• This record comes from PubMed

The Influence of the Initial Treatment of Oak Wood on Increasing the Durability of Exterior Transparent Coating Systems

. 2023 Jul 30 ; 15 (15) : . [epub] 20230730

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

This study determined the impact of undertaking an initial treatment of oak wood by sealing its surface pores with epoxy resin, focusing on the durability of transparent coating systems when exposed outdoors. Throughout the exposure period, various parameters including color, gloss, surface wettability, and both macroscopic and microscopic surface evaluation were continuously monitored. The study involved two sets of samples: one set underwent the pretreatment, while the other did not. Subsequently, four coating systems were applied to the samples, comprising two solvent-based and two water-based coatings. The experiment was conducted over a period of two years, utilizing natural weathering methods within the premises of the Czech University of Life Sciences in Prague. The pretreatment with epoxy resin exhibited enhanced durability for all paint systems. The analysis showed a significant difference in gloss and color after 12 months of weathering exposure without any significant effect on surface wettability and sealing. However, after 24 months of the weathering exposure, no significant differences between the sealed and unsealed surface were observed. The most significant change in properties was noted for the water-based coatings used in coating systems number 3 and 4, and these coatings were rated as the best.

See more in PubMed

Požgaj A., Chovanec D., Kurjatko S., Babiak M. Štruktúra a Vlastnosti Dreva. 1st ed. Príroda; Bratislava, Slovakia: 1993. p. 485.

Čabalová I., Výbohová E., Igaz R., Kristak L., Kačík F., Antov P., Papadopoulos A.N. Effect of oxidizing thermal modification on the chemical properties and thermal conductivity of Norway spruce (Picea abies L.) wood. Wood Mater. Sci. Eng. 2022;17:366–375. doi: 10.1080/17480272.2021.2014566. DOI

Nutsch W. Příručka pro Truhláře. 2nd ed. Europa-Sobotáles; Praha, Czech Republic: 2006.

Rowell R.M. Handbook of Wood Chemistry and Wood Composites. 2nd ed. CRC Press; Boca Raton, FL, USA: 2013.

Wagenführ R. Holzatlas. 6th ed. Fachbuchverlag; Leipzig, Germany: 2007. p. 816.

Dawson B.S.W., Singh A.P., Kroese H.W., Schwitzer M.A., Gallagher S., Riddiough S.J., Wu S. Enhancing exterior performance of clear coatings through photostabilization of wood. Part 2: Coating and weathering performance. J. Coat. Technol. Res. 2008;5:207–219. doi: 10.1007/s11998-008-9090-z. DOI

Pánek M., Dvořák O., Oberhofnerová E., Šimůnková K., Zeidler A. Effectiveness of Two Different Hydrophobic Topcoats for Increasing of Durability of Exterior Coating Systems on Oak Wood. Coatings. 2019;9:280. doi: 10.3390/coatings9050280. DOI

Pánek M., Oberhofnerová E., Hýsek Š., Šedivka P., Zeidler A. Colour Stabilization of Oak, Spruce, Larch and Douglas Fir Heartwood Treated with Mixtures of Nanoparticle Dispersions and UV-Stabilizers after Exposure to UV and VIS-Radiation. Materials. 2018;11:1653. doi: 10.3390/ma11091653. PubMed DOI PMC

Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Material. European Committee for Standardization; Brussels, Belgium: 2019.

Kubovský I., Oberhofnerová E., Kačík F., Pánek M. Surface Changes of Selected Hardwoods Due to Weather Conditions. Forests. 2018;9:557. doi: 10.3390/f9090557. DOI

Kropat M., Hubbe M.A., Laleicke F. Natural, accelerated, and simulated weathering of wood: A Review. Bioresources. 2020;15:9998–10062. doi: 10.15376/biores.15.4.Kropat. DOI

Sivrikaya H., Tesařová D., Jeřábková E., Can A. Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. J. Build. Eng. 2019;26:100918. doi: 10.1016/j.jobe.2019.100918. DOI

de Meijer M. Review on the durability of exterior wood coatings with reduced VOC-content. Prog. Org. Coat. 2001;43:217–225. doi: 10.1016/S0300-9440(01)00170-9. DOI

Evans P.D., Haase J.G., Seman A.S.B., Kiguchi M. The Search for Durable Exterior Clear Coatings for Wood. Coatings. 2015;5:830–864. doi: 10.3390/coatings5040830. DOI

Zeidler A., Borůvka V., Černý J., Baláš M. Douglas-fir outperforms most commercial European softwoods. Ind. Crop. Prod. 2022;181:114828. doi: 10.1016/j.indcrop.2022.114828. DOI

Bockel S., Mayer I., Konnerth J., Harling S., Niemz P., Swaboda C., Beyer M., Bieri N., Weiland G., Pichelin F. The role of wood extractives in structural hardwood bonding and their influence on different adhesive systems. Int. J. Adhes. Adhes. 2019;91:43–53. doi: 10.1016/j.ijadhadh.2019.03.001. DOI

Tondi G., Schnabel T., Wieland S., Petutschnigg A. Surface properties of tannin treated wood during natural and artificial weathering. Int. Wood Prod. J. 2013;4:150–157. doi: 10.1179/2042645313Y.0000000047. DOI

Tomak E.D., Gonultas O. The Wood Preservative Potentials of Valonia, Chestnut, Tara and Sulphited Oak Tannins. J. Wood Chem. Technol. 2018;38:183–197. doi: 10.1080/02773813.2017.1418379. DOI

Sjökvist T. Doctoral Dissertation. Linnaeus University Press; Växjö, Sweden: 2019. Coated Norway Spruce: Influence of Wood Characteristics on Water Sorption and Coating Durability.

Sandberg D. Environmental Impacts of Traditional and Innovative Forest-Based Bioproducts. Springer; Singapore: 2016. Additives in wood products—Today and future development; pp. 105–172. DOI

Reinprecht L., Tiňo R., Šomšák M. The Impact of Fungicides, Plasma, UV-Additives and Weathering on the Adhesion Strength of Acrylic and Alkyd Coatings to the Norway Spruce Wood. Coatings. 2020;10:1111. doi: 10.3390/coatings10111111. DOI

Rao F., Zhang Y., Bao M., Zhang Z., Bao Y., Li N., Chen Y., Yu W. Photostabilizing Efficiency of Acrylic-based Bamboo Exterior Coatings Combining Benzotriazole and Zinc Oxide Nanoparticles. Coatings. 2019;9:533. doi: 10.3390/coatings9090533. DOI

Hýsek Š., Żółtowska S. Novel Lignin–Beeswax adhesive for production of composites from beech and spruce particles. J. Clean. Prod. 2022;362:132460. doi: 10.1016/j.jclepro.2022.132460. DOI

Hýsek Š., Fidan H., Pánek M., Böhm M., Trgala K. Water permeability of exterior wood coatings: Waterborne acrylate dispersions for windows. J. Green Build. 2018;13:1–16. doi: 10.3992/1943-4618.13.3.1. DOI

Pánek M., Reinprecht L. Colour stability and surface defects of naturally aged wood treated with transparent paints for exterior constructions. Wood Res. 2014;59:421–430.

Nikafshar S., McCracken J., Dunne K., Nejad M. Improving UV-Stability of epoxy coating using encapsulated halloysite nanotubes with organic UV-Stabilizers and lignin. Prog. Org. Coat. 2021;151:105843. doi: 10.1016/j.porgcoat.2020.105843. DOI

Liu R., Zhu H., Li K., Yang Z. Comparison on the Aging of Woods Exposed to Natural Sunlight and Artificial Xenon Light. Polymers. 2019;11:709. doi: 10.3390/polym11040709. PubMed DOI PMC

Kržišnik D., Lesar B., Thaler N., Humar M. Influence of Natural and Artificial Weathering on the Colour Change of Different Wood and Wood-Based Materials. Forests. 2018;9:488. doi: 10.3390/f9080488. DOI

Cogulet A., Blanchet P., Landry V. The Multifactorial Aspect of Wood Weathering: A Review Based on a Holistic Approach of wood Degradation Protected by Clear Coating. BioResources. 2018;13:2116–2138. doi: 10.15376/biores.13.1.Cogulet. DOI

Hanifah N.P., Martha R., Rahayu I.S., Darmawan W., George B., Gérardin P. Surface characterization and paint bonding quality on chemically and thermally modified short rotation teak wood. Int. Wood Prod. J. 2022;14:13–20. doi: 10.1080/20426445.2022.2138908. DOI

Jankowska A., Zbiec M., Kozakiewicz P., Koczan G., Olenska S., Beer P. The wettability and surface free energy of sawn, sliced and sanded European oak wood. Maderas. Ciencia y Tecnología. 2018;20:443–454. doi: 10.4067/S0718-221X2018005031401. DOI

Reinprecht L., Mamoňová M., Pánek M., Kačík F. The impact of natural and artificial weathering on the visual, colour and structural changes of seven tropical woods. Eur. J. Wood Wood Prod. 2018;76:175–190. doi: 10.1007/s00107-017-1228-1. DOI

Šimůnková K., Hýsek Š., Reinprecht L., Šobotník J., Lišková T., Pánek M. Lavender oil as eco-friendly alternative to protect wood against termites without negative effect on wood properties. Sci. Rep. 2022;12:1909. doi: 10.1038/s41598-022-05959-5. PubMed DOI PMC

Marais B.N., Brischke C., Militz H. Wood durability in terrestrial and aquatic environments–A review of biotic and abiotic influence factors. Wood Mater. Sci. Eng. 2022;17:82–105. doi: 10.1080/17480272.2020.1779810. DOI

Ugovšek A., Šubic B., Starman J., Rep G., Humar M., Lesar B., Thaler N., Brischke C., Meyer-Veltrup L., Jones D., et al. Short-term performance of wooden windows and facade elements made of thermally modified and non-modified Norway spruce in different natural environments. Wood Mater. Sci. Eng. 2019;14:42–47. doi: 10.1080/17480272.2018.1494627. DOI

Žigon J., Pavlič M., Kibleur P., Van Den Bulcke J., Petrič M., Van Acker J., Dahle S. Treatment of wood with atmospheric plasma discharge: Study of the treatment process, dynamic wettability and interactions with a waterborne coating. Holzforschung. 2020;75:603–613. doi: 10.1515/hf-2020-0182. DOI

Kúdela J., Sikora A., Gondáš L. Wood Surface Finishing with Transparent Lacquers Intended for Indoor Use, and the Colour Resistance of These Surfaces during Accelerated Aging. Polymers. 2023;15:747. doi: 10.3390/polym15030747. PubMed DOI PMC

Wang T., Li L., Cao Y., Wang Q., Guo C. Preparation and flame retardancy of castor oil based UV-cured flame retardant coating containing P/Si/S on wood surface. Ind. Crop. Prod. 2019;130:562–570. doi: 10.1016/j.indcrop.2019.01.017. DOI

Żółtowska S., Mitterpach J., Šedivka P., Jeroušek L., Pánek M. Outdoor efficacy of additional hydrophobic treatment of weathered wood by siloxane. Constr. Build. Mater. 2022;360:129134. doi: 10.1016/j.conbuildmat.2022.129134. DOI

Meteorologic Data 3.3.2023 Dostupná z. [(accessed on 18 April 2023)]. Available online: http://meteostanice.agrobiologie.cz.

Tolvaj L., Faix O. Artificial Ageing of Wood Monitored by DRIFT Spectroscopy and CIE L*a*b* Color Measurements. 1. Effect of UV Light. Holzforschung. 1995;49:397–404. doi: 10.1515/hfsg.1995.49.5.397. DOI

Paints and Varnishes. Coating Materials and Coating Systems for Exterior Wood. Part 3: Natural Weathering Test. European Committee for Standardization; Brussels, Belgium: 2019.

Paints and Varnishes. Determination of Gloss Value at 20 Degrees, 60 Degrees and 85 Degrees. European Committee for Standardization; Brussels, Belgium: 2014.

Bertolin C., de Ferri L., Strojecki M. Application of the Guggenheim, Anderson, de Boer (GAB) equation to sealing treatments on pine wood. Procedia Struct. Integr. 2020;26:147–154. doi: 10.1016/j.prostr.2020.06.018. DOI

Seo K., Kim M. Surface Energy. InTechOpen; London, UK: 2015. Re-derivation of young’s equation, Wenzel equation, and Cassie-Baxter equation based on energy minimization. DOI

Li Y.-G., Bao H., Deng W., Li Y. Iron-Catalyzed Carboiodination of Alkynes. Synthesis. 2018;50:2974–2980. doi: 10.1055/s-0037-1609448. DOI

Pavlič M., Petrič M., Žigon J. Interactions of Coating and Wood Flooring Surface System Properties. Coatings. 2021;11:91. doi: 10.3390/coatings11010091. DOI

Oberhofnerová E., Šimůnková K., Dvořák O., Štěrbová I., Hiziroglu S., Šedivka P., Pánek M. Comparison of Exterior Coatings Applied to Oak Wood as a Function of Natural and Artificial Weathering Exposure. Coatings. 2019;9:864. doi: 10.3390/coatings9120864. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...