI PMC

Szentagothai J, Arbib MA. Conceptual models of neural organization. Neurosci Res Program Bull. 1974;12:305–510. PubMed

Jones EG. Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol, 1975;160:205–267. doi: 10.1002/cne.901600204. PubMed DOI

Defelipe J, Gonzalez-Albo MC, Del Rio MR, Elston GN. Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. J Comp Neurol. 1999;412:515–526. doi: 10.1002/(SICI)1096-9861(19990927)412:3<515::AID-CNE10>3.0.CO;2-1. PubMed DOI

Inan M, Anderson SA. The chandelier cell, form and function. Curr Opin Neurobiol. 2014;26:142–148. doi: 10.1016/j.conb.2014.01.009. PubMed DOI PMC

DeFelipe J, Farinas I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol. 1992;39:563–607. doi: 10.1016/0301-0082(92)90015-7. PubMed DOI

Gonchar Y, Turney S, Price JL, Burkhalter A. Axo-axonic synapses formed by somatostatin-expressing GABAergic neurons in rat and monkey visual cortex. J Comp Neurol. 2002;443:1–14. doi: 10.1002/cne.1425. PubMed DOI

Howard A, Tamas G, Soltesz I. Lighting the chandelier: new vistas for axo-axonic cells. Trends Neurosci. 2005;28:310–316. doi: 10.1016/j.tins.2005.04.004. PubMed DOI

Inda MC, DeFelipe J, Munoz A. Morphology and distribution of chandelier cell axon terminals in the mouse cerebral cortex and claustroamygdaloid complex. Cereb Cortex. 2009;19:41–54. doi: 10.1093/cercor/bhn057. PubMed DOI

Naka A, Adesnik H. Inhibitory Circuits in Cortical Layer 5. Front Neural Circuits. 2016;10:35. doi: 10.3389/fncir.2016.00035. PubMed DOI PMC

Bertero A, Zurita H, Normandin M, Apicella AJ. Auditory Long-Range Parvalbumin Cortico-Striatal Neurons. Front Neural Circuits. 2020;14:45. doi: 10.3389/fncir.2020.00045. PubMed DOI PMC

Zurita H, Feyen PLC, Apicella AJ. Layer 5 Callosal parvalbumin-expressing neurons: a distinct functional group of GABAergic neurons. Front Cell Neurosci. 2018;12:53. doi: 10.3389/fncel.2018.00053. PubMed DOI PMC

Preuss TM, Kaas JH. Parvalbumin-like immunoreactivity of layer V pyramidal cells in the motor and somatosensory cortex of adult primates. Brain Res. 1996;712:353–357. doi: 10.1016/0006-8993(95)01531-0. PubMed DOI

Ichinohe N, Watakabe A, Miyashita T, Yamamori T, Hashikawa T, Rockland KS. A voltage-gated potassium channel, Kv3.1b, is expressed by a subpopulation of large pyramidal neurons in layer 5 of the macaque monkey cortex. Neuroscience. 2004;129:179–85. doi: 10.1016/j.neuroscience.2004.08.005. PubMed DOI

Szocsics P, Papp P, Havas L, Watanabe M, Maglocky Z. Perisomatic innervation and neurochemical features of giant pyramidal neurons in both hemispheres of the human primary motor cortex. Brain Struct Funct. 2021;226:281–296. doi: 10.1007/s00429-020-02182-8. PubMed DOI PMC

Stichel CC, Singer W, Heizmann CW, Norman AW. Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D 28k, in the adult and developing visual cortex of cats: a light and electron microscopic study. J Comp Neurol. 1987;262:563–577. doi: 10.1002/cne.902620409. PubMed DOI

Schwaller B. Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol. 2010;2:a004051. doi: 10.1101/cshperspect.a004051. PubMed DOI PMC

Permyakov EA, Uversky VN. What is parvalbumin for? Biomolecules. 2022:12. doi: 10.3390/biom12050656. PubMed DOI PMC

Aponte Y, Bischofberger J, Jonas P. Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus. J Physiol. 2008;586:2061–2075. doi: 10.1113/jphysiol.2007.147298. PubMed DOI PMC

Bucher EA, Collins JM, King AE, Vickers JC, Kirkcaldie MTK. Coherence and cognition in the cortex: the fundamental role of parvalbumin, myelin, and the perineuronal net. Brain Struct Funct. 2021;226:2041–2055. doi: 10.1007/s00429-021-02327-3. PubMed DOI

Bartholome O, de la Brassinne Bonardeaux O, Neirinckx V, Rogister B. A Composite Sketch of Fast-Spiking Parvalbumin-Positive Neurons. Cereb Cortex Commun. 2020;1:tgaa026. doi: 10.1093/texcom/tgaa026. PubMed DOI PMC

Gelman D, Griveau A, Dehorter N, Teissier A, Varela C, Pla R, Pierani A, et al. A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci. 2011;31:16570–16580. doi: 10.1523/JNEUROSCI.4068-11.2011. PubMed DOI PMC

Micheva KD, Kiraly M, Perez MM, Madison DV. Extensive structural remodeling of the axonal arbors of parvalbumin basket cells during development in mouse neocortex. J Neurosci. 2021;41:9326–9339. doi: 10.1523/JNEUROSCI.0871-21.2021. PubMed DOI PMC

Wong FK, Marin O. Developmental Cell Death in the Cerebral Cortex. Annu Rev Cell Dev Biol. 2019;35:523–542. doi: 10.1146/annurev-cellbio-100818-125204. PubMed DOI

Christodoulou O, Maragkos I, Antonakou V, Denaxa M. The development of MGE-derived cortical interneurons: An Lhx6 tale. Int J Dev Biol. 2022;66:43–49. doi: 10.1387/ijdb.210185md. PubMed DOI

Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science. 1997;278:474–476. doi: 10.1126/science.278.5337.474. PubMed DOI

Kameda H, Hioki H, Tanaka YH, Tanaka T, Sohn J, Sonomura T, Furuta T, et al. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci. 2012;35:838–854. doi: 10.1111/j.1460-9568.2012.08027.x. PubMed DOI

Galarreta M, Hestrin S. Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci U S A, 2002;99(19):12438–43. doi: 10.1073/pnas.192159599. PubMed DOI PMC

Fukuda T. Structural organization of the gap junction network in the cerebral cortex. Neuroscientist. 2007;13:199–207. doi: 10.1177/1073858406296760. PubMed DOI

Tamas G, Buhl EH, Lorincz A, Somogyi P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci. 2000;3:366–371. doi: 10.1038/73936. PubMed DOI

Tamas G, Somogyi P, Buhl EH. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J Neurosci. 1998;18:4255–4270. doi: 10.1523/JNEUROSCI.18-11-04255.1998. PubMed DOI PMC

Hioki H, Okamoto S, Konno M, Kameda H, Sohn J, Kuramoto E, Fujiyama F, et al. Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. J Neurosci. 2013;33:544–555. doi: 10.1523/JNEUROSCI.2255-12.2013. PubMed DOI PMC

Hioki H, Sohn J, Nakamura H, Okamoto S, Hwang J, Ishida Y, Takahashi M, et al. Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Res. 2018;1695:18–30. doi: 10.1016/j.brainres.2018.05.029. PubMed DOI

Bacci A, Huguenard JR, Prince DA. Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex. J Neurosci. 2003;23:859–866. doi: 10.1523/JNEUROSCI.23-03-00859.2003. PubMed DOI PMC

Bacci A, Rudolph U, Huguenard JR, Prince DA. Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses. J Neurosci. 2003;23:9664–9674. doi: 10.1523/JNEUROSCI.23-29-09664.2003. PubMed DOI PMC

Szegedi V, Paizs M, Baka J, Barzo P, Molnar G, Tamas G, lamsa K. Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex. Elife. 2020:9. doi: 10.7554/eLife.51691. PubMed DOI PMC

Walker F, Mock M, Feyerabend M, Guy J, Wagener RJ, Schubert D, Staiger JF, et al. Parvalbumin- and vasoactive intestinal polypeptide-expressing neocortical interneurons impose differential inhibition on Martinotti cells. Nat Commun. 2016;7:13664. doi: 10.1038/ncomms13664. PubMed DOI PMC

Galarreta M, Hestrin S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature. 1999;402:72–75. doi: 10.1038/47029. PubMed DOI

Hestrin S, Galarreta M. Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 2005;28:304–309. doi: 10.1016/j.tins.2005.04.001. PubMed DOI

Gibson JR, Beierlein M, Connors BW. Two networks of electrically coupled inhibitory neurons in neocortex. Nature. 1999;402:75–79. doi: 10.1038/47035. PubMed DOI

Gibson JR, Beierlein M, Connors BW. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J Neurophysiol. 2005;93:467–480. doi: 10.1152/jn.00520.2004. PubMed DOI

Buzsaki G. Rhytms of the brain. Oxford: Oxford University Press; 2006.

Fukuda T, Kosaka T. The dual network of GABAergic interneurons linked by both chemical and electrical synapses: a possible infrastructure of the cerebral cortex. Neurosci Res. 2000;38:123–130. doi: 10.1016/S0168-0102(00)00163-2. PubMed DOI

Fukuda T, Kosaka T. Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J Neurosci. 2000;20:1519–1528. doi: 10.1523/JNEUROSCI.20-04-01519.2000. PubMed DOI PMC

Amitai Y, Gibson JR, Beierlein M, Patrick SL, Ho AM, Connors BW, Golomb D. The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J Neurosci. 2002;22:4142–4152. doi: 10.1523/JNEUROSCI.22-10-04142.2002. PubMed DOI PMC

Blatow M, Caputi A, Burnashev N, Monyer H, Rozov A. Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron. 2003;38:79–88. doi: 10.1016/S0896-6273(03)00196-X. PubMed DOI

Blatow M, Caputi A, Monyer H. Molecular diversity of neocortical GABAergic interneurones. J Physiol. 2005;562(Pt 1):99–105. doi: 10.1113/jphysiol.2004.078584. PubMed DOI PMC

Demars MP, Morishita H. Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Mol Brain. 2014;7:75. doi: 10.1186/s13041-014-0075-9. PubMed DOI PMC

Steinecke A, Bolton MM, Taniguchi H. Neuromodulatory control of inhibitory network arborization in the developing postnatal neocortex. Sci Adv. 2022;8(10):eabe7192. doi: 10.1126/sciadv.abe7192. PubMed DOI PMC

Fanselow EE, Richardson KA, Connors BW. Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. J Neurophysiol. 2008;100:2640–2652. doi: 10.1152/jn.90691.2008. PubMed DOI PMC

Avermann M, Tomm C, Mateo C, Gerstner W, Petersen CC. Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J Neurophysiol. 2012;107:3116–3134. doi: 10.1152/jn.00917.2011. PubMed DOI

Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M. A neural circuit for spatial summation in visual cortex. Nature. 2012;490:226–231. doi: 10.1038/nature11526. PubMed DOI PMC

Buzsaki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron, 2010;68(3):362–385. doi: 10.1016/j.neuron.2010.09.023. PubMed DOI PMC

Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci, 2012;35:203–225. doi: 10.1146/annurev-neuro-062111-150444. PubMed DOI PMC

Packer AM, Yuste R. Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J Neurosci, 2011;31:13260–13271. doi: 10.1523/JNEUROSCI.3131-11.2011. PubMed DOI PMC

Tuncdemir SN, Wamsley B, Stam FJ, Osakada F, Goulding M, Callaway EM, Rudy B, et al. Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits. Neuron. 2016;89:521–535. doi: 10.1016/j.neuron.2015.11.020. PubMed DOI PMC

Kawaguchi Y, Otsuka T, Morishima M, Ushimaru M, Kubota Y. Control of excitatory hierarchical circuits by parvalbumin-FS basket cells in layer 5 of the frontal cortex: insights for cortical oscillations. J Neurophysiol. 2019;121:2222–2236. doi: 10.1152/jn.00778.2018. PubMed DOI PMC

Glezer II, Hof PR, Leranth C, Morgane PJ. Calcium-binding protein-containing neuronal populations in mammalian visual cortex: a comparative study in whales, insectivores, bats, rodents, and primates. Cereb Cortex. 1993;3:249–272. doi: 10.1093/cercor/3.3.249. PubMed DOI

Glezer II, Hof PR, Morgane PJ. Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis) J Chem Neuroanat. 1998;15:203–237. doi: 10.1016/S0891-0618(98)00022-2. PubMed DOI

Hof PR, Schmitz C. Current trends in neurostereology - introduction to the special issue “Recent advances in neurostereology”. J Chem Neuroanat. 2000;20:3–5. doi: 10.1016/S0891-0618(00)00072-7. PubMed DOI

Hof PR, Bogaert YE, Rosenthal RE, Fiskum G. Distribution of neuronal populations containing neurofilament protein and calcium-binding proteins in the canine neocortex: regional analysis and cell typology. J Chem Neuroanat. 1996;11:81–98. https://doi.org/10.1016/0891-0618(96)00117-2, https://doi.org/10.1016/0891-0618(96)00126-3. PubMed DOI

Pinna A, Colasanti A. The neurometabolic basis of mood instability: the parvalbumin interneuron link-a systematic review and meta-analysis. Front Pharmacol. 2021;12:689473. doi: 10.3389/fphar.2021.689473. PubMed DOI PMC

Buzsaki G. The structure of consciousness. Nature. 2007;446(7133):267. doi: 10.1038/446267a. PubMed DOI

Gulyas AI, Buzsaki G, Freund TF, Hirase H. Populations of hippocampal inhibitory neurons express different levels of cytochrome c. Eur J Neurosci. 2006;23:2581–2594. doi: 10.1111/j.1460-9568.2006.04814.x. PubMed DOI

Favuzzi E, Marques-Smith A, Deogracias R, Winterflood CM, Sanchez-Aguilera A, Mantoan L, Maeso P, et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron. 2017;95:639–655 e10. doi: 10.1016/j.neuron.2017.06.028. PubMed DOI

Burket JA, Webb JD, Deutsch SI. Perineuronal Nets and Metal Cation Concentrations in the Microenvironments of Fast-Spiking, Parvalbumin-Expressing GABAergic Interneurons: Relevance to Neurodevelopment and Neurodevelopmental Disorders. Biomolecules. 2021:11. doi: 10.3390/biom11081235. PubMed DOI PMC

Harkness JH, Gonzalez AE, Bushana PN, Jorgensen ET, Hegarty DM, Di Nardo AA, Prochiantz A, et al. Diurnal changes in perineuronal nets and parvalbumin neurons in the rat medial prefrontal cortex. Brain Struct Funct. 2021;226:1135–1153. doi: 10.1007/s00429-021-02229-4. PubMed DOI PMC

Lensjo KK, Lepperod ME, Dick G, Hafting T, Fyhn M. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J Neurosci. 2017;37(5):1269–1283. doi: 10.1523/JNEUROSCI.2504-16.2016. PubMed DOI PMC

McRae PA, Porter BE. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem Int. 2012;61:963–972. doi: 10.1016/j.neuint.2012.08.007-. PubMed DOI PMC

Higo N, Nishimura Y, Murata Y, Oishi T, Yoshino-Saito K, Takahashi M, Tsuboi F, et al. Increased expression of the growth-associated protein 43 gene in the sensorimotor cortex of the macaque monkey after lesioning the lateral corticospinal tract. J Comp Neurol. 2009;516:493–506. doi: 10.1002/cne.22121. PubMed DOI

Cheatwood JL, Emerick AJ, Kartje GL. Neuronal plasticity and functional recovery after ischemic stroke. Top Stroke Rehabil. 2008;15:42–50. doi: 10.1310/tsr1501-42. PubMed DOI

Rupert DD, Shea SD. Parvalbumin-positive interneurons regulate cortical sensory plasticity in adulthood and development through shared mechanisms. Front Neural Circuits. 2022;16:886629. doi: 10.3389/fncir.2022.886629. PubMed DOI PMC

Hensch TK. Critical period regulation. Annu Rev Neurosci. 2004;27:549–579. doi: 10.1146/annurev.neuro.27.070203.144327-. PubMed DOI

Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5:97–107. doi: 10.1038/nrn1327. PubMed DOI

Ueno H, Suemitsu S, Okamoto M, Matsumoto Y, Ishihara T. Parvalbumin neurons and perineuronal nets in the mouse prefrontal cortex. Neuroscience. 2017;343:115–127. doi: 10.1016/j.neuroscience.2016.11.035. PubMed DOI

Caroni P. Regulation of Parvalbumin Basket cell plasticity in rule learning. Biochem Biophys Res Commun. 2015;460:100–103. doi: 10.1016/j.bbrc.2015.02.023. PubMed DOI

Magnowska M, Gorkiewicz T, Suska A, Wawrzyniak M, Rutkowska-Wlodarczyk I, Kaczmarek L, Wlodarczyk J. Transient ECM protease activity promotes synaptic plasticity. Sci Rep. 2016;6:27757. doi: 10.1038/srep27757. PubMed DOI PMC

Hou X, Yoshioka N, Tsukano H, Sakai A, Miyata S, Watanabe Y, Yanagawa Y, et al. Chondroitin Sulfate Is Required for Onset and Offset of Critical Period Plasticity in Visual Cortex. Sci Rep. 2017;7:12646. doi: 10.1038/s41598-017-04007-x. PubMed DOI PMC

Ribic A. Stability in the face of change: lifelong experience-dependent plasticity in the sensory cortex. Front Cell Neurosci. 2020;14:76. doi: 10.3389/fncel.2020.00076. PubMed DOI PMC

Devienne G, Picaud S, Cohen I, Piquet J, Tricoire L, Testa D, Di Nardo AA, et al. Regulation of perineuronal nets in the adult cortex by the activity of the cortical network. J Neurosci. 2021;41:5779–5790. doi: 10.1523/JNEUROSCI.0434-21.2021. PubMed DOI PMC

Krishnan K, Lau BY, Ewall G, Huang ZJ, Shea SD. MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice. Nat Commun. 2017;8:14077. doi: 10.1038/ncomms14077. PubMed DOI PMC

Donato F, Rompani SB, Caroni P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature. 2013;504:272–276. doi: 10.1038/nature12866. PubMed DOI

Hensch TK. Bistable parvalbumin circuits pivotal for brain plasticity. Cell. 2014;156:17–19. doi: 10.1016/j.cell.2013.12.034. PubMed DOI PMC

Medina J. Brain rules. Seattle: Pear press; 2008. pp. 1–301.

Bernard C, Prochiantz A. Otx2-PNN Interaction to Regulate Cortical Plasticity. Neural Plast. 2016;2016:7931693. doi: 10.1155/2016/7931693. PubMed DOI PMC

Shi W, Wei X, Wang X, Du S, Liu W, Song J, Wang Y. Perineuronal nets protect long-term memory by limiting activity-dependent inhibition from parvalbumin interneurons. Proc Natl Acad Sci U S A. 2019;116:27063–27073. doi: 10.1073/pnas.1902680116. PubMed DOI PMC

Hylin MJ, Orsi SA, Moore AN, Dash PK. Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Learn Mem. 2013;20:267–273. doi: 10.1101/lm.030197.112. PubMed DOI PMC

Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry. 2022;27:3192–3203. doi: 10.1038/s41380-022-01634-3. PubMed DOI PMC

Wingert JC, Sorg BA. Impact of perineuronal nets on electrophysiology of parvalbumin interneurons, principal neurons, and brain oscillations: a review. Front Synaptic Neurosci. 2021;13:673210. doi: 10.3389/fnsyn.2021.673210. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace