Monitoring Pharmaceuticals and Personal Care Products in Healthcare Effluent Wastewater Samples and the Effectiveness of Drug Removal in Wastewater Treatment Plants Using the UHPLC-MS/MS Method
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5101
NPO Systemic Risk Institute
SVV
Grant Agency of Charles University
PubMed
38611760
PubMed Central
PMC11013191
DOI
10.3390/molecules29071480
PII: molecules29071480
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, UHPLC-MS/MS, direct injection, healthcare facilities, personal healthcare products, pharmaceuticals, wastewater, wastewater treatment plants (WWTPs),
- MeSH
- jopamidol analogy a deriváty MeSH
- kofein MeSH
- kosmetické přípravky * MeSH
- léčivé přípravky MeSH
- lidé MeSH
- odpadní voda MeSH
- paracetamol * MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- iomeprol MeSH Prohlížeč
- jopamidol MeSH
- kofein MeSH
- kosmetické přípravky * MeSH
- léčivé přípravky MeSH
- odpadní voda MeSH
- paracetamol * MeSH
A multi-residue UHPLC-MS/MS analytical method, previously developed for monitoring 52 pharmaceuticals in drinking water, was used to analyse these pharmaceuticals in wastewater originating from healthcare facilities in the Czech Republic. Furthermore, the methodology was expanded to include the evaluation of the effectiveness of drug removal in Czech wastewater treatment plants (WWTPs). Of the 18 wastewater samples analysed by the validated UHPLC-MS/MS, each sample contained at least one quantifiable analyte. This study reveals the prevalence of several different drugs; mean concentrations of 702 μg L-1 of iomeprol, 48.8 μg L-1 of iopromide, 29.9 μg L-1 of gabapentin, 42.0 μg L-1 of caffeine and 82.5 μg L-1 of paracetamol were present. An analysis of 20 samples from ten WWTPs revealed different removal efficiencies for different analytes. Paracetamol was present in the inflow samples of all ten WWTPs and its removal efficiency was 100%. Analytes such as caffeine, ketoprofen, naproxen or atenolol showed high removal efficiencies exceeding 80%. On the other hand, pharmaceuticals like furosemide, metoprolol, iomeprol, zolpidem and tramadol showed lower removal efficiencies. Four pharmaceuticals exhibited higher concentrations in WWTP effluents than in the influents, resulting in negative removal efficiencies: warfarin at -9.5%, indomethacin at -53%, trimethoprim at -54% and metronidazole at -110%. These comprehensive findings contribute valuable insights to the pharmaceutical landscape of wastewater from healthcare facilities and the varied removal efficiencies of Czech WWTPs, which together with the already published literature, gives a more complete picture of the burden on the aquatic environment.
Zobrazit více v PubMed
Nandi A., Pecetta S., Bloom D.E. Global Antibiotic Use during the COVID-19 Pandemic: Analysis of Pharmaceutical Sales Data from 71 Countries, 2020–2022. EClinicalMedicine. 2023;57:101848. doi: 10.1016/j.eclinm.2023.101848. PubMed DOI PMC
Quireyns M., Boogaerts T., Van Wichelen N., Pussig B., De Loof H., Covaci A., Van Nuijs A. Temporal Monitoring of Pharmaceutical Consumption Using a Wastewater-Based Epidemiologic Approach. Toxicol. Anal. Clin. 2022;34:S72. doi: 10.1016/j.toxac.2022.06.099. DOI
González-González R.B., Sharma P., Singh S.P., Américo-Pinheiro J.H.P., Parra-Saldívar R., Bilal M., Iqbal H.M.N. Persistence, Environmental Hazards, and Mitigation of Pharmaceutically Active Residual Contaminants from Water Matrices. Sci. Total Environ. 2022;821:153329. doi: 10.1016/j.scitotenv.2022.153329. PubMed DOI
Brown A.K., Wong C.S. Distribution and Fate of Pharmaceuticals and Their Metabolite Conjugates in a Municipal Wastewater Treatment Plant. Water Res. 2018;144:774–783. doi: 10.1016/j.watres.2018.08.034. PubMed DOI
Silva B., Costa F., Neves I.C., Tavares T. Psychiatric Pharmaceuticals as Emerging Contaminants in Wastewater. Springer; Berlin/Heidelberg, Germany: 2015.
Tran N.H., Reinhard M., Gin K.Y.H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions-a Review. Water Res. 2018;133:182–207. doi: 10.1016/j.watres.2017.12.029. PubMed DOI
Ojemaye C.Y., Petrik L. Occurrences, Levels and Risk Assessment Studies of Emerging Pollutants (Pharmaceuticals, Perfluoroalkyl and Endocrine Disrupting Compounds) in Fish Samples from Kalk Bay Harbour, South Africa. Environ. Pollut. 2019;252:562–572. doi: 10.1016/j.envpol.2019.05.091. PubMed DOI
Charuaud L., Jardé E., Jaffrézic A., Liotaud M., Goyat Q., Mercier F., Le Bot B. Veterinary Pharmaceutical Residues in Water Resources and Tap Water in an Intensive Husbandry Area in France. Sci. Total Environ. 2019;664:605–615. doi: 10.1016/j.scitotenv.2019.01.303. PubMed DOI
Bielen A., Šimatović A., Kosić-Vukšić J., Senta I., Ahel M., Babić S., Jurina T., González Plaza J.J., Milaković M., Udiković-Kolić N. Negative Environmental Impacts of Antibiotic-Contaminated Effluents from Pharmaceutical Industries. Water Res. 2017;126:79–87. doi: 10.1016/j.watres.2017.09.019. PubMed DOI
Williams-Nguyen J., Sallach J.B., Bartelt-Hunt S., Boxall A.B., Durso L.M., McLain J.E., Singer R.S., Snow D.D., Zilles J.L. Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science. J. Environ. Qual. 2016;45:394–406. doi: 10.2134/jeq2015.07.0336. PubMed DOI
Bilal M., Mehmood S., Rasheed T., Iqbal H.M.N. Antibiotics Traces in the Aquatic Environment: Persistence and Adverse Environmental Impact. Curr. Opin. Environ. Sci. Health. 2020;13:68–74. doi: 10.1016/j.coesh.2019.11.005. DOI
Cui J., Fu L., Tang B., Bin L., Li P., Huang S., Fu F. Occurrence, Ecotoxicological Risks of Sulfonamides and Their Acetylated Metabolites in the Typical Wastewater Treatment Plants and Receiving Rivers at the Pearl River Delta. Sci. Total Environ. 2020;709:136192. doi: 10.1016/j.scitotenv.2019.136192. PubMed DOI
Yuan S.F., Liu Z.H., Yin H., Dang Z., Wu P.X., Zhu N.W., Lin Z. Trace Determination of Sulfonamide Antibiotics and Their Acetylated Metabolites via SPE-LC-MS/MS in Wastewater and Insights from Their Occurrence in a Municipal Wastewater Treatment Plant. Sci. Total Environ. 2019;653:815–821. doi: 10.1016/j.scitotenv.2018.10.417. PubMed DOI
Campos-Mañas M.C., Plaza-Bolaños P., Sánchez-Pérez J.A., Malato S., Agüera A. Fast Determination of Pesticides and Other Contaminants of Emerging Concern in Treated Wastewater Using Direct Injection Coupled to Highly Sensitive Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2017;1507:84–94. doi: 10.1016/j.chroma.2017.05.053. PubMed DOI
Bade R., Rousis N.I., Bijlsma L., Gracia-Lor E., Castiglioni S., Sancho J.V., Hernandez F. Screening of Pharmaceuticals and Illicit Drugs in Wastewater and Surface Waters of Spain and Italy by High Resolution Mass Spectrometry Using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS. Anal. Bioanal. Chem. 2015;407:8979–8988. doi: 10.1007/s00216-015-9063-x. PubMed DOI
Ferrer-Aguirre A., Romero-González R., Vidal J.L.M., Frenich A.G. Simple and Quick Determination of Analgesics and Other Contaminants of Emerging Concern in Environmental Waters by On-Line Solid Phase Extraction Coupled to Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A. 2016;1446:27–33. doi: 10.1016/j.chroma.2016.04.009. PubMed DOI
Afonso-Olivares C., Sosa-Ferrera Z., Santana-Rodríguez J.J. Occurrence and Environmental Impact of Pharmaceutical Residues from Conventional and Natural Wastewater Treatment Plants in Gran Canaria (Spain) Sci. Total Environ. 2017;599–600:934–943. doi: 10.1016/j.scitotenv.2017.05.058. PubMed DOI
Gómez-Canela C., Sala-Comorera T., Pueyo V., Barata C., Lacorte S. Analysis of 44 Pharmaceuticals Consumed by Elderly Using Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2019;168:55–63. doi: 10.1016/j.jpba.2019.02.016. PubMed DOI
Patrolecco L., Capri S., Ademollo N. Occurrence of Selected Pharmaceuticals in the Principal Sewage Treatment Plants in Rome (Italy) and in the Receiving Surface Waters. Environ. Sci. Pollut. Res. 2015;22:5864–5876. doi: 10.1007/s11356-014-3765-z. PubMed DOI
Petrie B., Youdan J., Barden R., Kasprzyk-Hordern B. Multi-Residue Analysis of 90 Emerging Contaminants in Liquid and Solid Environmental Matrices by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A. 2016;1431:64–78. doi: 10.1016/j.chroma.2015.12.036. PubMed DOI
Miller T.H., McEneff G.L., Brown R.J., Owen S.F., Bury N.R., Barron L.P. Pharmaceuticals in the Freshwater Invertebrate, Gammarus Pulex, Determined Using Pulverised Liquid Extraction, Solid Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Sci. Total Environ. 2015;511:153–160. doi: 10.1016/j.scitotenv.2014.12.034. PubMed DOI
Pugajeva I., Rusko J., Perkons I., Lundanes E., Bartkevics V. Determination of Pharmaceutical Residues in Wastewater Using High Performance Liquid Chromatography Coupled to Quadrupole-Orbitrap Mass Spectrometry. J. Pharm. Biomed. Anal. 2017;133:64–74. doi: 10.1016/j.jpba.2016.11.008. PubMed DOI
Baz-Lomba J.A., Reid M.J., Thomas K.V. Target and Suspect Screening of Psychoactive Substances in Sewage-Based Samples by UHPLC-QTOF. Anal. Chim. Acta. 2016;914:81–90. doi: 10.1016/j.aca.2016.01.056. PubMed DOI
Gwenzi W., Kanda A., Danha C., Muisa-Zikali N., Chaukura N. Applied Water Science Volume 1: Fundamentals and Applications. Wiley Online Library; Hoboken, NJ, USA: 2023. Occurrence, Human Health Risks, and Removal of Pharmaceuticals in Aqueous Systems: Current Knowledge and Future Perspectives; pp. 63–101. DOI
Gosset A., Wiest L., Fildier A., Libert C., Giroud B., Hammada M., Hervé M., Sibeud E., Vulliet E., Polomé P., et al. Ecotoxicological Risk Assessment of Contaminants of Emerging Concern Identified by “Suspect Screening” from Urban Wastewater Treatment Plant Effluents at a Territorial Scale. Sci. Total Environ. 2021;778:146275. doi: 10.1016/j.scitotenv.2021.146275. PubMed DOI
Akerman-Sanchez G., Rojas-Jimenez K. Fungi for the Bioremediation of Pharmaceutical-Derived Pollutants: A Bioengineering Approach to Water Treatment. Environ. Adv. 2021;4:100071. doi: 10.1016/j.envadv.2021.100071. DOI
Naghdi M., Taheran M., Brar S.K., Kermanshahi-pour A., Verma M., Surampalli R.Y. Removal of Pharmaceutical Compounds in Water and Wastewater Using Fungal Oxidoreductase Enzymes. Environ. Pollut. 2018;234:190–213. doi: 10.1016/j.envpol.2017.11.060. PubMed DOI
Farhadi S., Aminzadeh B., Torabian A., Khatibikamal V., Alizadeh Fard M. Comparison of COD Removal from Pharmaceutical Wastewater by Electrocoagulation, Photoelectrocoagulation, Peroxi-Electrocoagulation and Peroxi-Photoelectrocoagulation Processes. J. Hazard. Mater. 2012;219–220:35–42. doi: 10.1016/j.jhazmat.2012.03.013. PubMed DOI
Ensano B.M.B., Borea L., Naddeo V., Belgiorno V., De Luna M.D.G., Ballesteros Jr F.C. Removal of Pharmaceuticals from Wastewater by Intermittent Electrocoagulation. Water. 2017;9:85. doi: 10.3390/w9020085. DOI
Inyang M., Flowers R., McAvoy D., Dickenson E. Biotransformation of Trace Organic Compounds by Activated Sludge from a Biological Nutrient Removal Treatment System. Bioresour. Technol. 2016;216:778–784. doi: 10.1016/j.biortech.2016.05.124. PubMed DOI
Pandis P.K., Kalogirou C., Kanellou E., Vaitsis C., Savvidou M.G., Sourkouni G., Zorpas A.A., Argirusis C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering. 2022;6:8. doi: 10.3390/chemengineering6010008. DOI
Rosińska A. The Influence of UV Irradiation on PAHs in Wastewater. J. Environ. Manag. 2021;293:112760. doi: 10.1016/j.jenvman.2021.112760. PubMed DOI
Mashuri S.I.S., Ibrahim M.L., Kasim M.F., Mastuli M.S., Rashid U., Abdullah A.H., Islam A., Asikin-Mijan N., Tan Y.H., Mansir N., et al. Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts. 2020;10:1260. doi: 10.3390/catal10111260. DOI
Wen H., Cheng D., Chen Y., Yue W., Zhang Z. Review on Ultrasonic Technology Enhanced Biological Treatment of Wastewater. Sci. Total Environ. 2024;925:171260. doi: 10.1016/j.scitotenv.2024.171260. PubMed DOI
Commission Implementing Decision (EU) 2022/1307 of 22July 2022 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council (Notified under Document C(2022) 5098) (Text with EEA Relevance), C/2022/5098. 2022. [(accessed on 20 March 2024)]. Available online: https://op.europa.eu/en/publication-detail/-/publication/3887fb7f-0c86-11ed-b11c-01aa75ed71a1/language-en.
Molnarova L., Halesova T., Vaclavikova M., Bosakova Z. Monitoring Pharmaceuticals and Personal Care Products in Drinking Water Samples by the LC-MS/MS Method to Estimate Their Potential Health Risk. Molecules. 2023;28:5899. doi: 10.3390/molecules28155899. PubMed DOI PMC
Vaudreuil M.A., Vo Duy S., Munoz G., Sauvé S. Pharmaceutical Pollution of Hospital Effluents and Municipal Wastewaters of Eastern Canada. Sci. Total Environ. 2022;846:157353. doi: 10.1016/j.scitotenv.2022.157353. PubMed DOI
Azuma T., Otomo K., Kunitou M., Shimizu M., Hosomaru K., Mikata S., Ishida M., Hisamatsu K., Yunoki A., Mino Y., et al. Environmental Fate of Pharmaceutical Compounds and Antimicrobial-Resistant Bacteria in Hospital Effluents, and Contributions to Pollutant Loads in the Surface Waters in Japan. Sci. Total Environ. 2019;657:476–484. doi: 10.1016/j.scitotenv.2018.11.433. PubMed DOI
Mayoudom E.V.T., Nguidjoe E., Mballa R.N., Tankoua O.F., Fokunang C., Anyakora C., Blackett K.N. Identification and Quantification of 19 Pharmaceutical Active Compounds and Metabolites in Hospital Wastewater in Cameroon Using LC/QQQ and LC/Q-TOF. Environ. Monit. Assess. 2018;190:723. doi: 10.1007/s10661-018-7097-1. PubMed DOI
Vymazal J., Dvořáková Březinová T., Koželuh M., Kule L. Occurrence and Removal of Pharmaceuticals in Four Full-Scale Constructed Wetlands in the Czech Republic—The First Year of Monitoring. Ecol. Eng. 2017;98:354–364. doi: 10.1016/j.ecoleng.2016.08.010. DOI
Mackuľak T., Medvecká E., Vojs Staňová A., Brandeburová P., Grabic R., Golovko O., Marton M., Bodík I., Medveďová A., Gál M., et al. Boron Doped Diamond Electrode—The Elimination of Psychoactive Drugs and Resistant Bacteria from Wastewater. Vacuum. 2020;171:108957. doi: 10.1016/j.vacuum.2019.108957. DOI
Tran N.H., Reinhard M., Khan E., Chen H., Nguyen V.T., Li Y., Goh S.G., Nguyen Q.B., Saeidi N., Gin K.Y.H. Emerging Contaminants in Wastewater, Stormwater Runoff, and Surface Water: Application as Chemical Markers for Diffuse Sources. Sci. Total Environ. 2019;676:252–267. doi: 10.1016/j.scitotenv.2019.04.160. PubMed DOI
Alharbi O.A., Jarvis E., Galani A., Thomaidis N.S., Nika M.C., Chapman D.V. Assessment of Selected Pharmaceuticals in Riyadh Wastewater Treatment Plants, Saudi Arabia: Mass Loadings, Seasonal Variations, Removal Efficiency and Environmental Risk. Sci. Total Environ. 2023;882:163284. doi: 10.1016/j.scitotenv.2023.163284. PubMed DOI
García L., Leyva-Díaz J.C., Díaz E., Ordóñez S. A Review of the Adsorption-Biological Hybrid Processes for the Abatement of Emerging Pollutants: Removal Efficiencies, Physicochemical Analysis, and Economic Evaluation. Sci. Total Environ. 2021;780:146554. doi: 10.1016/j.scitotenv.2021.146554. PubMed DOI
Rathi B.S., Kumar P.S., Show P.L. A Review on Effective Removal of Emerging Contaminants from Aquatic Systems: Current Trends and Scope for Further Research. J. Hazard. Mater. 2021;409:124413. doi: 10.1016/j.jhazmat.2020.124413. PubMed DOI
Wilkinson J., Hooda P.S., Barker J., Barton S., Swinden J. Occurrence, Fate and Transformation of Emerging Contaminants in Water: An Overarching Review of the Field. Environ. Pollut. 2017;231:954–970. doi: 10.1016/j.envpol.2017.08.032. PubMed DOI
aus der Beek T., Weber F., Bergmann A., Hickmann S., Ebert I., Hein A., Küster A. Pharmaceuticals in the Environment—Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016;35:823–835. doi: 10.1002/etc.3339. PubMed DOI