Lavender oil as eco-friendly alternative to protect wood against termites without negative effect on wood properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35115635
PubMed Central
PMC8813917
DOI
10.1038/s41598-022-05959-5
PII: 10.1038/s41598-022-05959-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Timber suffers from various biological damages. Recent efforts aim on nature-friendly sustainable technologies of wood protection to replace classical synthetic agents having usually negative impact on many non-target organisms including man. This research investigated the biocidal effectiveness of lavender oil (LO) in protecting the Norway spruce (Picea abies) wood against the termites Reticulitermes flavipes and the brown-rot fungus Rhodonia placenta. Following, selected physical characteristics of spruce wood treated with LO were evaluated: colour changes, roughness, surface wetting with water and surface free energy (SFE). Experiments showed that LO increased the resistance of spruce wood to termites nearly to the level of its treatment with commercial biocide based on trivalent boron and quaternary ammonium salt. The additional hydrophobic treatment of wood ensured its full termite-resistance even after artificial weathering in Xenotest and leaching in water according to EN 84, respectively. It shows a high potential of LO to protect wood against termites. Adversely, the effectiveness of 5% LO against rot was not sufficient. The colour of the oil-treated wood was preserved, its roughness increased slightly, and wetting and SFE led to a positive change, improving the adhesion of potentially applied coatings or adhesives for exterior exposures.
Zobrazit více v PubMed
Gérardin P. New alternatives for wood preservation based on thermal and chemical modification of wood—A review. Ann. For. Sci. 2016;73(3):559–570. doi: 10.1007/s13595-015-0531-4. DOI
Schultz TP, Nicholas DD, McIntyre CR. Recent patents and developments in biocidal wood protection systems for exterior applications. Recent Patents Mater. Sci. 2008;1(2):128–134. doi: 10.2174/1874464810801020128. DOI
Reinprecht, L. Fungicides for wood protection. World viewpoint and evaluation/testing in Slovakia. In Fungicides (ed Carisse, O.), 95–122. http://www.intechopen.com/books/fungicides (2010).
Gezer ED, Yildiz U, Yildiz S, Di E, Temiz A. Removal copper, chromium and arsenic from CCA-treated yellow pine by oleic acid. Build. Environ. 2006;41(3):380–385. doi: 10.1016/j.buildenv.2005.02.014. DOI
Habicht, J., Hantzschel, D. & Wittenzellner, J. Influence of different fixation and ageing procedure on the leaching behavior of copper from selected wood preservatives in laboratory trials (The International Research Group on Wood Preservation, IRG/WP, 03-20264, 2003).
Khan BI, Solo-Gabriele HM, Townsend TG, Cai Y. Release of arsenic to the environment from CCA-treated wood. 1. Leaching and speciation during service. Environ. Sci. Technol. 2006;40(3):988–993. doi: 10.1021/es0514702. PubMed DOI
Lebow, S. T. & Tippie, M. Guide for minimizing the effect of preservative-treated wood on sensitive environments. Gen. Tech. Rep. FPL-GTR-122 (US Department of Agriculture, Forest Service, Forest Products Laboratory, 2001). 10.2737/FPL-GTR-122
Yildiz UC, Temiz A, Gezer ED, Yildiz S. Effects of the wood preservatives on mechanical properties of yellow pine (Pinussylvestris L.) wood. Build. Environ. 2004;39(9):1071–1075. doi: 10.1016/j.buildenv.2004.01.032. DOI
Temiz A, Terziev N, Jacobsen B, Eikenes M. Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood. J. Appl. Polym. Sci. 2006;102(5):4506–4513. doi: 10.1002/app.24878. DOI
Temiz A, Alfredsen G, Yildiz UC, Gezer ED, Kose G, Akbas S, Yildiz S. Leaching and decay resistance of alder and pine wood treated with copper based wood preservatives. Maderas Ciencia y Tecnología. 2014;16(1):63–76.
Townsend T, Tolaymat T, Solo-Gabriele H, Dubey B, Stook K, Wadanambi L. Leaching of CCA-treated wood: Implications for waste disposal. J. Hazard. Mater. 2004;114(1–3):75–91. doi: 10.1016/j.jhazmat.2004.06.025. PubMed DOI
Łebkowska M, Załęska-Radziwiłł M, Rutkowska-Narożniak A, Kobiela S. Toxicity assessment of wood preservatives. Environ. Int. 2003;28(8):801–802. doi: 10.1016/S0160-4120(02)00113-7. PubMed DOI
Broda M, Mazela B, Frankowski M. Durability of wood treated with aatmos and caffeine-towards the long-term carbon storage. Maderas Ciencia y Tecnología. 2018;20(3):455–468. doi: 10.4067/S0718-221X2018005031501. DOI
Ratajczak I, Woźniak M, Kwaśniewska-Sip P, Szentner K, Cofta G, Mazela B. Chemical characterization of wood treated with a formulation based on propolis, caffeine and organosilanes. Eur. J. Wood Wood Prod. 2018;76(2):775–781. doi: 10.1007/s00107-017-1257-9. DOI
Pánek M, Šimůnková K, Novák D, Dvořák O, Schönfelder O, Šedivka P, Kobetičová K. Caffeine and TiO2 nanoparticles treatment of spruce and beech wood for increasing transparent coating resistance against UV-radiation and mould attacks. Coatings. 2020;10(12):1141. doi: 10.3390/coatings10121141. DOI
Šimůnková K, Reinprecht L, Nábělková J, Hýsek Š, Kindl J, Borůvka V, Pánek M. Caffeine—Perspective natural biocide for wood protection against decaying fungi and termites. J. Clean. Prod. 2021 doi: 10.1016/j.jclepro.2021.127110. DOI
Hill, C. A. S. Wood Modification—Chemical, Thermal and Other Processes (Wiley, 2006). ISBN 978-0-470-02172-9.
Baier, J., Peklík, V. & Týn, Z. Ochrana dreva v bytech, chatách a chalupách. Prague (1989).
Blanchette RA. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 2000;46(3):189–204. doi: 10.1016/S0964-8305(00)00077-9. DOI
Pattnaik S, Subramanyam VR, Kole C. Antibacterial and antifungal activity of ten essential oils in vitro. Microbios. 1996;86(349):237–246. PubMed
Reinprecht, L. Wood Deterioration, Protection, and Maintenance (Wiley, 2016). ISBN 978-1-119-10653-1.
Sandberg D. Environmental Impacts of Traditional and Innovative Forest-based Bioproducts. Springer; 2016. Additives in wood products—Today and future development; pp. 105–172.
Singh Arora D, Jeet Kaur G, Kaur H. Antibacterial activity of tea and coffee: Their extracts and preparations. Int. J. Food Prop. 2009;12(2):286–294. doi: 10.1080/10942910701675928. DOI
Hýsek Š, Fidan H, Pánek M, Böhm M, Trgala K. Water permeability of exterior wood coatings: Waterborne acrylate dispersions for windows. J. Green Build. 2018;13(3):1–16. doi: 10.3992/1943-4618.13.3.1. DOI
Gezici-Koç Ö, Erich SJ, Huinink HP, van der Ven LG, Adan OC. Understanding the influence of wood as a substrate on the permeability of coatings by NMR imaging and wet-cup. Prog. Org. Coat. 2018;114:135–144. doi: 10.1016/j.porgcoat.2017.10.013. DOI
Petty JA, Preston RD. Permeability and structure of the wood of Sitka spruce. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1970;175(1039):149–166. doi: 10.1098/rspb.1970.0016. DOI
Požgaj A, Chovanec D, Kurjatko S, Babiak M. Štruktúra a vlastnosti dreva. Alfa Bratislava; 1997.
Sonderegger W, Glaunsinger M, Mannes D, Volkmer T, Niemz P. Investigations into the influence of two different wood coatings on water diffusion determined by means of neutron imaging. Eur. J. Wood Wood Prod. 2015;73(6):793–799. doi: 10.1007/s00107-015-0951-8. DOI
Kržišnik D, Lesar B, Thaler N, Humar M. Performance of bark beetle damaged Norway spruce wood against water and fungal decay. BioResources. 2018;13(2):3473–3486. doi: 10.15376/biores.13.2.3473-3486. DOI
Lehringer, C. Permeability improvement of Norway spruce wood with the white rot fungus Physisporinus vitreus (2011).
Lehringer C, Richter K, Schwarze FW, Militz H. A review on promising approaches for liquid permeability improvement in softwoods. Wood Fiber Sci. 2009;41(4):373–385.
Yildiz S, Canakci S, Yildiz UC, Ozgenc O, Tomak ED. Improving of the impregnability of refractory spruce wood by Bacilluslicheniformis pretreatment. BioResources. 2012;7(1):0565–0577. doi: 10.15376/biores.7.1.565-577. DOI
Pánek M, Reinprecht L, Mamoňová M. Trichoderma viride for improving spruce wood impregnability. BioResources. 2013;8(2):1731–1746. doi: 10.15376/biores.8.2.1731-1746. DOI
EN 335:2013. Durability of wood and wood-based products—Use classes: Definitions, application to solid wood and wood-based products (European Committee for Standardization, Brussels).
Ulyshen MD, Šobotník J. Saproxylic Insects. Springer; 2018. An introduction to the diversity, ecology, and conservation of saproxylic insects; pp. 1–47.
Schmidt O. Wood and Tree Fungi. Springer; 2006.
Šefců, O., Pacáková, M. & Vinař, J. Metodika ochrany dřeva. Státní ústav památkové péče (2000).
Buczkowski G, Bertelsmeier C. Invasive termites in a changing climate: A global perspective. Ecol. Evol. 2017;7(3):974–985. doi: 10.1002/ece3.2674. PubMed DOI PMC
Holt, J. A. & Lepage, M. Termites and soil properties. Termites: Evolution, sociality, symbioses, ecology, 389–407 (2000).
Evans TA, Forschler BT, Grace JK. Biology of invasive termites: A worldwide review. Annu. Rev. Entomol. 2013 doi: 10.1146/annurev-ento-120811-153554. PubMed DOI
Su NY. Development of baits for population management of subterranean termites. Annu. Rev. Entomol. 2019;64:115–130. doi: 10.1146/annurev-ento-011118-112429. PubMed DOI
Donovan SE, Eggleton P, Dubbin WE, Batchelder M, Dibog L. The effect of a soil-feeding termite, Cubitermesfungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia. 2001;45(1):1–11. doi: 10.1078/0031-4056-00063. DOI
Bourguignon T, Šobotník JAN, Lepoint G, Martin JM, Hardy OJ, Dejean A, Roisin Y. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol. Entomol. 2011;36(2):261–269. doi: 10.1111/j.1365-2311.2011.01265.x. DOI
Su NY, La Fage JP. Differences in survival and feeding activity among colonies of the Formosan subterranean termite (Isoptera, Rhinotermitidae) Zeitsch. Angew. Entomol. 1984;97(1–5):134–138. doi: 10.1111/j.1439-0418.1984.tb03728.x. DOI
Chaudhari AK, Singh VK, Kedia A, Das S, Dubey NK. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insects pests; prospects and retrospects. Environ. Sci. Pollut. Res. 2021;28(15):18918–18940. doi: 10.1007/s11356-021-12841-w. PubMed DOI
Singh T, Singh AP. A review on natural products as wood protectant. Wood Sci. Technol. 2012;46:851–870. doi: 10.1007/s00226-011-0448-5. DOI
Vranová E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. Mol. Plant. 2012;5(2):318–333. doi: 10.1093/mp/sss015. PubMed DOI
Holley RA, Patel D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005;22(4):273–292. doi: 10.1016/j.fm.2004.08.006. DOI
Kalemba DAAK, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003;10(10):813–829. doi: 10.2174/0929867033457719. PubMed DOI
Pánek M, Reinprecht L, Hulla M. Ten essential oils for beech wood protection—Efficacy against wood-destroying fungi and moulds, and effect on wood discoloration. BioResources. 2014;9(3):5588–5603. doi: 10.15376/biores.9.3.5588-5603. DOI
Voda K, Boh B, Vrtačnik M, Pohleven F. Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametesversicolor and the brown-rot Coniophoraputeana. Int. Biodeterior. Biodegrad. 2003;51(1):51–59. doi: 10.1016/S0964-8305(02)00075-6. DOI
Bahmani M, Schmidt O. Plant essential oils for environment-friendly protection of wood objects against fungi. Maderas Ciencia y Tecnología. 2018;20(3):325–332. doi: 10.4067/S0718-221X2018005003301. DOI
Batish DR, Singh HP, Kohli RK, Kaur S. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manag. 2008;256(12):2166–2174. doi: 10.1016/j.foreco.2008.08.008. DOI
Xie Y, Wang Z, Huang Q, Zhang D. Antifungal activity of several essential oils and major components against wood-rot fungi. Ind. Crops Prod. 2017;108:278–285. doi: 10.1016/j.indcrop.2017.06.041. DOI
Koul O, Walia S, Dhaliwal GS. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008;4(1):63–84.
Lizarraga-Valderrama LR. Effects of essential oils on central nervous system: Focus on mental health. Phytother. Res. 2021;35(2):657–679. doi: 10.1002/ptr.6854. PubMed DOI
Pavela R, Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21(12):1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Erland LA, Mahmoud SS. Lavender (Lavandula angustifolia) oils. Essent. Oils Food Preserv. Flavor Saf. 2016 doi: 10.1016/B978-0-12-416641-7.00057-2. DOI
Cavanagh HTT, Wilkinson JT. Biological activities of lavender essential oil. Phytother. Res. 2002;16(4):301–308. doi: 10.1002/ptr.1103. PubMed DOI
Evandri MG, Battinelli L, Daniele C, Mastrangelo S, Bolle P, Mazzanti G. The antimutagenic activity of Lavandulaangustifolia (lavender) essential oil in the bacterial reverse mutation assay. Food Chem. Toxicol. 2005;43(9):1381–1387. doi: 10.1016/j.fct.2005.03.013. PubMed DOI
Field T, Diego M, Hernandez-Reif M, Cisneros W, Feijo L, Vera Y, et al. Lavender fragrance cleansing gel effects on relaxation. Int. J. Neurosci. 2005;115(2):207–222. doi: 10.1080/00207450590519175. PubMed DOI
Sabara D, Kunicka-Styczyńska A. Lavender oil—flavouring or active cosmetic ingredient. Sci. Bull. Tech. Univ. Lodz. 2009;78:33–41.
Wells R, Truong F, Adal AM, Sarker LS, Mahmoud SS. Lavandula essential oils: A current review of applications in medicinal, food, and cosmetic industries of lavender. Nat. Prod. Commun. 2018;13(10):1934578X1801301038. doi: 10.1177/1934578X1801301038. DOI
Woronuk G, Demissie Z, Rheault M, Mahmoud S. Biosynthesis and therapeutic properties of Lavandula essential oil constituents. Planta Med. 2011;77(01):7–15. doi: 10.1055/s-0030-1250136. PubMed DOI
Cassella S, Cassella JP, Smith I. Synergistic antifungal activity of tea tree (Melaleucaalternifolia) and lavender (Lavandulaangustifolia) essential oils against dermatophyte infection. Int. J. Aromather. 2002;12(1):2–15. doi: 10.1054/ijar.2001.0127. DOI
EN 113:1996. Wood preservatives—Test method for determining the protective effectiveness against wood destroying basidiomycetes. Determination of the toxic values (European Committee for Standardization, 1996).
EN 118:2013. Wood preservatives—Determination of preventive action against Reticulitermes species (European termites) (Laboratory method) (European Committee for Standardization, 2013).
EN 84:1997. Wood preservatives—Accelerated ageing of treated wood prior to biological testing—Leaching procedure (European Committee for Standardization, 1997).
EN 927-6:2018. Paints and Varnishes. Part 6: Exposure of Wood Coatings to Artificial Weathering Using Fluorescent UV Lamps and Water, In Coating Materials and Coating Systems for Exterior Wood (European Committee for Standardization, 2018).
Stearns, E. I. Colorimetry, 2nd edn (Commission Internationale de l’Eclairage, 1986).
Petrič M, Oven P. Determination of wettability of wood and its significance in wood science and technology: A critical review. Rev. Adhes. Adhes. 2015;3:121–187. doi: 10.7569/RAA.2015.097304. DOI
EN ISO 4287. Geometrical product specifications (GPS). Surface texture. Profile method. Terms, definitions and surface texture parameters (International Organization for Standardization, 1997).
EN ISO 4288. Geometrical product specifications (GPS). Surface texture. Profile method. Rules and procedures for the assessment of surface texture (International Organization for Standardization, 1996).
Kartal, S. N., Katsumata, N., Imamura, Y., Tsuchiya, F. & Ohsato, K. Preliminary evaluation of fungicidal and termiticidal activities of hydrolysates from biomass slurry fuel production from wood. In Proceedings of ICECFOP1–1 st International Conference on Environmentally-Compatible Forest Products (2004).
Kartal SN, Hwang WJ, Imamura Y, Sekine Y. Effect of essential oil compounds and plant extracts on decay and termite resistance of wood. Holz als Roh-und Werkstoff. 2006;64(6):455–461. doi: 10.1007/s00107-006-0098-8. DOI
Kang MG, Jee CH. Repellent effect of camomile and lavender essential oils against house dust mite in bed fabric. J. Biomed. Res. 2012;13(1):21–26. doi: 10.12729/jbr.2012.13.1.21. DOI
Ikeura H, Kobayashi F, Hayata Y. Repellent effect of herb extracts on the population of wingless green peach aphid, Myzuspersicae Sulzer (Hemiptera: Aphididae) J. Agric. Sci. 2012;4(5):139–144. doi: 10.5539/jas.v4n5p139. DOI
Sen S, Yalcin M. Activity of commercial still waters from volatile oils production against wood decay fungi. Maderas Ciencia y Tecnología. 2010;12(2):127–133. doi: 10.4067/S0718-221X2010000200007. DOI
Humar M, Lesar B. Efficacy of linseed and tung oil treated wood against wood-decaying fungi and water uptake. Int. Biodeterior. Biodegrad. 2013;85:223–227. doi: 10.1016/j.ibiod.2013.07.011. DOI
Schwarzkopf M, Burnard M, Tverezovskiy V, Andreas Treu A, Humar M, Kutnar A. Utilisation of chemically modified lampante oil for wood protection. Eur. J. Wood Wood Prod. 2018;76:1471–1482. doi: 10.1007/s00107-018-1336-6. DOI
Oltean L, Teischinger A, Hansmann C. Wood surface discolouration due to simulated indoor sunlight exposure. Holz als Roh-und Werkstoff. 2008;66(1):51. doi: 10.1007/s00107-007-0201-9. DOI
Pizzi, A., Mittal, K. L. Wood Adhesives Hardcover, 1st edn (CRC Press, 2011). ISBN 978-9004190931.
De Meijer, M. A review of interfacial aspects in wood coatings: Wetting, surface energy, substrate penetration and adhesion (COST E18 Final Seminar, 2005). https://www.researchgate.net/publication/260601859.
Evans PD, Cullis I, Kim JDW, Leung LH, Hazneza S, Heady RD. Microstructure and mechanism of grain raising in wood. Coatings. 2017;7:135. doi: 10.3390/coatings7090135. DOI
Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M. Antimicrobial activity of mint essential oils. J. Agric. Food Chem. 1995;43(9):2384–2388. doi: 10.1021/jf00057a013. DOI
Cook SM, Jönsson M, Skellern MP, Murray DA, Anderson P, Powell W. Responses of Phradisparasitoids to volatiles of lavender, Lavendulaangustifolia—A possible repellent for their host, Meligethes aeneus. Biocontrol. 2007;52(5):591–598. doi: 10.1007/s10526-006-9057-x. DOI
Jaenson TG, Garboui S, Pålsson K. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodesricinus (Acari: Ixodidae) in the laboratory and field. J. Med. Entomol. 2006;43(4):731–736. doi: 10.1093/jmedent/43.4.731. PubMed DOI