The Influence of the Initial Treatment of Oak Wood on Increasing the Durability of Exterior Transparent Coating Systems
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37571145
PubMed Central
PMC10422248
DOI
10.3390/polym15153251
PII: polym15153251
Knihovny.cz E-resources
- Keywords
- durability, exterior, oak wood, pretreatments, transparent coatings,
- Publication type
- Journal Article MeSH
This study determined the impact of undertaking an initial treatment of oak wood by sealing its surface pores with epoxy resin, focusing on the durability of transparent coating systems when exposed outdoors. Throughout the exposure period, various parameters including color, gloss, surface wettability, and both macroscopic and microscopic surface evaluation were continuously monitored. The study involved two sets of samples: one set underwent the pretreatment, while the other did not. Subsequently, four coating systems were applied to the samples, comprising two solvent-based and two water-based coatings. The experiment was conducted over a period of two years, utilizing natural weathering methods within the premises of the Czech University of Life Sciences in Prague. The pretreatment with epoxy resin exhibited enhanced durability for all paint systems. The analysis showed a significant difference in gloss and color after 12 months of weathering exposure without any significant effect on surface wettability and sealing. However, after 24 months of the weathering exposure, no significant differences between the sealed and unsealed surface were observed. The most significant change in properties was noted for the water-based coatings used in coating systems number 3 and 4, and these coatings were rated as the best.
See more in PubMed
Požgaj A., Chovanec D., Kurjatko S., Babiak M. Štruktúra a Vlastnosti Dreva. 1st ed. Príroda; Bratislava, Slovakia: 1993. p. 485.
Čabalová I., Výbohová E., Igaz R., Kristak L., Kačík F., Antov P., Papadopoulos A.N. Effect of oxidizing thermal modification on the chemical properties and thermal conductivity of Norway spruce (Picea abies L.) wood. Wood Mater. Sci. Eng. 2022;17:366–375. doi: 10.1080/17480272.2021.2014566. DOI
Nutsch W. Příručka pro Truhláře. 2nd ed. Europa-Sobotáles; Praha, Czech Republic: 2006.
Rowell R.M. Handbook of Wood Chemistry and Wood Composites. 2nd ed. CRC Press; Boca Raton, FL, USA: 2013.
Wagenführ R. Holzatlas. 6th ed. Fachbuchverlag; Leipzig, Germany: 2007. p. 816.
Dawson B.S.W., Singh A.P., Kroese H.W., Schwitzer M.A., Gallagher S., Riddiough S.J., Wu S. Enhancing exterior performance of clear coatings through photostabilization of wood. Part 2: Coating and weathering performance. J. Coat. Technol. Res. 2008;5:207–219. doi: 10.1007/s11998-008-9090-z. DOI
Pánek M., Dvořák O., Oberhofnerová E., Šimůnková K., Zeidler A. Effectiveness of Two Different Hydrophobic Topcoats for Increasing of Durability of Exterior Coating Systems on Oak Wood. Coatings. 2019;9:280. doi: 10.3390/coatings9050280. DOI
Pánek M., Oberhofnerová E., Hýsek Š., Šedivka P., Zeidler A. Colour Stabilization of Oak, Spruce, Larch and Douglas Fir Heartwood Treated with Mixtures of Nanoparticle Dispersions and UV-Stabilizers after Exposure to UV and VIS-Radiation. Materials. 2018;11:1653. doi: 10.3390/ma11091653. PubMed DOI PMC
Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Material. European Committee for Standardization; Brussels, Belgium: 2019.
Kubovský I., Oberhofnerová E., Kačík F., Pánek M. Surface Changes of Selected Hardwoods Due to Weather Conditions. Forests. 2018;9:557. doi: 10.3390/f9090557. DOI
Kropat M., Hubbe M.A., Laleicke F. Natural, accelerated, and simulated weathering of wood: A Review. Bioresources. 2020;15:9998–10062. doi: 10.15376/biores.15.4.Kropat. DOI
Sivrikaya H., Tesařová D., Jeřábková E., Can A. Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. J. Build. Eng. 2019;26:100918. doi: 10.1016/j.jobe.2019.100918. DOI
de Meijer M. Review on the durability of exterior wood coatings with reduced VOC-content. Prog. Org. Coat. 2001;43:217–225. doi: 10.1016/S0300-9440(01)00170-9. DOI
Evans P.D., Haase J.G., Seman A.S.B., Kiguchi M. The Search for Durable Exterior Clear Coatings for Wood. Coatings. 2015;5:830–864. doi: 10.3390/coatings5040830. DOI
Zeidler A., Borůvka V., Černý J., Baláš M. Douglas-fir outperforms most commercial European softwoods. Ind. Crop. Prod. 2022;181:114828. doi: 10.1016/j.indcrop.2022.114828. DOI
Bockel S., Mayer I., Konnerth J., Harling S., Niemz P., Swaboda C., Beyer M., Bieri N., Weiland G., Pichelin F. The role of wood extractives in structural hardwood bonding and their influence on different adhesive systems. Int. J. Adhes. Adhes. 2019;91:43–53. doi: 10.1016/j.ijadhadh.2019.03.001. DOI
Tondi G., Schnabel T., Wieland S., Petutschnigg A. Surface properties of tannin treated wood during natural and artificial weathering. Int. Wood Prod. J. 2013;4:150–157. doi: 10.1179/2042645313Y.0000000047. DOI
Tomak E.D., Gonultas O. The Wood Preservative Potentials of Valonia, Chestnut, Tara and Sulphited Oak Tannins. J. Wood Chem. Technol. 2018;38:183–197. doi: 10.1080/02773813.2017.1418379. DOI
Sjökvist T. Doctoral Dissertation. Linnaeus University Press; Växjö, Sweden: 2019. Coated Norway Spruce: Influence of Wood Characteristics on Water Sorption and Coating Durability.
Sandberg D. Environmental Impacts of Traditional and Innovative Forest-Based Bioproducts. Springer; Singapore: 2016. Additives in wood products—Today and future development; pp. 105–172. DOI
Reinprecht L., Tiňo R., Šomšák M. The Impact of Fungicides, Plasma, UV-Additives and Weathering on the Adhesion Strength of Acrylic and Alkyd Coatings to the Norway Spruce Wood. Coatings. 2020;10:1111. doi: 10.3390/coatings10111111. DOI
Rao F., Zhang Y., Bao M., Zhang Z., Bao Y., Li N., Chen Y., Yu W. Photostabilizing Efficiency of Acrylic-based Bamboo Exterior Coatings Combining Benzotriazole and Zinc Oxide Nanoparticles. Coatings. 2019;9:533. doi: 10.3390/coatings9090533. DOI
Hýsek Š., Żółtowska S. Novel Lignin–Beeswax adhesive for production of composites from beech and spruce particles. J. Clean. Prod. 2022;362:132460. doi: 10.1016/j.jclepro.2022.132460. DOI
Hýsek Š., Fidan H., Pánek M., Böhm M., Trgala K. Water permeability of exterior wood coatings: Waterborne acrylate dispersions for windows. J. Green Build. 2018;13:1–16. doi: 10.3992/1943-4618.13.3.1. DOI
Pánek M., Reinprecht L. Colour stability and surface defects of naturally aged wood treated with transparent paints for exterior constructions. Wood Res. 2014;59:421–430.
Nikafshar S., McCracken J., Dunne K., Nejad M. Improving UV-Stability of epoxy coating using encapsulated halloysite nanotubes with organic UV-Stabilizers and lignin. Prog. Org. Coat. 2021;151:105843. doi: 10.1016/j.porgcoat.2020.105843. DOI
Liu R., Zhu H., Li K., Yang Z. Comparison on the Aging of Woods Exposed to Natural Sunlight and Artificial Xenon Light. Polymers. 2019;11:709. doi: 10.3390/polym11040709. PubMed DOI PMC
Kržišnik D., Lesar B., Thaler N., Humar M. Influence of Natural and Artificial Weathering on the Colour Change of Different Wood and Wood-Based Materials. Forests. 2018;9:488. doi: 10.3390/f9080488. DOI
Cogulet A., Blanchet P., Landry V. The Multifactorial Aspect of Wood Weathering: A Review Based on a Holistic Approach of wood Degradation Protected by Clear Coating. BioResources. 2018;13:2116–2138. doi: 10.15376/biores.13.1.Cogulet. DOI
Hanifah N.P., Martha R., Rahayu I.S., Darmawan W., George B., Gérardin P. Surface characterization and paint bonding quality on chemically and thermally modified short rotation teak wood. Int. Wood Prod. J. 2022;14:13–20. doi: 10.1080/20426445.2022.2138908. DOI
Jankowska A., Zbiec M., Kozakiewicz P., Koczan G., Olenska S., Beer P. The wettability and surface free energy of sawn, sliced and sanded European oak wood. Maderas. Ciencia y Tecnología. 2018;20:443–454. doi: 10.4067/S0718-221X2018005031401. DOI
Reinprecht L., Mamoňová M., Pánek M., Kačík F. The impact of natural and artificial weathering on the visual, colour and structural changes of seven tropical woods. Eur. J. Wood Wood Prod. 2018;76:175–190. doi: 10.1007/s00107-017-1228-1. DOI
Šimůnková K., Hýsek Š., Reinprecht L., Šobotník J., Lišková T., Pánek M. Lavender oil as eco-friendly alternative to protect wood against termites without negative effect on wood properties. Sci. Rep. 2022;12:1909. doi: 10.1038/s41598-022-05959-5. PubMed DOI PMC
Marais B.N., Brischke C., Militz H. Wood durability in terrestrial and aquatic environments–A review of biotic and abiotic influence factors. Wood Mater. Sci. Eng. 2022;17:82–105. doi: 10.1080/17480272.2020.1779810. DOI
Ugovšek A., Šubic B., Starman J., Rep G., Humar M., Lesar B., Thaler N., Brischke C., Meyer-Veltrup L., Jones D., et al. Short-term performance of wooden windows and facade elements made of thermally modified and non-modified Norway spruce in different natural environments. Wood Mater. Sci. Eng. 2019;14:42–47. doi: 10.1080/17480272.2018.1494627. DOI
Žigon J., Pavlič M., Kibleur P., Van Den Bulcke J., Petrič M., Van Acker J., Dahle S. Treatment of wood with atmospheric plasma discharge: Study of the treatment process, dynamic wettability and interactions with a waterborne coating. Holzforschung. 2020;75:603–613. doi: 10.1515/hf-2020-0182. DOI
Kúdela J., Sikora A., Gondáš L. Wood Surface Finishing with Transparent Lacquers Intended for Indoor Use, and the Colour Resistance of These Surfaces during Accelerated Aging. Polymers. 2023;15:747. doi: 10.3390/polym15030747. PubMed DOI PMC
Wang T., Li L., Cao Y., Wang Q., Guo C. Preparation and flame retardancy of castor oil based UV-cured flame retardant coating containing P/Si/S on wood surface. Ind. Crop. Prod. 2019;130:562–570. doi: 10.1016/j.indcrop.2019.01.017. DOI
Żółtowska S., Mitterpach J., Šedivka P., Jeroušek L., Pánek M. Outdoor efficacy of additional hydrophobic treatment of weathered wood by siloxane. Constr. Build. Mater. 2022;360:129134. doi: 10.1016/j.conbuildmat.2022.129134. DOI
Meteorologic Data 3.3.2023 Dostupná z. [(accessed on 18 April 2023)]. Available online: http://meteostanice.agrobiologie.cz.
Tolvaj L., Faix O. Artificial Ageing of Wood Monitored by DRIFT Spectroscopy and CIE L*a*b* Color Measurements. 1. Effect of UV Light. Holzforschung. 1995;49:397–404. doi: 10.1515/hfsg.1995.49.5.397. DOI
Paints and Varnishes. Coating Materials and Coating Systems for Exterior Wood. Part 3: Natural Weathering Test. European Committee for Standardization; Brussels, Belgium: 2019.
Paints and Varnishes. Determination of Gloss Value at 20 Degrees, 60 Degrees and 85 Degrees. European Committee for Standardization; Brussels, Belgium: 2014.
Bertolin C., de Ferri L., Strojecki M. Application of the Guggenheim, Anderson, de Boer (GAB) equation to sealing treatments on pine wood. Procedia Struct. Integr. 2020;26:147–154. doi: 10.1016/j.prostr.2020.06.018. DOI
Seo K., Kim M. Surface Energy. InTechOpen; London, UK: 2015. Re-derivation of young’s equation, Wenzel equation, and Cassie-Baxter equation based on energy minimization. DOI
Li Y.-G., Bao H., Deng W., Li Y. Iron-Catalyzed Carboiodination of Alkynes. Synthesis. 2018;50:2974–2980. doi: 10.1055/s-0037-1609448. DOI
Pavlič M., Petrič M., Žigon J. Interactions of Coating and Wood Flooring Surface System Properties. Coatings. 2021;11:91. doi: 10.3390/coatings11010091. DOI
Oberhofnerová E., Šimůnková K., Dvořák O., Štěrbová I., Hiziroglu S., Šedivka P., Pánek M. Comparison of Exterior Coatings Applied to Oak Wood as a Function of Natural and Artificial Weathering Exposure. Coatings. 2019;9:864. doi: 10.3390/coatings9120864. DOI