Effect of Different Feed Particle Size on Gastrointestinal Tract Morphology, Ileal Digesta Viscosity, and Blood Biochemical Parameters as Markers of Health Status in Broiler Chickens
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AF-IGA2021-IP026
Internal Grant Agency of Faculty of AgriScience (Mendel University in Brno)
PubMed
37570340
PubMed Central
PMC10417443
DOI
10.3390/ani13152532
PII: ani13152532
Knihovny.cz E-zdroje
- Klíčová slova
- crypt depth, feed mixture physical characteristics, intestine morphometry, poultry nutrition, villus height,
- Publikační typ
- časopisecké články MeSH
The study is focused on how the physical structure of the feed affects the health status of broiler chickens. The aim of this study was to evaluate the influence of feed particle size in broiler diets on gastrointestinal tract morphology, digesta viscosity, and blood biochemical parameters. A total of 90 one-day-old male Ross 308 broiler chickens were randomly divided into three different experimental groups (with five replicates per pen), with 6 birds per cage. The first experimental group (Coarse) was fed with the coarsest particle size, with feed with a geometric mean diameter (GMD) of 1111.26 µm, the next group (Medium) was fed with a less coarse feed size of GMD 959.89 µm, and the last group (Fine) was fed a diet with a fine feed particle size of GMD 730.48 µm. The use of coarse feed particle size in the diet had a positive effect on the gizzard weight and small intestinal villi height and crypt depth, which increased the surface area intended for digesting nutrients. The use of finely ground particles in the feed increased the level of gamma-glutamyl transferase and at the same time, decreased the level of urea, which could indicate adverse changes in the liver.
Zobrazit více v PubMed
Aleman R.S., Moncada M., Aryana K.J. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules. 2023;28:619. doi: 10.3390/molecules28020619. PubMed DOI PMC
Schoultz I., Keita Å.V. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells. 2020;9:1909. doi: 10.3390/cells9081909. PubMed DOI PMC
Mirsepasi-Lauridsen H.C., Vrankx K., Engberg J., Friis-Møller A., Brynskov J., Nordgaard-Lassen I., Petersen A.M., Krogfelt K.A. Disease-Specific Enteric Microbiome Dysbiosis in Inflammatory Bowel Disease. Front. Med. 2018;5:304. doi: 10.3389/fmed.2018.00304. PubMed DOI PMC
Luca M., Di Mauro M., Di Mauro M., Luca A. Gut Microbiota in Alzheimer’s Disease, Depression, and Type 2 Diabetes Mellitus: The Role of Oxidative Stress. Oxidative Med. Cell. Longev. 2019;2019:4730539. doi: 10.1155/2019/4730539. PubMed DOI PMC
Shehata A.A., Yalçın S., Latorre J.D., Basiouni S., Attia Y.A., El-Wahab A.A., Visscher C., El-Seedi H.R., Huber C., Hafez H.M., et al. Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry. Microorganisms. 2022;10:395. doi: 10.3390/microorganisms10020395. PubMed DOI PMC
Basiouni S., Tellez-Isaias G., Latorre J.D., Graham B.D., Petrone-Garcia V.M., El-Seedi H.R., Yalçın S., El-Wahab A.A., Visscher C., May-Simera H.L., et al. Anti-Inflammatory and Antioxidative Phytogenic Substances against Secret Killers in Poultry: Current Status and Prospects. Vet. Sci. 2023;10:55. doi: 10.3390/vetsci10010055. PubMed DOI PMC
Pont G.C.D., Lee A., Bortoluzzi C., Farnell Y., Gougoulias C., Kogut M. Novel model for chronic intestinal inflammation in chickens: (2) Immunologic mechanism behind the inflammatory response. Dev. Comp. Immunol. 2023;138:104524. doi: 10.1016/j.dci.2022.104524. PubMed DOI
Pont G.C.D., Belote B.L., Lee A., Bortoluzzi C., Eyng C., Sevastiyanova M., Khadem A., Santin E., Farnell Y.Z., Gougoulias C., et al. Novel Models for Chronic Intestinal Inflammation in Chickens: Intestinal Inflammation Pattern and Biomarkers. Front. Immunol. 2021;12:676628. doi: 10.3389/fimmu.2021.676628. PubMed DOI PMC
Amerah A., Ravindran V., Lentle R., Thomas D. Feed particle size: Implications on the digestion and performance of poultry. World’s Poult. Sci. J. 2007;63:439–455. doi: 10.1017/S0043933907001560. DOI
Safaa H.M., Jiménez-Moreno E., Valencia D.G., Frikha M., Serrano M.P., Mateos G.G. Effect of main cereal of the diet and particle size of the cereal on productive performance and egg quality of brown egg-laying hens in early phase of production. Poult. Sci. 2009;88:608–614. doi: 10.3382/ps.2008-00328. PubMed DOI
Gabriel I., Mallet S., Leconte M., Travel A., Lalles J. Effects of whole wheat feeding on the development of the digestive tract of broiler chickens. Anim. Feed. Sci. Technol. 2008;142:144–162. doi: 10.1016/j.anifeedsci.2007.06.036. DOI
Engberg R., Hedemann M., Jensen B. The influence of grinding and pelleting of feed on the microbial composition and activity in the digestive tract of broiler chickens. Br. Poult. Sci. 2002;43:569–579. doi: 10.1080/0007166022000004480. PubMed DOI
Péron A., Bastianelli D., Oury F.-X., Gomez J., Carré B. Effects of food deprivation and particle size of ground wheat on digestibility of food components in broilers fed on a pelleted diet. Br. Poult. Sci. 2005;46:223–230. doi: 10.1080/00071660500066142. PubMed DOI
Amerah A.M., Ravindran V., Lentle R.G., Thomas D.G. Influence of Feed Particle Size and Feed Form on the Performance, Energy Utilization, Digestive Tract Development, and Digesta Parameters of Broiler Starters. Poult. Sci. 2007;86:2615–2623. doi: 10.3382/ps.2007-00212. PubMed DOI
Ferket P. Feeding whole grains to poultry improves gut health. Feedstuffs. 2000;72:12–13.
Svihus B., Kløvstad K., Perez V., Zimonja O., Sahlström S., Schüller R., Jeksrud W., Prestløkken E. Physical and nutritional effects of pelleting of broiler chicken diets made from wheat ground to different coarsenesses by the use of roller mill and hammer mill. Anim. Feed. Sci. Technol. 2004;117:281–293. doi: 10.1016/j.anifeedsci.2004.08.009. DOI
Duke G.E. Recent Studies on Regulation of Gastric Motility in Turkeys. Poult. Sci. 1992;71:1–8. doi: 10.3382/ps.0710001. PubMed DOI
Qaisrani S.N., Moquet P.C.A., van Krimpen M.M., Kwakkel R.P., Verstegen M.W.A., Hendriks W.H. Protein source and dietary structure influence growth performance, gut morphology, and hindgut fermentation characteristics in broilers. Poult. Sci. 2014;93:3053–3064. doi: 10.3382/ps.2014-04091. PubMed DOI
Ward N. Intestinal viscosity, broiler performance. Poult. Digest. 1996;55:12–17.
Zarghi H. Application of yylanase and β-glucanase to improve nutrient utilization in poultry fed cereal based diets: Used of enzymes in poultry diets. Insights Enzym. Res. 2018;2:11–17. doi: 10.21767/2573-4466.100011. DOI
Tellez G., Latorre J.D., Kuttappan V.A., Kogut M.H., Wolfenden A., Hernandez-Velasco X., Hargis B.M., Bottje W.G., Bielke L.R., Faulkner O.B. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front. Genet. 2014;5:339. doi: 10.3389/fgene.2014.00339. PubMed DOI PMC
Wolf P., Arlinghaus M., Kamphues J., Sauer N., Mosenthin R. Einfluss der partikelgröße im Futter auf die Nährstoffverdaulichkeit und Leistung beim Schwein. Ubers. Tierenährung. 2012;40:21–64.
Lentle R.G., Ravindran V., Ravindran G., Thomas D.V. Influence of Feed Particle Size on the Efficiency of Broiler Chickens Fed Wheat-Based Diets. J. Poult. Sci. 2006;43:135–142. doi: 10.2141/jpsa.43.135. DOI
Aviagen Technological Procedure for Ross 308 Broilers. 2018. [(accessed on 12 December 2022)]. Available online: https://aviagen.com/assets/Tech_Center/Ross_PS/RossPSHandBook2018.pdf.
ASABE S319. 3, Method of Determining and Expressing Finneness of Feed Materials by Sieving. 2008. [(accessed on 16 September 2022)]. Available online: https://elibrary.asabe.org/abstract.asp?aid=24485&t=2&redir=aid=24485&redir=[confid=s2000]&redirType=standards.asp&redirType=standards.asp.
Šťastník O., Novotný J., Roztočilová A., Zálešáková D., Řiháček M., Horáková L., Pluháčková H., Pavlata L., Mrkvicová E. Caraway (Carum carvi L.) in fast-growing and slow-growing broiler chickens’ diets and its effect on performance, digestive tract morphology and blood biochemical profile. Poult. Sci. 2022;101:101980. doi: 10.1016/j.psj.2022.101980. PubMed DOI PMC
Yasar S. Performance and gastro-intestinal response of broiler chickens fed on cereal grain-based foods soaked in water. Br. Poult. Sci. 1999;40:65–76. doi: 10.1080/00071669987854. PubMed DOI
Aescht E., Van den Boom F., Mulisch M., Nixdorf-Bergweiler B., Pütz D., Reidelsheimer B., Wegerhoff R., Welsch U., Büchl-Zimmermann S., Burmester A., et al. Romeis Mikroskopische Technik. 18th ed. Spektrum Akademischer Verlag; Heidelberg, Germany: 2010.
Alshamy Z., Richardson K.C., Hünigen H., Hafez H.M., Plendl J., Al Masri S. Comparison of the gastrointestinal tract of a dual-purpose to a broiler chicken line: A qualitative and quantitative macroscopic and microscopic study. PLoS ONE. 2018;13:e0204921. doi: 10.1371/journal.pone.0204921. PubMed DOI PMC
Abdelqader A., Al-Fataftah A.-R. Effect of dietary butyric acid on performance, intestinal morphology, microflora composition and intestinal recovery of heat-stressed broilers. Livest. Sci. 2016;183:78–83. doi: 10.1016/j.livsci.2015.11.026. DOI
Okpe C.G., Abiaezute N.C., Adigwe A. Evaluation of the morphological adaptations of the small intestine of the African pied crow (Corvus albus) J. Basic Appl. Zool. 2016;75:54–60. doi: 10.1016/j.jobaz.2016.12.002. DOI
Shokryazdan P., Jahromi M.F., Liang J.B., Ramasamy K., Sieo C.C., Ho Y.W. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens. PLoS ONE. 2017;12:e0175959. doi: 10.1371/journal.pone.0175959. PubMed DOI PMC
Santos R.R., Awati A., Roubos-van den Hil P.J., Tersteeg-Zijderveld M.H.G., Koolmees P.A., Fink-Gremmels J. Quantitative histo-morphometric analysis of heat-stress-related damage in the small intestines of broiler chickens. Avian Pathol. 2015;44:19–22. doi: 10.1080/03079457.2014.988122. PubMed DOI
Nir I., Shefet G., Aaroni Y. Effect of feed particle size on performance: 1. corn. Poult. Sci. 1994;73:45–49. doi: 10.3382/ps.0730045. PubMed DOI
Ege G., Bozkurt M., Koçer B., Tüzün A.E., Uygun M., Alkan G. Influence of feed particle size and feed form on productive performance, egg quality, gastrointestinal tract traits, digestive enzymes, intestinal morphology, and nutrient digestibility of laying hens reared in enriched cages. Poult. Sci. 2019;98:3787–3801. doi: 10.3382/ps/pez082. PubMed DOI
Svihus B. The gizzard: Function, influence of diet structure and effects on nutrient availability. World’s Poult. Sci. J. 2011;67:207–224. doi: 10.1017/S0043933911000249. DOI
Jiménez-Moreno E., Frikha M., de Coca-Sinova A., García J., Mateos G. Oat hulls and sugar beet pulp in diets for broilers 1. Effects on growth performance and nutrient digestibility. Anim. Feed Sci. Technol. 2013;182:33–43. doi: 10.1016/j.anifeedsci.2013.03.011. DOI
Kheravii S., Swick R., Choct M., Wu S.-B. Dietary sugarcane bagasse and coarse particle size of corn are beneficial to performance and gizzard development in broilers fed normal and high sodium diets. Poult. Sci. 2017;96:4006–4016. doi: 10.3382/ps/pex225. PubMed DOI
Sacranie A., Iji P., Svihus B., Mikkelsen L. Ph.D. Thesis. University of New England; Armidale, NSW, Australia: 2012. How Feed Constituents Regulate Gut Motility, Feed Utilisation and Growth in Broilers Chickens.
Nir I., Twina Y., Grossman E., Nitsan Z. Quantitative effects of pelleting on performance, gastrointestinal tract and behaviour of meat-type chickens. Br. Poult. Sci. 1994;35:589–602. doi: 10.1080/00071669408417724. PubMed DOI
Biggs P., Parsons C.M. The effects of whole grains on nutrient digestibilities, growth performance, and cecal short-chain fatty acid concentrations in young chicks fed ground corn-soybean meal diets. Poult. Sci. 2009;88:1893–1905. doi: 10.3382/ps.2008-00437. PubMed DOI
Taylor R., Jones G. The influence of whole grain inclusion in pelleted broiler diets on proventricular dilatation and ascites mortality. Br. Poult. Sci. 2004;45:247–254. doi: 10.1080/00071660410001715858. PubMed DOI
Frikha M., Safaa H., Serrano M., Jiménez-Moreno E., Lázaro R., Mateos G. Influence of the main cereal in the diet and particle size of the cereal on productive performance and digestive traits of brown-egg laying pullets. Anim. Feed Sci. Technol. 2011;164:106–115. doi: 10.1016/j.anifeedsci.2010.11.019. DOI
Koҫer B., Bozkurt M., Küҫükyilmaz K., Ege G., Akşit H., Orojpour A. Effects of particle size and physical form of the diet on performance, egg quality and size of the digestive organs in laying hens. Europ. Poult. Sci. 2016;80:223–230.
Naderinejad S., Zaefarian F., Abdollahi M., Hassanabadi A., Kermanshahi H., Ravindran V. Influence of feed form and particle size on performance, nutrient utilisation, and gastrointestinal tract development and morphometry in broiler starters fed maize-based diets. Anim. Feed Sci. Technol. 2016;215:92–104. doi: 10.1016/j.anifeedsci.2016.02.012. DOI
Wang W.-N., Purwanto A., Lenggoro I.W., Okuyama K., Chang H., Jang H.D. Investigation on the Correlations between Droplet and Particle Size Distribution in Ultrasonic Spray Pyrolysis. Ind. Eng. Chem. Res. 2008;47:1650–1659. doi: 10.1021/ie070821d. DOI
Zang J.J., Piao X.S., Huang D.S., Wang J.J., Ma X., Ma Y.X. Effects of Feed Particle Size and Feed Form on Growth Performance, Nutrient Metabolizability and Intestinal Morphology in Broiler Chickens. Asian-Australas. J. Anim. Sci. 2009;22:107–112. doi: 10.5713/ajas.2009.80352. DOI
Yasar S. Performance, gut size and ileal digesta viscosity of broiler chickens fed with a whole wheat added diet and the diets with different wheat particle sizes. Int. J. Poul. Sci. 2003;2:75–82.
Kasapoglu B., Turkay C., Bayram Y., Koca C. Role of GGT in diagnosis of metabolic syndrome: A clinic-based cross-sectional survey. Indian J. Med. Res. 2010;132:56–61. PubMed
Doubek J., Šlosárková S., Řeháková K., Bouda J., Scheer P., Piperisová I., Temonendálová J., Matalová E. Interpretace Základních Biochemických a Hematologických Nálezů u Zvířat (2. Doplněné Vydání) Noviko; Brno, Czech Republic: 2010. p. 102.
Nir I., Hillel R., Ptichi I., Shefet G. Effect of Particle Size on Performance. 3. Grinding pelleting interactions. Poult. Sci. 1995;74:771–783. doi: 10.3382/ps.0740771. PubMed DOI
Galobart J., Moran E.T. Influence of stocking density and feed pellet quality on heat stressed broilers from 6 to 8 weeks of age. Int. J. Poult. Sci. 2005;4:55–59. doi: 10.3923/ijps.2005.55.59. DOI
Salari S., Kermanshahi H., Moghaddam H.N. Effect of sodium bentonite and comparison of pellet vs. mash on performance of broiler chickens. Int. J. Poult. Sci. 2006;5:31–34.
Hamilton R.M.G., Proudfoot F.G. Effects of ingredient particle size and feed form on the performance of Leghorn hens. Can. J. Anim. Sci. 1995;75:109–114. doi: 10.4141/cjas95-014. DOI
El-Wahab A.A., Kriewitz J.-P., Hankel J., Chuppava B., Ratert C., Taube V., Visscher C., Kamphues J. The Effects of Feed Particle Size and Floor Type on the Growth Performance, GIT Development, and Pododermatitis in Broiler Chickens. Animals. 2020;10:1256. doi: 10.3390/ani10081256. PubMed DOI PMC
Lv M., Yan L., Wang Z., An S., Wu M., Lv Z. Effects of feed form and feed particle size on growth performance, carcass characteristics and digestive tract development of broilers. Anim. Nutr. 2015;1:252–256. doi: 10.1016/j.aninu.2015.06.001. PubMed DOI PMC
Sogunle O.M., Olatoye B.B., Egbeyale L.T., Jegede A.V., Adeyemi O.A., Ekunseitan D.A., Bello K.O. Feed forms of different particle sizes: Effects on growth performance, carcass characteristics, and intestinal villus morphology of cockerel chickens. Pac. J. Sci. Technol. 2013;14:405–415.
Chewning C.G., Stark C.R., Brake J. Effects of feed particle size and feed form on broiler performance. J. Appl. Poult. Res. 2012;21:830–837. doi: 10.3382/japr.2012-00553. DOI
The blood biochemical parameters intervals and dynamics in modern broiler chickens