Monitoring Pharmaceuticals and Personal Care Products in Drinking Water Samples by the LC-MS/MS Method to Estimate Their Potential Health Risk

. 2023 Aug 05 ; 28 (15) : . [epub] 20230805

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37570870

Grantová podpora
LX22NPO5101 NPO "Systemic Risk Institute"
SVV 260690 Grant Agency of Charles University

(1) The occurrence and accumulation of pharmaceuticals and personal care products in the environment are recognized scientific concerns. Many of these compounds are disposed of in an unchanged or metabolized form through sewage systems and wastewater treatment plants (WWTP). WWTP processes do not completely eliminate all active substances or their metabolites. Therefore, they systematically leach into the water system and are increasingly contaminating ground, surface, and drinking water, representing a health risk largely ignored by legislative bodies. Especially during the COVID-19 pandemic, a significantly larger amount of medicines and protective products were consumed. It is therefore likely that contamination of water sources has increased, and in the case of groundwater with a delayed effect. As a result, it is necessary to develop an accurate, rapid, and easily available method applicable to routine screening analyses of potable water to monitor and estimate their potential health risk. (2) A multi-residue UHPLC-MS/MS analytical method designed for the identification of 52 pharmaceutical products was developed and used to monitor their presence in drinking water. (3) The optimized method achieved good validation parameters, with recovery of 70-120% of most analytes and repeatability achieving results within 20%. In real samples of drinking water, at least one analyte above the limit of determination was detected in each of the 15 tap water and groundwater samples analyzed. (4) These findings highlight the need for legislation to address pharmaceutical contamination in the environment.

Zobrazit více v PubMed

Gosset A., Wiest L., Fildier A., Libert C., Giroud B., Hammada M., Hervé M., Sibeud E., Vulliet E., Polomé P., et al. Ecotoxicological Risk Assessment of Contaminants of Emerging Concern Identified by “Suspect Screening” from Urban Wastewater Treatment Plant Effluents at a Territorial Scale. Sci. Total Environ. 2021;778:146275. doi: 10.1016/j.scitotenv.2021.146275. PubMed DOI

Ohoro C.R., Adeniji A.O., Okoh A.I., Okoh O.O. Distribution and Chemical Analysis of Pharmaceuticals and Personal Care Products (PPCPs) in the Environmental Systems: A Review. Int. J. Environ. Res. Public Health. 2019;16:3026. doi: 10.3390/ijerph16173026. PubMed DOI PMC

Gwenzi W., Kanda A., Danha C., Muisa-Zikali N., Chaukura N. Occurrence, Human Health Risks, and Removal of Pharmaceuticals in Aqueous Systems: Current Knowledge and Future Perspectives. Appl. Water Sci. Vol. 1 Fundam. Appl. 2021;1:63–101. doi: 10.1002/9781119725237.CH2. DOI

Santos A.V., Couto C.F., Lebron Y.A.R., Moreira V.R., Foureaux A.F.S., Reis E.O., Santos L.V.d.S., de Andrade L.H., Amaral M.C.S., Lange L.C. Occurrence and Risk Assessment of Pharmaceutically Active Compounds in Water Supply Systems in Brazil. Sci. Total Environ. 2020;746:141011. doi: 10.1016/j.scitotenv.2020.141011. PubMed DOI

Marsik P., Rezek J., Židková M., Kramulová B., Tauchen J., Vaněk T. Non-Steroidal Anti-Inflammatory Drugs in the Watercourses of Elbe Basin in Czech Republic. Chemosphere. 2017;171:97–105. doi: 10.1016/j.chemosphere.2016.12.055. PubMed DOI

Pereira A., Silva L., Laranjeiro C., Pena A. Assessment of Human Pharmaceuticals in Drinking Water Catchments, Tap and Drinking Fountain Waters. Appl. Sci. 2021;11:7062. doi: 10.3390/app11157062. DOI

Paíga P., Santos L.H.M.L.M., Delerue-Matos C. Development of a Multi-Residue Method for the Determination of Human and Veterinary Pharmaceuticals and Some of Their Metabolites in Aqueous Environmental Matrices by SPE-UHPLC–MS/MS. J. Pharm. Biomed. Anal. 2017;135:75–86. doi: 10.1016/j.jpba.2016.12.013. PubMed DOI

Papagiannaki D., Morgillo S., Bocina G., Calza P., Binetti R. Occurrence and Human Health Risk Assessment of Pharmaceuticals and Hormones in Drinking Water Sources in the Metropolitan Area of Turin in Italy. Toxics. 2021;9:88. doi: 10.3390/toxics9040088. PubMed DOI PMC

Klančar A., Trontelj J., Roškar R. Development of a Multi-Residue Method for Monitoring 44 Pharmaceuticals in Slovene Surface Water by SPE-LC-MS/MS. Water Air Soil Pollut. 2018;229:192. doi: 10.1007/s11270-018-3845-7. DOI

Brieudes V., Lardy-Fontan S., Lalere B., Vaslin-Reimann S., Budzinski H. Validation and Uncertainties Evaluation of an Isotope Dilution-SPE-LC–MS/MS for the Quantification of Drug Residues in Surface Waters. Talanta. 2016;146:138–147. doi: 10.1016/j.talanta.2015.06.073. PubMed DOI

Ferrer-Aguirre A., Romero-González R., Vidal J.L.M., Frenich A.G. Simple and Quick Determination of Analgesics and Other Contaminants of Emerging Concern in Environmental Waters by On-Line Solid Phase Extraction Coupled to Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A. 2016;1446:27–33. doi: 10.1016/j.chroma.2016.04.009. PubMed DOI

United States Environmental Protection Agency . Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS. United States Environmental Protection Agency; Washington, DC, USA: 2007.

Meng Y., Liu W., Liu X., Zhang J., Peng M., Zhang T. A Review on Analytical Methods for Pharmaceutical and Personal Care Products and Their Transformation Products. J. Environ. Sci. 2021;101:260–281. doi: 10.1016/j.jes.2020.08.025. PubMed DOI

Barceló D., Petrovic M. Challenges and Achievements of LC-MS in Environmental Analysis: 25 Years On. TrAC Trends Anal. Chem. 2007;26:2–11. doi: 10.1016/j.trac.2006.11.006. DOI

Buchberger W.W. Novel Analytical Procedures for Screening of Drug Residues in Water, Wastewater, Sediment and Sludge. Anal. Chim. Acta. 2007;593:129–139. doi: 10.1016/j.aca.2007.05.006. PubMed DOI

Jakimska A., Śliwka-Kaszyńska M., Reszczyńska J., Namieśnik J., Kot-Wasik A. Elucidation of Transformation Pathway of Ketoprofen, Ibuprofen, and Furosemide in Surface Water and Their Occurrence in the Aqueous Environment Using UHPLC-QTOF-MS. Anal. Bioanal. Chem. 2014;406:3667–3680. doi: 10.1007/s00216-014-7614-1. PubMed DOI PMC

Wabaidur S.M., AlOthman Z.A., Siddiqui M.R., Mohsin K., Bousiakou L.G., Karikas G.A. UPLC-MS Method for the Simultaneous Determination of Naproxen, Fluvastatin and Ibuprofen in Wastewater Samples. J. Ind. Eng. Chem. 2015;24:302–307. doi: 10.1016/j.jiec.2014.09.046. DOI

Campos-Mañas M.C., Plaza-Bolaños P., Sánchez-Pérez J.A., Malato S., Agüera A. Fast Determination of Pesticides and Other Contaminants of Emerging Concern in Treated Wastewater Using Direct Injection Coupled to Highly Sensitive Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2017;1507:84–94. doi: 10.1016/j.chroma.2017.05.053. PubMed DOI

González-Curbelo M.Á., Socas-Rodríguez B., Herrera-Herrera A.V., González-Sálamo J., Hernández-Borges J., Rodriguez-Delgado M.A. Evolution and Applications of the QuEChERS Method. TrAC Trends Anal. Chem. 2015;71:169–185. doi: 10.1016/j.trac.2015.04.012. DOI

Cerqueira M.B.R., Guilherme J.R., Caldas S.S., Martins M.L., Zanella R., Primel E.G. Evaluation of the QuEChERS Method for the Extraction of Pharmaceuticals and Personal Care Products from Drinking-Water Treatment Sludge with Determination by UPLC-ESI-MS/MS. Chemosphere. 2014;107:74–82. doi: 10.1016/j.chemosphere.2014.03.026. PubMed DOI

Aristizabal-Ciro C., Botero-Coy A.M., López F.J., Peñuela G.A. Monitoring Pharmaceuticals and Personal Care Products in Reservoir Water Used for Drinking Water Supply. Environ. Sci. Pollut. Res. 2017;24:7335–7347. doi: 10.1007/s11356-016-8253-1. PubMed DOI

Afonso-Olivares C., Čadková T., Sosa-Ferrera Z., Santana-Rodríguez J.J., Nováková L. Simplified Solid-Phase Extraction Procedure Combined with Liquid Chromatography Tandem–Mass Spectrometry for Multiresidue Assessment of Pharmaceutical Compounds in Environmental Liquid Samples. J. Chromatogr. A. 2017;1487:54–63. doi: 10.1016/j.chroma.2017.01.059. PubMed DOI

Ngubane N.P., Naicker D., Ncube S., Chimuka L., Madikizela L.M. Determination of Naproxen, Diclofenac and Ibuprofen in Umgeni Estuary and Seawater: A Case of Northern Durban in KwaZulu–Natal Province of South Africa. Reg. Stud. Mar. Sci. 2019;29:100675. doi: 10.1016/j.rsma.2019.100675. DOI

Petrie B., Youdan J., Barden R., Kasprzyk-Hordern B. Multi-Residue Analysis of 90 Emerging Contaminants in Liquid and Solid Environmental Matrices by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A. 2016;1431:64–78. doi: 10.1016/j.chroma.2015.12.036. PubMed DOI

Yao W., Ge J., Hu Q., Ma J., Yuan D., Fu X., Qi Y., Volmer D.A. An Advanced LC–MS/MS Protocol for Simultaneous Detection of Pharmaceuticals and Personal Care Products in the Environment. Rapid Commun. Mass Spectrom. 2022;37:e9397. doi: 10.1002/rcm.9397. PubMed DOI

Wang Y.-Q., Hu L.-X., Zhao J.-H., Han Y., Liu Y.-S., Zhao J.-L., Yang B., Ying G.-G. Suspect, Non-target and Target Screening of Pharmaceuticals and Personal Care Products (PPCPs) in a Drinking Water System. Sci. Total Environ. 2021;808:151866. doi: 10.1016/j.scitotenv.2021.151866. PubMed DOI

Wee S.Y., Ismail N.A.H., Haron D.E.M., Yusoff F.M., Praveena S.M., Aris A.Z. Pharmaceuticals, Hormones, Plasticizers, and Pesticides in Drinking Water. J. Hazard. Mater. 2022;424:127327. doi: 10.1016/j.jhazmat.2021.127327. PubMed DOI

Dodávky léčivých přípravků v ČR v jednotlivých letech, Státní ústav pro kontrolu léčiv. [(accessed on 26 June 2023)]. Available online: https://www.sukl.cz/dodavky-leciv-v-ceske-republice-v-jednotlivych-letech.

Mompelat S., Le Bot B., Thomas O. Occurrence and Fate of Pharmaceutical Products and By-Products, from Resource to Drinking Water. Environ. Int. 2009;35:803–814. doi: 10.1016/j.envint.2008.10.008. PubMed DOI

Caban M., Lis E., Kumirska J., Stepnowski P. Determination of Pharmaceutical Residues in Drinking Water in Poland Using a New SPE-GC-MS(SIM) Method Based on Speedisk Extraction Disks and DIMETRIS Derivatization. Sci. Total Environ. 2015;538:402–411. doi: 10.1016/j.scitotenv.2015.08.076. PubMed DOI

Becerra-Herrera M., Honda L., Richter P. Ultra-High-Performance Liquid Chromatography—Time-of-Flight High Resolution Mass Spectrometry to Quantify Acidic Drugs in Wastewater. J. Chromatogr. A. 2015;1423:96–103. doi: 10.1016/j.chroma.2015.10.071. PubMed DOI

Liu S., Ying G.-G., Zhao J.-L., Chen F., Yang B., Zhou L.-J., Lai H.-J. Trace Analysis of 28 Steroids in Surface Water, Wastewater and Sludge sSamples by Rapid Resolution Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A. 2011;1218:1367–1378. doi: 10.1016/j.chroma.2011.01.014. PubMed DOI

Zhou L.-J., Ying G.-G., Liu S., Zhao J.-L., Chen F., Zhang R.-Q., Peng F.-Q., Zhang Q.-Q. Simultaneous Determination of Human and Veterinary Antibiotics in Various Environmental Matrices by Rapid Resolution Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A. 2012;1244:123–138. doi: 10.1016/j.chroma.2012.04.076. PubMed DOI

Hong B., Yu S., Zhou M., Li J., Ding J., Niu Y. Development of a PH-Paralleling Approach of Quantifying Six-Category Pharmaceuticals in Surface Water Using SPE-HPLC-MS/MS. Watershed Ecol. Environ. 2021;3:1–16. doi: 10.1016/j.wsee.2021.01.001. DOI

Cai M.-Q., Wang R., Feng L., Zhang L.-Q. Determination of Selected Pharmaceuticals in Tap Water and Drinking Water Treatment Plant by High-Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometer in Beijing, China. Environ. Sci. Pollut. Res. 2015;22:1854–1867. doi: 10.1007/s11356-014-3473-8. PubMed DOI

Pérez S., Barceló D. Fate and Occurrence of X-ray Contrast Media in the Environment. Anal. Bioanal. Chem. 2007;387:1235–1246. doi: 10.1007/s00216-006-0953-9. PubMed DOI

Wang C., Shi H., Adams C.D., Gamagedara S., Stayton I., Timmons T., Ma Y. Investigation of Pharmaceuticals in Missouri Natural and Drinking Water Using High Performance Liquid Chromatography-Tandem Mass Spectrometry. Water Res. 2011;45:1818–1828. doi: 10.1016/j.watres.2010.11.043. PubMed DOI

Azzouz A., Ballesteros E. Influence of Seasonal Climate Differences on the Pharmaceutical, Hormone and Personal Care Product Removal Efficiency of a Drinking Water Treatment Plant. Chemosphere. 2013;93:2046–2054. doi: 10.1016/j.chemosphere.2013.07.037. PubMed DOI

Huerta-Fontela M., Galceran M.T., Ventura F. Occurrence and Removal of Pharmaceuticals and Hormones through Drinking Water Treatment. Water Res. 2011;45:1432–1442. doi: 10.1016/j.watres.2010.10.036. PubMed DOI

Sodré F.F., Sampaio T.R. Development and Application of a SPE-LC-QTOF Method for the Quantification of Micropollutants of Emerging Concern in Drinking Waters from the Brazilian Capital. Emerg. Contam. 2020;6:72–81. doi: 10.1016/j.emcon.2020.01.001. DOI

Fontanals N., Boleda M.R., Borrull F., Marcé R.M., Lacorte S. Ceramic Passive Samplers for Determining Pharmaceuticals and Drugs of Abuse in River and Drinking Water. Sci. Total Environ. 2023;889:164267. doi: 10.1016/j.scitotenv.2023.164267. PubMed DOI

Peng Y., Hall S., Gautam L. Drugs of Abuse in Drinking Water—A Review of Current Detection Methods, Occurrence, Elimination and Health Risks. TrAC Trends Anal. Chem. 2016;85:232–240. doi: 10.1016/j.trac.2016.09.011. DOI

Lee S.-H., Kim K.-H., Lee M., Lee B.-D. Detection Status and Removal Characteristics of Pharmaceuticals in Wastewater Treatment Effluent. J. Water Process. Eng. 2019;31:100828. doi: 10.1016/j.jwpe.2019.100828. DOI

Water Treatment and Pathogen Control—M. W. LeChevallier, Kwok-Keung Au—Knihy Google. [(accessed on 26 June 2023)]. Available online: https://books.google.cz/books?hl=cs&lr=&id=ImGUVFKp9vwC&oi=fnd&pg=PR9&ots=vkfcjHsvfH&sig=MF-WR4siXz-QU8n6I_5u7pNAgYQ&redir_esc=y#v=onepage&q&f=false.

Okoye C.O., Okeke E.S., Okoye K.C., Echude D., Andong F.A., Chukwudozie K.I., Okoye H.U., Ezeonyejiaku C.D. Occurrence and Fate of Pharmaceuticals, Personal Care Products (PPCPs) and Pesticides in African Water Systems: A Need for Timely Intervention. Heliyon. 2022;8:e09143. doi: 10.1016/j.heliyon.2022.e09143. PubMed DOI PMC

Houtman C.J., Broek R.T., de Jong K., Pieterse B., Kroesbergen J. A Multicomponent Snapshot of Pharmaceuticals and Pesticides in the River Meuse Basin. Environ. Toxicol. Chem. 2013;32:2449–2459. doi: 10.1002/etc.2351. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace