Monitoring Pharmaceuticals and Personal Care Products in Drinking Water Samples by the LC-MS/MS Method to Estimate Their Potential Health Risk
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5101
NPO "Systemic Risk Institute"
SVV 260690
Grant Agency of Charles University
PubMed
37570870
PubMed Central
PMC10421426
DOI
10.3390/molecules28155899
PII: molecules28155899
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19 pandemic, HPLC-MS/MS, direct injection, drinking water, health risk, personal care products, pharmaceuticals,
- MeSH
- chemické látky znečišťující vodu * analýza MeSH
- chromatografie kapalinová MeSH
- COVID-19 * epidemiologie MeSH
- kosmetické přípravky * analýza MeSH
- léčivé přípravky MeSH
- lidé MeSH
- monitorování životního prostředí metody MeSH
- pandemie MeSH
- pitná voda * chemie MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- kosmetické přípravky * MeSH
- léčivé přípravky MeSH
- pitná voda * MeSH
(1) The occurrence and accumulation of pharmaceuticals and personal care products in the environment are recognized scientific concerns. Many of these compounds are disposed of in an unchanged or metabolized form through sewage systems and wastewater treatment plants (WWTP). WWTP processes do not completely eliminate all active substances or their metabolites. Therefore, they systematically leach into the water system and are increasingly contaminating ground, surface, and drinking water, representing a health risk largely ignored by legislative bodies. Especially during the COVID-19 pandemic, a significantly larger amount of medicines and protective products were consumed. It is therefore likely that contamination of water sources has increased, and in the case of groundwater with a delayed effect. As a result, it is necessary to develop an accurate, rapid, and easily available method applicable to routine screening analyses of potable water to monitor and estimate their potential health risk. (2) A multi-residue UHPLC-MS/MS analytical method designed for the identification of 52 pharmaceutical products was developed and used to monitor their presence in drinking water. (3) The optimized method achieved good validation parameters, with recovery of 70-120% of most analytes and repeatability achieving results within 20%. In real samples of drinking water, at least one analyte above the limit of determination was detected in each of the 15 tap water and groundwater samples analyzed. (4) These findings highlight the need for legislation to address pharmaceutical contamination in the environment.
Zobrazit více v PubMed
Gosset A., Wiest L., Fildier A., Libert C., Giroud B., Hammada M., Hervé M., Sibeud E., Vulliet E., Polomé P., et al. Ecotoxicological Risk Assessment of Contaminants of Emerging Concern Identified by “Suspect Screening” from Urban Wastewater Treatment Plant Effluents at a Territorial Scale. Sci. Total Environ. 2021;778:146275. doi: 10.1016/j.scitotenv.2021.146275. PubMed DOI
Ohoro C.R., Adeniji A.O., Okoh A.I., Okoh O.O. Distribution and Chemical Analysis of Pharmaceuticals and Personal Care Products (PPCPs) in the Environmental Systems: A Review. Int. J. Environ. Res. Public Health. 2019;16:3026. doi: 10.3390/ijerph16173026. PubMed DOI PMC
Gwenzi W., Kanda A., Danha C., Muisa-Zikali N., Chaukura N. Occurrence, Human Health Risks, and Removal of Pharmaceuticals in Aqueous Systems: Current Knowledge and Future Perspectives. Appl. Water Sci. Vol. 1 Fundam. Appl. 2021;1:63–101. doi: 10.1002/9781119725237.CH2. DOI
Santos A.V., Couto C.F., Lebron Y.A.R., Moreira V.R., Foureaux A.F.S., Reis E.O., Santos L.V.d.S., de Andrade L.H., Amaral M.C.S., Lange L.C. Occurrence and Risk Assessment of Pharmaceutically Active Compounds in Water Supply Systems in Brazil. Sci. Total Environ. 2020;746:141011. doi: 10.1016/j.scitotenv.2020.141011. PubMed DOI
Marsik P., Rezek J., Židková M., Kramulová B., Tauchen J., Vaněk T. Non-Steroidal Anti-Inflammatory Drugs in the Watercourses of Elbe Basin in Czech Republic. Chemosphere. 2017;171:97–105. doi: 10.1016/j.chemosphere.2016.12.055. PubMed DOI
Pereira A., Silva L., Laranjeiro C., Pena A. Assessment of Human Pharmaceuticals in Drinking Water Catchments, Tap and Drinking Fountain Waters. Appl. Sci. 2021;11:7062. doi: 10.3390/app11157062. DOI
Paíga P., Santos L.H.M.L.M., Delerue-Matos C. Development of a Multi-Residue Method for the Determination of Human and Veterinary Pharmaceuticals and Some of Their Metabolites in Aqueous Environmental Matrices by SPE-UHPLC–MS/MS. J. Pharm. Biomed. Anal. 2017;135:75–86. doi: 10.1016/j.jpba.2016.12.013. PubMed DOI
Papagiannaki D., Morgillo S., Bocina G., Calza P., Binetti R. Occurrence and Human Health Risk Assessment of Pharmaceuticals and Hormones in Drinking Water Sources in the Metropolitan Area of Turin in Italy. Toxics. 2021;9:88. doi: 10.3390/toxics9040088. PubMed DOI PMC
Klančar A., Trontelj J., Roškar R. Development of a Multi-Residue Method for Monitoring 44 Pharmaceuticals in Slovene Surface Water by SPE-LC-MS/MS. Water Air Soil Pollut. 2018;229:192. doi: 10.1007/s11270-018-3845-7. DOI
Brieudes V., Lardy-Fontan S., Lalere B., Vaslin-Reimann S., Budzinski H. Validation and Uncertainties Evaluation of an Isotope Dilution-SPE-LC–MS/MS for the Quantification of Drug Residues in Surface Waters. Talanta. 2016;146:138–147. doi: 10.1016/j.talanta.2015.06.073. PubMed DOI
Ferrer-Aguirre A., Romero-González R., Vidal J.L.M., Frenich A.G. Simple and Quick Determination of Analgesics and Other Contaminants of Emerging Concern in Environmental Waters by On-Line Solid Phase Extraction Coupled to Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A. 2016;1446:27–33. doi: 10.1016/j.chroma.2016.04.009. PubMed DOI
United States Environmental Protection Agency . Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS. United States Environmental Protection Agency; Washington, DC, USA: 2007.
Meng Y., Liu W., Liu X., Zhang J., Peng M., Zhang T. A Review on Analytical Methods for Pharmaceutical and Personal Care Products and Their Transformation Products. J. Environ. Sci. 2021;101:260–281. doi: 10.1016/j.jes.2020.08.025. PubMed DOI
Barceló D., Petrovic M. Challenges and Achievements of LC-MS in Environmental Analysis: 25 Years On. TrAC Trends Anal. Chem. 2007;26:2–11. doi: 10.1016/j.trac.2006.11.006. DOI
Buchberger W.W. Novel Analytical Procedures for Screening of Drug Residues in Water, Wastewater, Sediment and Sludge. Anal. Chim. Acta. 2007;593:129–139. doi: 10.1016/j.aca.2007.05.006. PubMed DOI
Jakimska A., Śliwka-Kaszyńska M., Reszczyńska J., Namieśnik J., Kot-Wasik A. Elucidation of Transformation Pathway of Ketoprofen, Ibuprofen, and Furosemide in Surface Water and Their Occurrence in the Aqueous Environment Using UHPLC-QTOF-MS. Anal. Bioanal. Chem. 2014;406:3667–3680. doi: 10.1007/s00216-014-7614-1. PubMed DOI PMC
Wabaidur S.M., AlOthman Z.A., Siddiqui M.R., Mohsin K., Bousiakou L.G., Karikas G.A. UPLC-MS Method for the Simultaneous Determination of Naproxen, Fluvastatin and Ibuprofen in Wastewater Samples. J. Ind. Eng. Chem. 2015;24:302–307. doi: 10.1016/j.jiec.2014.09.046. DOI
Campos-Mañas M.C., Plaza-Bolaños P., Sánchez-Pérez J.A., Malato S., Agüera A. Fast Determination of Pesticides and Other Contaminants of Emerging Concern in Treated Wastewater Using Direct Injection Coupled to Highly Sensitive Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2017;1507:84–94. doi: 10.1016/j.chroma.2017.05.053. PubMed DOI
González-Curbelo M.Á., Socas-Rodríguez B., Herrera-Herrera A.V., González-Sálamo J., Hernández-Borges J., Rodriguez-Delgado M.A. Evolution and Applications of the QuEChERS Method. TrAC Trends Anal. Chem. 2015;71:169–185. doi: 10.1016/j.trac.2015.04.012. DOI
Cerqueira M.B.R., Guilherme J.R., Caldas S.S., Martins M.L., Zanella R., Primel E.G. Evaluation of the QuEChERS Method for the Extraction of Pharmaceuticals and Personal Care Products from Drinking-Water Treatment Sludge with Determination by UPLC-ESI-MS/MS. Chemosphere. 2014;107:74–82. doi: 10.1016/j.chemosphere.2014.03.026. PubMed DOI
Aristizabal-Ciro C., Botero-Coy A.M., López F.J., Peñuela G.A. Monitoring Pharmaceuticals and Personal Care Products in Reservoir Water Used for Drinking Water Supply. Environ. Sci. Pollut. Res. 2017;24:7335–7347. doi: 10.1007/s11356-016-8253-1. PubMed DOI
Afonso-Olivares C., Čadková T., Sosa-Ferrera Z., Santana-Rodríguez J.J., Nováková L. Simplified Solid-Phase Extraction Procedure Combined with Liquid Chromatography Tandem–Mass Spectrometry for Multiresidue Assessment of Pharmaceutical Compounds in Environmental Liquid Samples. J. Chromatogr. A. 2017;1487:54–63. doi: 10.1016/j.chroma.2017.01.059. PubMed DOI
Ngubane N.P., Naicker D., Ncube S., Chimuka L., Madikizela L.M. Determination of Naproxen, Diclofenac and Ibuprofen in Umgeni Estuary and Seawater: A Case of Northern Durban in KwaZulu–Natal Province of South Africa. Reg. Stud. Mar. Sci. 2019;29:100675. doi: 10.1016/j.rsma.2019.100675. DOI
Petrie B., Youdan J., Barden R., Kasprzyk-Hordern B. Multi-Residue Analysis of 90 Emerging Contaminants in Liquid and Solid Environmental Matrices by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A. 2016;1431:64–78. doi: 10.1016/j.chroma.2015.12.036. PubMed DOI
Yao W., Ge J., Hu Q., Ma J., Yuan D., Fu X., Qi Y., Volmer D.A. An Advanced LC–MS/MS Protocol for Simultaneous Detection of Pharmaceuticals and Personal Care Products in the Environment. Rapid Commun. Mass Spectrom. 2022;37:e9397. doi: 10.1002/rcm.9397. PubMed DOI
Wang Y.-Q., Hu L.-X., Zhao J.-H., Han Y., Liu Y.-S., Zhao J.-L., Yang B., Ying G.-G. Suspect, Non-target and Target Screening of Pharmaceuticals and Personal Care Products (PPCPs) in a Drinking Water System. Sci. Total Environ. 2021;808:151866. doi: 10.1016/j.scitotenv.2021.151866. PubMed DOI
Wee S.Y., Ismail N.A.H., Haron D.E.M., Yusoff F.M., Praveena S.M., Aris A.Z. Pharmaceuticals, Hormones, Plasticizers, and Pesticides in Drinking Water. J. Hazard. Mater. 2022;424:127327. doi: 10.1016/j.jhazmat.2021.127327. PubMed DOI
Dodávky léčivých přípravků v ČR v jednotlivých letech, Státní ústav pro kontrolu léčiv. [(accessed on 26 June 2023)]. Available online: https://www.sukl.cz/dodavky-leciv-v-ceske-republice-v-jednotlivych-letech.
Mompelat S., Le Bot B., Thomas O. Occurrence and Fate of Pharmaceutical Products and By-Products, from Resource to Drinking Water. Environ. Int. 2009;35:803–814. doi: 10.1016/j.envint.2008.10.008. PubMed DOI
Caban M., Lis E., Kumirska J., Stepnowski P. Determination of Pharmaceutical Residues in Drinking Water in Poland Using a New SPE-GC-MS(SIM) Method Based on Speedisk Extraction Disks and DIMETRIS Derivatization. Sci. Total Environ. 2015;538:402–411. doi: 10.1016/j.scitotenv.2015.08.076. PubMed DOI
Becerra-Herrera M., Honda L., Richter P. Ultra-High-Performance Liquid Chromatography—Time-of-Flight High Resolution Mass Spectrometry to Quantify Acidic Drugs in Wastewater. J. Chromatogr. A. 2015;1423:96–103. doi: 10.1016/j.chroma.2015.10.071. PubMed DOI
Liu S., Ying G.-G., Zhao J.-L., Chen F., Yang B., Zhou L.-J., Lai H.-J. Trace Analysis of 28 Steroids in Surface Water, Wastewater and Sludge sSamples by Rapid Resolution Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A. 2011;1218:1367–1378. doi: 10.1016/j.chroma.2011.01.014. PubMed DOI
Zhou L.-J., Ying G.-G., Liu S., Zhao J.-L., Chen F., Zhang R.-Q., Peng F.-Q., Zhang Q.-Q. Simultaneous Determination of Human and Veterinary Antibiotics in Various Environmental Matrices by Rapid Resolution Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A. 2012;1244:123–138. doi: 10.1016/j.chroma.2012.04.076. PubMed DOI
Hong B., Yu S., Zhou M., Li J., Ding J., Niu Y. Development of a PH-Paralleling Approach of Quantifying Six-Category Pharmaceuticals in Surface Water Using SPE-HPLC-MS/MS. Watershed Ecol. Environ. 2021;3:1–16. doi: 10.1016/j.wsee.2021.01.001. DOI
Cai M.-Q., Wang R., Feng L., Zhang L.-Q. Determination of Selected Pharmaceuticals in Tap Water and Drinking Water Treatment Plant by High-Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometer in Beijing, China. Environ. Sci. Pollut. Res. 2015;22:1854–1867. doi: 10.1007/s11356-014-3473-8. PubMed DOI
Pérez S., Barceló D. Fate and Occurrence of X-ray Contrast Media in the Environment. Anal. Bioanal. Chem. 2007;387:1235–1246. doi: 10.1007/s00216-006-0953-9. PubMed DOI
Wang C., Shi H., Adams C.D., Gamagedara S., Stayton I., Timmons T., Ma Y. Investigation of Pharmaceuticals in Missouri Natural and Drinking Water Using High Performance Liquid Chromatography-Tandem Mass Spectrometry. Water Res. 2011;45:1818–1828. doi: 10.1016/j.watres.2010.11.043. PubMed DOI
Azzouz A., Ballesteros E. Influence of Seasonal Climate Differences on the Pharmaceutical, Hormone and Personal Care Product Removal Efficiency of a Drinking Water Treatment Plant. Chemosphere. 2013;93:2046–2054. doi: 10.1016/j.chemosphere.2013.07.037. PubMed DOI
Huerta-Fontela M., Galceran M.T., Ventura F. Occurrence and Removal of Pharmaceuticals and Hormones through Drinking Water Treatment. Water Res. 2011;45:1432–1442. doi: 10.1016/j.watres.2010.10.036. PubMed DOI
Sodré F.F., Sampaio T.R. Development and Application of a SPE-LC-QTOF Method for the Quantification of Micropollutants of Emerging Concern in Drinking Waters from the Brazilian Capital. Emerg. Contam. 2020;6:72–81. doi: 10.1016/j.emcon.2020.01.001. DOI
Fontanals N., Boleda M.R., Borrull F., Marcé R.M., Lacorte S. Ceramic Passive Samplers for Determining Pharmaceuticals and Drugs of Abuse in River and Drinking Water. Sci. Total Environ. 2023;889:164267. doi: 10.1016/j.scitotenv.2023.164267. PubMed DOI
Peng Y., Hall S., Gautam L. Drugs of Abuse in Drinking Water—A Review of Current Detection Methods, Occurrence, Elimination and Health Risks. TrAC Trends Anal. Chem. 2016;85:232–240. doi: 10.1016/j.trac.2016.09.011. DOI
Lee S.-H., Kim K.-H., Lee M., Lee B.-D. Detection Status and Removal Characteristics of Pharmaceuticals in Wastewater Treatment Effluent. J. Water Process. Eng. 2019;31:100828. doi: 10.1016/j.jwpe.2019.100828. DOI
Water Treatment and Pathogen Control—M. W. LeChevallier, Kwok-Keung Au—Knihy Google. [(accessed on 26 June 2023)]. Available online: https://books.google.cz/books?hl=cs&lr=&id=ImGUVFKp9vwC&oi=fnd&pg=PR9&ots=vkfcjHsvfH&sig=MF-WR4siXz-QU8n6I_5u7pNAgYQ&redir_esc=y#v=onepage&q&f=false.
Okoye C.O., Okeke E.S., Okoye K.C., Echude D., Andong F.A., Chukwudozie K.I., Okoye H.U., Ezeonyejiaku C.D. Occurrence and Fate of Pharmaceuticals, Personal Care Products (PPCPs) and Pesticides in African Water Systems: A Need for Timely Intervention. Heliyon. 2022;8:e09143. doi: 10.1016/j.heliyon.2022.e09143. PubMed DOI PMC
Houtman C.J., Broek R.T., de Jong K., Pieterse B., Kroesbergen J. A Multicomponent Snapshot of Pharmaceuticals and Pesticides in the River Meuse Basin. Environ. Toxicol. Chem. 2013;32:2449–2459. doi: 10.1002/etc.2351. PubMed DOI