Transcription factor binding at Ig enhancers is linked to somatic hypermutation targeting
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
Ella and Georg Ehrnrooth Foundation - International
Jenny and Antti Wihuri Foundation - International
UL1 TR001863
NCATS NIH HHS - United States
Emil Aaltonen Foundation - International
15-24776S
Grantová Agentura České Republiky - International
Jane and Aatos Erkko Foundation - International
R01 GM037537
NIGMS NIH HHS - United States
Cancer Society of South-West Finland - International
R01 AI127642
NIAID NIH HHS - United States
Sigrid Juselius Foundation - International
PubMed
31821534
PubMed Central
PMC7202714
DOI
10.1002/eji.201948357
Knihovny.cz E-zdroje
- Klíčová slova
- AID, E2A, MEF2B, Ramos B cell line, Somatic hypermutation,
- MeSH
- geny pro imunoglobuliny MeSH
- kur domácí MeSH
- lidé MeSH
- somatická hypermutace imunoglobulinových genů fyziologie MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- transkripční faktory MeSH
Secondary diversification of the Ig repertoire occurs through somatic hypermutation (SHM), gene conversion (GCV), and class switch recombination (CSR)-three processes that are initiated by activation-induced cytidine deaminase (AID). AID targets Ig genes at orders of magnitude higher than the rest of the genome, but the basis for this specificity is poorly understood. We have previously demonstrated that enhancers and enhancer-like sequences from Ig genes are capable of stimulating SHM of neighboring genes in a capacity distinct from their roles in increasing transcription. Here, we use an in vitro proteomics approach to identify E-box, MEF2, Ets, and Ikaros transcription factor family members as potential binders of these enhancers. ChIP assays in the hypermutating Ramos B cell line confirmed that many of these factors bound the endogenous Igλ enhancer and/or the IgH intronic enhancer (Eμ) in vivo. Further investigation using SHM reporter assays identified binding sites for E2A and MEF2B in Eμ and demonstrated an association between loss of factor binding and decreases in the SHM stimulating activity of Eμ mutants. Our results provide novel insights into trans-acting factors that dictate SHM targeting and link their activity to specific DNA binding sites within Ig enhancers.
Department of Chemistry University of Virginia Charlottesville VA USA
Department of Immunobiology Yale University School of Medicine New Haven CT USA
Department of Pathology University of Virginia Charlottesville VA USA
Zobrazit více v PubMed
Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO and Honjo T, Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999. 274: 18470–18476. PubMed
Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y. and Honjo T, Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000. 102: 553–563. PubMed
Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N. et al., Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000. 102: 565–575. PubMed
Arakawa H, Hauschild J. and Buerstedde JM, Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 2002. 295: 1301–1306. PubMed
Di Noia JM and Neuberger MS, Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 2007. 76: 1–22. PubMed
Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF and Scharff MD, The biochemistry of somatic hypermutation. Annu Rev Immunol 2008. 26: 481–511. PubMed
Chen JM, Cooper DN, Chuzhanova N, Ferec C. and Patrinos GP, Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 2007. 8: 762–775. PubMed
Arakawa H. and Buerstedde JM, Immunoglobulin gene conversion: insights from bursal B cells and the DT40 cell line. Dev Dyn 2004. 229: 458–464. PubMed
Victora GD and Nussenzweig MC, Germinal centers. Annu Rev Immunol 2012. 30: 429–457. PubMed
Odegard VH and Schatz DG, Targeting of somatic hypermutation. Nat Rev Immunol 2006. 6: 573–583. PubMed
Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E. and Alt FW, Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 2003. 422: 726–730. PubMed
Bransteitter R, Pham P, Scharff MD and Goodman MF, Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A 2003. 100: 4102–4107. PubMed PMC
Petersen-Mahrt SK, Harris RS and Neuberger MS, AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 2002. 418: 99–103. PubMed
Rajewsky K, Forster I. and Cumano A, Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 1987. 238: 1088–1094. PubMed
Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH and Schatz DG, Two levels of protection for the B cell genome during somatic hypermutation. Nature 2008. 451: 841–845. PubMed
Nambu Y, Sugai M, Gonda H, Lee CG, Katakai T, Agata Y, Yokota Y. and Shimizu A, Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 2003. 302: 2137–2140. PubMed
Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, Zhang T. et al., The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 2011. 144: 353–363. PubMed PMC
Pefanis E, Wang J, Rothschild G, Lim J, Chao J, Rabadan R, Economides AN and Basu U, Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 2014. 514: 389–393. PubMed PMC
Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, Federation A. et al., RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 2015. 161: 774–789. PubMed PMC
Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, Resch W. et al., Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 2010. 143: 122–133. PubMed PMC
Maul RW, Cao Z, Venkataraman L, Giorgetti CA, Press JL, Denizot Y, Du H. et al., Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo-activated cells. J Exp Med 2014. 211: 2297–2306. PubMed PMC
Peters A. and Storb U, Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 1996. 4: 57–65. PubMed
Sun J, Rothschild G, Pefanis E. and Basu U, Transcriptional stalling in B-lymphocytes: a mechanism for antibody diversification and maintenance of genomic integrity. Transcription 2013. 4: 127–135. PubMed PMC
Casellas R, Resch W, Hakim O. and Nussenzweig MC, The origin of B cell recurrent chromosomal translocations: proximity versus DNA damage. Mol Cell 2013. 51: 275–276. PubMed PMC
Robbiani DF and Nussenzweig MC, Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. Annu Rev Pathol 2013. 8: 79–103. PubMed
Alvarez-Prado AF, Perez-Duran P, Perez-Garcia A, Benguria A, Torroja C, de Yebenes VG and Ramiro AR, A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med 2018. 215: 761–771. PubMed PMC
Casellas R, Basu U, Yewdell WT, Chaudhuri J, Robbiani DF and Di Noia JM, Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat Rev Immunol 2016. 16: 164–176. PubMed PMC
Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon SM, Trageser D. et al., Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat Immunol 2015. 16: 766–774. PubMed PMC
Pasqualucci L, Bhagat G, Jankovic M, Compagno M, Smith P, Muramatsu M, Honjo T. et al., AID is required for germinal center-derived lymphomagenesis. Nat Genet 2008. 40: 108–112. PubMed
Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S, Muramatsu M, Honjo T. et al., AID is required for c-myc/IgH chromosome translocations in vivo. Cell 2004. 118: 431–438. PubMed
Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ et al., AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 2008. 135: 1028–1038. PubMed PMC
Dorsett Y, Robbiani DF, Jankovic M, Reina-San-Martin B, Eisenreich TR and Nussenzweig MC, A role for AID in chromosome translocations between c-myc and the IgH variable region. J Exp Med 2007. 204: 2225–2232. PubMed PMC
Meng FL, Du Z, Federation A, Hu J, Wang Q, Kieffer-Kwon KR, Meyers RM et al., Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 2014. 159: 1538–1548. PubMed PMC
Qian J, Wang Q, Dose M, Pruett N, Kieffer-Kwon KR, Resch W, Liang G. et al., B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 2014. 159: 1524–1537. PubMed PMC
Yelamos J, Klix N, Goyenechea B, Lozano F, Chui YL, Gonzalez Fernandez A, Pannell R. et al., Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 1995. 376: 225–229. PubMed
Yeap LS, Hwang JK, Du Z, Meyers RM, Meng FL, Jakubauskaite A, Liu M. et al., Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes. Cell 2015. 163: 1124–1137. PubMed PMC
Fukita Y, Jacobs H. and Rajewsky K, Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 1998. 9: 105–114. PubMed
Betz AG, Milstein C, Gonzalez-Fernandez A, Pannell R, Larson T. and Neuberger MS, Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 1994. 77: 239–248. PubMed
Tumas-Brundage KM, Vora KA and Manser T, Evaluation of the role of the 3’alpha heavy chain enhancer [3’alpha E(hs1,2)] in Vh gene somatic hypermutation. Mol Immunol 1997. 34: 367–378. PubMed
Yang SY, Fugmann SD and Schatz DG, Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. J Exp Med 2006. 203: 2919–2928. PubMed PMC
Yang SY and Schatz DG, Targeting of AID-mediated sequence diversification by cis-acting determinants. Adv Immunol 2007. 94: 109–125. PubMed
Kothapalli NR and Fugmann SD, Targeting of AID-mediated sequence diversification to immunoglobulin genes. Curr Opin Immunol 2011. 23: 184–189. PubMed PMC
Kothapalli N, Norton DD and Fugmann SD, Cutting edge: a cis-acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus. J Immunol 2008. 180: 2019–2023. PubMed
Kothapalli NR, Collura KM, Norton DD and Fugmann SD, Separation of mutational and transcriptional enhancers in Ig genes. J Immunol 2011. 187: 3247–3255. PubMed PMC
Kim Y. and Tian M, The recruitment of activation induced cytidine deaminase to the immunoglobulin locus by a regulatory element. Mol Immunol 2010. 47: 1860–1865. PubMed
Kim Y. and Tian M, NF-kappaB family of transcription factor facilitates gene conversion in chicken B cells. Mol Immunol 2009. 46: 3283–3291. PubMed
Luo H. and Tian M, Transcription factors PU.1 and IRF4 regulate activation induced cytidine deaminase in chicken B cells. Mol Immunol 2010. 47: 1383–1395. PubMed
Blagodatski A, Batrak V, Schmidl S, Schoetz U, Caldwell RB, Arakawa H. and Buerstedde JM, A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet 2009. 5: e1000332. PubMed PMC
Kohler KM, McDonald JJ, Duke JL, Arakawa H, Tan S, Kleinstein SH, Buerstedde JM and Schatz DG, Identification of core DNA elements that target somatic hypermutation. J Immunol 2012. 189: 5314–5326. PubMed PMC
McDonald JJ, Alinikula J, Buerstedde JM and Schatz DG, A critical context-dependent role for E boxes in the targeting of somatic hypermutation. J Immunol 2013. 191: 1556–1566. PubMed PMC
Buerstedde JM, Alinikula J, Arakawa H, McDonald JJ and Schatz DG, Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences. PLoS Biol 2014. 12: e1001831. PubMed PMC
Murre C, Helix-loop-helix proteins and the advent of cellular diversity: 30 years of discovery. Genes Dev 2019. 33: 6–25. PubMed PMC
Hirano F, Tanaka H, Hirano Y, Hiramoto M, Handa H, Makino I. and Scheidereit C, Functional interference of Sp1 and NF-kappaB through the same DNA binding site. Mol Cell Biol 1998. 18: 1266–1274. PubMed PMC
Mao XR, Moerman-Herzog AM, Chen Y. and Barger SW, Unique aspects of transcriptional regulation in neurons--nuances in NFkappaB and Sp1-related factors. J Neuroinflammation 2009. 6: 16. PubMed PMC
Yabuki M, Ordinario EC, Cummings WJ, Fujii MM and Maizels N, E2A acts in cis in G1 phase of cell cycle to promote Ig gene diversification. J Immunol 2009. 182: 408–415. PubMed PMC
Schoetz U, Cervelli M, Wang YD, Fiedler P. and Buerstedde JM, E2A expression stimulates Ig hypermutation. J Immunol 2006. 177: 395–400. PubMed
Michael N, Shen HM, Longerich S, Kim N, Longacre A. and Storb U, The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. Immunity 2003. 19: 235–242. PubMed
Tanaka A, Shen HM, Ratnam S, Kodgire P. and Storb U, Attracting AID to targets of somatic hypermutation. J Exp Med 2010. 207: 405–415. PubMed PMC
Heizmann B, Kastner P. and Chan S, The Ikaros family in lymphocyte development. Curr Opin Immunol 2018. 51: 14–23. PubMed
Sale JE and Neuberger MS, TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 1998. 9: 859–869. PubMed
Papavasiliou FN and Schatz DG, Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 2000. 408: 216–221. PubMed
Senigl F, Maman Y, Dinesh RK, Alinikula J, Seth RB, Pecnova L, Omer AD et al., Topologically associated domains delineate susceptibility to somatic hypermutation. Cell Rep 2019. In press. PubMed PMC
Koduru S, Wong E, Strowig T, Sundaram R, Zhang L, Strout MP, Flavell RA et al., Dendritic cell-mediated activation-induced cytidine deaminase (AID)-dependent induction of genomic instability in human myeloma. Blood 2012. 119: 2302–2309. PubMed PMC
Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G. et al., Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 2012. 490: 116–120. PubMed PMC
Brescia P, Schneider C, Holmes AB, Shen Q, Hussein S, Pasqualucci L, Basso K. and Dalla-Favera R, MEF2B Instructs Germinal Center Development and Acts as an Oncogene in B Cell Lymphomagenesis. Cancer Cell 2018. 34: 453–465 e459. PubMed PMC
Ying CY, Dominguez-Sola D, Fabi M, Lorenz IC, Hussein S, Bansal M, Califano A. et al., MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma. Nat Immunol 2013. 14: 1084–1092. PubMed PMC
Rada C, Jarvis JM and Milstein C, AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization. Proc Natl Acad Sci U S A 2002. 99: 7003–7008. PubMed PMC
Upton DC and Unniraman S, Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes. J Vis Exp 2011: e3573. PubMed PMC
Kwon K, Hutter C, Sun Q, Bilic I, Cobaleda C, Malin S. and Busslinger M, Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 2008. 28: 751–762. PubMed
Wohner M, Tagoh H, Bilic I, Jaritz M, Poliakova DK, Fischer M. and Busslinger M, Molecular functions of the transcription factors E2A and E2–2 in controlling germinal center B cell and plasma cell development. J Exp Med 2016. 213: 1201–1221. PubMed PMC
Wang M, Yang Z, Rada C. and Neuberger MS, AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol 2009. 16: 769–776. PubMed PMC
Kothapalli N. and Fugmann SD, Characterizing somatic hypermutation and gene conversion in the chicken DT40 cell system. Methods Mol Biol 2011. 748: 255–271. PubMed
Cortes M. and Georgopoulos K, Aiolos is required for the generation of high affinity bone marrow plasma cells responsible for long-term immunity. J Exp Med 2004. 199: 209–219. PubMed PMC
Narvi E, Nera KP, Terho P, Mustonen L, Granberg J. and Lassila O, Aiolos controls gene conversion and cell death in DT40 B cells. Scand J Immunol 2007. 65: 503–513. PubMed
Gorman JR, van der Stoep N, Monroe R, Cogne M, Davidson L. and Alt FW, The Ig(kappa) enhancer influences the ratio of Ig(kappa) versus Ig(lambda) B lymphocytes. Immunity 1996. 5: 241–252. PubMed
van der Stoep N, Gorman JR and Alt FW, Reevaluation of 3’Ekappa function in stage- and lineage-specific rearrangement and somatic hypermutation. Immunity 1998. 8: 743–750. PubMed
Inlay MA, Gao HH, Odegard VH, Lin T, Schatz DG and Xu Y, Roles of the Ig kappa light chain intronic and 3’ enhancers in Igk somatic hypermutation. J Immunol 2006. 177: 1146–1151. PubMed
Perlot T, Alt FW, Bassing CH, Suh H. and Pinaud E, Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci U S A 2005. 102: 14362–14367. PubMed PMC
Pinaud E, Khamlichi AA, Le Morvan C, Drouet M, Nalesso V, Le Bert M. and Cogne M, Localization of the 3’ IgH locus elements that effect long-distance regulation of class switch recombination. Immunity 2001. 15: 187–199. PubMed
Morvan CL, Pinaud E, Decourt C, Cuvillier A. and Cogne M, The immunoglobulin heavy-chain locus hs3b and hs4 3’ enhancers are dispensable for VDJ assembly and somatic hypermutation. Blood 2003. 102: 1421–1427. PubMed
Dunnick WA, Collins JT, Shi J, Westfield G, Fontaine C, Hakimpour P. and Papavasiliou FN, Switch recombination and somatic hypermutation are controlled by the heavy chain 3’ enhancer region. J Exp Med 2009. 206: 2613–2623. PubMed PMC
Rouaud P, Vincent-Fabert C, Saintamand A, Fiancette R, Marquet M, Robert I, Reina-San-Martin B. et al., The IgH 3’ regulatory region controls somatic hypermutation in germinal center B cells. J Exp Med 2013. 210: 1501–1507. PubMed PMC
Goyenechea B, Klix N, Yelamos J, Williams GT, Riddell A, Neuberger MS and Milstein C, Cells strongly expressing Ig(kappa) transgenes show clonal recruitment of hypermutation: a role for both MAR and the enhancers. EMBO J 1997. 16: 3987–3994. PubMed PMC
Mayer A. and Churchman LS, Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing. Nat Protoc 2016. 11: 813–833. PubMed PMC
Kwak H, Fuda NJ, Core LJ and Lis JT, Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 2013. 339: 950–953. PubMed PMC
Wang IX, Core LJ, Kwak H, Brady L, Bruzel A, McDaniel L, Richards AL et al., RNA-DNA differences are generated in human cells within seconds after RNA exits polymerase II. Cell Rep 2014. 6: 906–915. PubMed PMC
Nojima T, Gomes T, Grosso ARF, Kimura H, Dye MJ, Dhir S, Carmo-Fonseca M. and Proudfoot NJ, Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing. Cell 2015. 161: 526–540. PubMed PMC
Mayer A, di Iulio J, Maleri S, Eser U, Vierstra J, Reynolds A, Sandstrom R. et al., Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 2015. 161: 541–554. PubMed PMC
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P. et al., CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011. 479: 74–79. PubMed PMC
Mayer A, Landry HM and Churchman LS, Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr Opin Cell Biol 2017. 46: 72–80. PubMed PMC
Carmona LM, Fugmann SD and Schatz DG, Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination. Genes Dev 2016. 30: 909–917. PubMed PMC
Dyer RB and Herzog NK, Isolation of intact nuclei for nuclear extract preparation from a fragile B-lymphocyte cell line. Biotechniques 1995. 19: 192–195. PubMed
Spruijt CG, Baymaz HI and Vermeulen M, Identifying specific protein-DNA interactions using SILAC-based quantitative proteomics. Methods Mol Biol 2013. 977: 137–157. PubMed
Baymaz HI, Spruijt CG and Vermeulen M, Identifying nuclear protein-protein interactions using GFP affinity purification and SILAC-based quantitative mass spectrometry. Methods Mol Biol 2014. 1188: 207–226. PubMed
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA and Zhang F, Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013. 8: 2281–2308. PubMed PMC
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX and Zhang F, Rationally engineered Cas9 nucleases with improved specificity. Science 2016. 351: 84–88. PubMed PMC
Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009. 27: 851–857. PubMed PMC
Cossarizza A, Chang HD, Radbruch A, Akdis M, Andra I, Annunziato F, Bacher P. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 2017. 47: 1584–1797. PubMed PMC
Eisenberg E. and Levanon EY, Human housekeeping genes, revisited. Trends Genet 2013. 29: 569–574. PubMed
Livak KJ and Schmittgen TD, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001. 25: 402–408. PubMed
Ig Enhancers Increase RNA Polymerase II Stalling at Somatic Hypermutation Target Sequences