The SV40 virus enhancer functions as a somatic hypermutation-targeting element with potential tumorigenic activity
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39490533
PubMed Central
PMC11564006
DOI
10.1016/j.tvr.2024.200293
PII: S2666-6790(24)00017-X
Knihovny.cz E-zdroje
- Klíčová slova
- AID, Enhancer, Large tumor antigen, SV40, Somatic hypermutation, Tumorigenesis,
- MeSH
- antigeny transformující polyomavirové genetika metabolismus MeSH
- antigeny virové nádorové genetika metabolismus MeSH
- B-lymfocyty virologie metabolismus imunologie MeSH
- buněčné linie MeSH
- cytidindeaminasa * genetika metabolismus MeSH
- infekce onkogenními viry genetika virologie MeSH
- karcinogeneze genetika MeSH
- lidé MeSH
- mutace MeSH
- opičí virus SV40 * genetika MeSH
- polyomavirové infekce genetika virologie MeSH
- somatická hypermutace imunoglobulinových genů genetika MeSH
- zesilovače transkripce * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AICDA (Activation-Induced Cytidine Deaminase) MeSH
- antigeny transformující polyomavirové MeSH
- antigeny virové nádorové MeSH
- cytidindeaminasa * MeSH
Simian virus 40 (SV40) is a monkey virus with tumorigenic potential in rodents and is associated with several types of human cancers, including lymphomas. A related Merkel cell polyomavirus causes carcinoma in humans by expressing truncated large tumor antigen (LT), with truncations caused by APOBEC family of cytidine deaminase-induced mutations. AID (activation-induced cytidine deaminase), a member of the APOBEC family, is the initiator of the antibody diversification process known as somatic hypermutation and its aberrant expression and targeting is a frequent source of lymphomagenesis. In this study, we investigated whether AID could cause mutations in SV40 LT. We demonstrate that the SV40 enhancer has strong somatic hypermutation targeting activity in several cell types and that AID-induced mutations accumulate in SV40 LT in B cells and kidney cells and cause truncated LT expression in B cells. Our results argue that the ability of the SV40 enhancer to target somatic hypermutation to LT is a potential source of LT truncation events that could contribute to tumorigenesis in various cell types, thereby linking SV40 infection with malignant development through a novel mutagenic pathway.
Department of Immunobiology Yale School of Medicine New Haven CT 06520 8011 USA
Institute of Biomedicine University of Turku Turku 20520 Finland
Zobrazit více v PubMed
Decaprio J.A., Garcea R.L. A cornucopia of human polyomaviruses. Nat. Rev. Microbiol. 2013;11(4):264–276. PubMed PMC
Butel J.S., Lednicky J.A. Response to more about: cell and molecular biology of simian virus 40: implications for human infections and disease. J. Natl. Cancer Inst. 2000;92(6):496–497. PubMed
Vilchez R.A., Kozinetz C.A., Butel J.S. Conventional epidemiology and the link between SV40 and human cancers. Lancet Oncol. 2003;4(3):188–191. PubMed
Dolcetti R., Martini F., Quaia M., Gloghini A., Vignocchi B., Cariati R., et al. Simian virus 40 sequences in human lymphoblastoid B-cell lines. J. Virol. 2003;77(2):1595–1597. PubMed PMC
Carbone M., Gazdar A., Butel J.S. SV40 and human mesothelioma. Transl. Lung Cancer Res. 2020;9(Suppl 1):S47–S59. PubMed PMC
Butel J.S., Vilchez R.A., Jorgensen J.L., Kozinetz C.A. Association between SV40 and non-Hodgkin’s lymphoma. Leuk. Lymphoma. 2003;44(Suppl 3):S33–S39. PubMed
Heinsohn S., Scholz R., Kabisch H. SV40 and p53 as team players in childhood lymphoproliferative disorders. Int. J. Oncol. 2011;38(5):1307–1317. PubMed
Vilchez R., Butel J. SV40 in human brain cancers and non-Hodgkin’s lymphoma. Oncogene. 2003;22(33):5164–5172. PubMed
Samaka R.M., Aiad H.A., Kandil M.A., Asaad N.Y., Holah N.S. The prognostic role and relationship between E2F1 and SV40 in diffuse large B-cell lymphoma of Egyptian patients. Anal. Cell Pathol. 2015;2015 PubMed PMC
Shah K.V. SV40 and human cancer: a review of recent data. Int. J. Cancer. 2007;120(2):215–223. PubMed
De Rienzo A., Tor M., Sterman D.H., Aksoy F., Albelda S.M., Testa J.R. Detection of SV40 DNA sequences in malignant mesothelioma specimens from the United States, but not from Turkey. J. Cell. Biochem. 2002;84(3):455–459. PubMed
Hirvonen A., Mattson K., Karjalainen A., Ollikainen T., Tammilehto L., Hovi T., et al. Simian virus 40 (SV40)-like DNA sequences not detectable in Finnish mesothelioma patients not exposed to SV40-contaminated polio vaccines. Mol. Carcinog. 1999;26(2):93–99. PubMed
Manfredi J.J., Dong J., Liu W.J., Resnick-Silverman L., Qiao R., Chahinian P., et al. Evidence against a role for SV40 in human mesothelioma. Cancer Res. 2005;65(7):2602–2609. PubMed
Poulin D.L., DeCaprio J.A. Is there a role for SV40 in human cancer? J. Clin. Oncol. 2006;24(26):4356–4365. PubMed
Dyson N., Bernards R., Friend S.H., Gooding L.R., Hassell J.A., Major E.O., et al. Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein. J. Virol. 1990;64(3):1353–1356. PubMed PMC
Lane D.P.C.L. T antigen is bound to a host protein in SV 40-transformed cells. Nature. 1979;278(March):261–263. PubMed
McCormick F., Harlow E. Association of a murine 53,000-dalton phosphoprotein with simian virus 40 large-T antigen in transformed cells. J. Virol. 1980;34(1):213–224. PubMed PMC
Shuda M., Feng H., Kwun H.J., Rosen S.T., Gjoerup O., Moore P.S., et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc. Natl. Acad. Sci. USA. 2008;105(42):16272–16277. PubMed PMC
Li J., Wang X., Diaz J., Tsang S.H., Buck C.B., You J. Merkel cell polyomavirus large T antigen disrupts host genomic integrity and inhibits cellular proliferation. J. Virol. 2013;87(16):9173–9188. PubMed PMC
Hesbacher S., Pfitzer L., Wiedorfer K., Angermeyer S., Borst A., Haferkamp S., et al. RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells. Oncotarget. 2016;7(22):32956–32968. PubMed PMC
Schmitt M., Wieland U., Kreuter A., Pawlita M. C-terminal deletions of Merkel cell polyomavirus large T-antigen, a highly specific surrogate marker for virally induced malignancy. Int. J. Cancer. 2012;131(12):2863–2868. PubMed
Duncavage E.J., Magrini V., Becker N., Armstrong J.R., Demeter R.T., Wylie T., et al. Hybrid capture and next-generation sequencing identify viral integration sites from formalin-fixed, paraffin-embedded tissue. J. Mol. Diagnost. 2011;13(3):325–333. doi: 10.1016/j.jmoldx.2011.01.006. [Internet] PubMed DOI PMC
Carbone M., Rdzanek M.A., Rudzinski J.J., De Marco M.A., Bocchetta M., Niño M.R., et al. SV40 detection in human tumor specimens. Cancer Res. 2005;65(21):10120–10121. PubMed
Peden K.W.C., Srinivasan A., Vartikar J.V., Pipas J.M. Effects of mutations within the SV40 large T antigen ATPase/p53 binding domain on viral replication and transformation. Virus Gene. 1998;16(2):153–165. PubMed
Lednicky J.A., Stewart A.R., Jenkins J.J., Finegold M.J., Butel J.S. SV40 DNA in human osteosarcomas shows sequence variation among T- antigen genes. Int. J. Cancer. 1997;72(5):791–800. PubMed
Lednicky J.A., Garcea R.L., Bergsagel D.J., Butel J.S. Natural Simian virus 40 strains are present in human choroid plexus and ependymoma tumors. Virology. 1995;212:710–717. PubMed
Truckenmiller M.E., Tornatore C., Wright R.D., Dillon-Carter O., Meiners S., Geller H.M., et al. A truncated SV40 large T antigen lacking the p53 binding domain overcomes p53-induced growth arrest and immortalizes primary mesencephalic cells. Cell Tissue Res. 1998;291(2):175–189. PubMed
Casellas R., Basu U., Yewdell W.T., Chaudhuri J., Robbiani D.F., Di Noia J.M. Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat. Rev. Immunol. 2016;16(3):164–176. PubMed PMC
Di Noia J.M., Neuberger M.S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 2007;76(1):1–22. PubMed
Methot S.P., Di Noia J.M. Chapter two – molecular mechanisms of somatic hypermutation and class switch recombination. Adv. Immunol. Elsevier Inc. 2017:37–87. doi: 10.1016/bs.ai.2016.11.002. Vol. 133. PubMed DOI
Blagodatski A., Batrak V., Schmidl S., Schoetz U., Caldwell R.B., Arakawa H., et al. A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet. 2009;5(1):1–11. PubMed PMC
Buerstedde J.M., Alinikula J., Arakawa H., McDonald J.J., Schatz D.G. Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences. PLoS Biol. 2014;12(4) PubMed PMC
Kohler K.M., McDonald J.J., Duke J.L., Arakawa H., Tan S., Kleinstein S.H., et al. Identification of core DNA elements that target somatic hypermutation. J. Immunol. 2012;189(11):5314–5326. PubMed PMC
Dinesh R.K., Barnhill B., Ilanges A., Wu L., Michelson D.A., Senigl F., et al. Transcription factor binding at Ig enhancers is linked to somatic hypermutation targeting. Eur. J. Immunol. 2020;50(3):380–395. PubMed PMC
McDonald J.J., Alinikula J., Buerstedde J.-M., Schatz D.G. A critical context-dependent role for E boxes in the targeting of somatic hypermutation. J. Immunol. 2013;191(4):1556–1566. PubMed PMC
Müschen M., Re D., Jungnickel B., Diehl V., Rajewsky K., Küppers R. Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J. Exp. Med. 2000;192(12):1833–1839. PubMed PMC
Pasqualucci L., Migliazza A., Fracchiolla N., William C., Neri A., Baldini L., et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. U.S.A. 1998;95(20):11816–11821. PubMed PMC
Shen H.M., Peters A., Baron B., Zhu X., Storb U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science (80-) 1998;280(5370):1750–1752. PubMed
Álvarez-Prado Á.F., Pérez-Durán P., Pérez-García A., Benguria A., Torroja C., de Yébenes V.G., et al. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J. Exp. Med. 2018;215(3):761–771. PubMed PMC
Senigl F., Maman Y., Dinesh R.K., Alinikula J., Seth R.B., Pecnova L., et al. Topologically associated domains delineate susceptibility to somatic hypermutation. Cell Rep. [Internet] 2019;29(12):3902–3915. doi: 10.1016/j.celrep.2019.11.039. e8. PubMed DOI PMC
Pasqualucci L., Neumeister P., Goossens T., Nanjangud G., Chaganti R.S.K., Küppers R., et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. 2001;412(July):341–346. PubMed
Soikkeli A.I., Kyläniemi M.K., Sihto H., Alinikula J. Oncogenic Merkel cell polyomavirus T antigen truncating mutations are mediated by APOBEC3 activity in Merkel cell carcinoma. Cancer Res. Commun. 2022;2(November):1344–1354. PubMed PMC
Alaribe F.N., Mazzoni E., Rigolin G.M., Rizzotto L., Maniero S., Pancaldi C., et al. Extended lifespan of normal human B lymphocytes experimentally infected by SV40 or transfected by SV40 large T antigen expression vector. Leuk Res. [Internet] 2013;37(6):681–689. doi: 10.1016/j.leukres.2013.02.003. PubMed DOI
McNees A.L., Harrigal L.J., Kelly A., Minard C.G., Wong C., Butel J.S. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40. PLoS One. 2019;13:1–31. PubMed PMC
Tognon M., Luppi M., Corallini A., Taronna A., Barozzi P., Rotondo J.C., et al. Immunologic evidence of a strong association between non-Hodgkin lymphoma and simian virus 40. Cancer. 2015;121(15):2618–2626. PubMed
Malkin D. Simian virus 40 and non-Hodgkin lymphoma. Lancet. 2002;359(9309):812–813. PubMed
Vilchez R., Butel J. Polyomavirus SV40 infection and lymphomas in Spain. Int. J. Cancer. 2003;107(3):505–508. PubMed
Martini F., Dolcetti R., Gloghini A., Iaccheri L., Carbone A., Boiocchi M., et al. Simian-virus-40 footprints in human lymphoproliferative disorders of HIV- and HIV+ patients. Int. J. Cancer. 1998;78(6):669–674. PubMed
Nonaka T., Toda Y., Hiai H., Uemura M., Nakamura M., Yamamoto N., et al. Involvement of activation-induced cytidine deaminase in skin cancer development. J. Clin. Invest. 2016;126(4):1367–1382. PubMed PMC
Okura R., Yoshioka H., Yoshioka M., Hiromasa K., Nishio D., Nakamura M. 2014. Letter to the Editor Expression of AID in Malignant Melanoma with BRAF V600E Mutation; pp. 2013–2014. PubMed
Machida K., Cheng K.T.N., Sung V.M.H., Shimodaira S., Lindsay K.L., Levinet A.M., et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl. Acad. Sci. U.S.A. 2004;101(12):4262–4267. PubMed PMC
Tarsalainen A., Maman Y., Meng F.-L., Kyläniemi M.K., Soikkeli A., Budzyńska P., et al. Ig enhancers increase RNA polymerase II stalling at somatic hypermutation target sequences. J. Immunol. 2022;208(1):143–154. PubMed PMC
Palmiter R.D., Chent H.Y., Messing A., Brinstert R.L.X. SV40 enhancer and large-T antigen are instrumental in development of choroid plexus tumours in transgenic mice. Nature. 1985;316(1):7–10. PubMed
Lednicky J.A., Arrington A.S., Stewart A.R., Dai X.M., Wong C., Jafar S., et al. Natural isolates of simian virus 40 from immunocompromised monkeys display extensive genetic heterogeneity: new implications for polyomavirus disease. J. Virol. 1998;72(5):3980–3990. PubMed PMC
Rotondo J.C., Mazzoni E., Bononi I., Tognon M., Martini F. Association between simian virus 40 and human tumors. Front. Oncol. 2019;9(July):1–19. PubMed PMC
Gish W.R., Botchan M.R. Simian virus 40-transformed human cells that express large T antigens defective for viral DNA replication. J. Virol. 1987;61(9):2864–2876. PubMed PMC
Kao C., Hauser P., Reznikoff W.S., Reznikoff C.A. Simian virus 40 (SV40) T-antigen mutations in tumorigenic transformation of SV40-immortalized human uroepithelial cells. J. Virol. 1993;67(4):1987–1995. PubMed PMC
Yang J.F., You J. Regulation of polyomavirus transcription by viral and cellular factors. Viruses. 2020;12(10):1–18. PubMed PMC
Dalgin G.S., Drever M., Williams T., King T., DeLisi C., Liou L.S. Identification of novel epigenetic markers for clear cell renal cell carcinoma. J. Urol. 2008;180(3):1126–1130. PubMed
Urakami S., Tsuchiya H., Orimoto K., Kobayashi T., Igawa M.H.O. Overexpression of AP-1 transcriptional factor family and inhibition of cell growth by AP-1 genes antisense oligonucleotides in the Tsc2 gene mutant (Eker) rat renal carcinomas. Br. J. Urol. 1997;80(SUPPL. 2):133. PubMed
Zhu H., Wang S., Shen H., Zheng X., Xu X. SP1/AKT/FOXO3 signaling is involved in miR-362-3p-mediated inhibition of cell-cycle pathway and EMT progression in renal cell carcinoma. Front. Cell Dev. Biol. 2020;8(May):1–9. PubMed PMC
Oya M., Mikami S., Mizuno R., Miyajima A., Horiguchi Y., Nakashima J., et al. Differential expression of activator protein-2 isoforms in renal cell carcinoma. Urology. 2004;64(1):162–167. PubMed
Qian J., Wang Q., Dose M., Pruett N., Kieffer-Kwon K.R., Resch W., et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell. 2014;159(7):1524–1537. PubMed PMC
Seneca N.T.M., Sáenz Robles M.T., Pipas J.M. Removal of a small C-terminal region of JCV and SV40 large T antigens has differential effects on transformation. Virology. 2014;468–470(412):47–56. PubMed PMC
Comerford S.A., Schultz N., Hinnant E.A., Klapproth S., Hammer R.E. Comparative analysis of SV40 17kT and LT function in vivo demonstrates that LTs C-terminus re-programs hepatic gene expression and is necessary for tumorigenesis in the liver. Oncogenesis. 2012;1(9):1–9. PubMed PMC
Hermannstädter A., Ziegler C., Kühl M., Deppert W., Tolstonog G.V. Wild-type p53 enhances efficiency of simian virus 40 large-T-antigen-induced cellular transformation. J. Virol. 2009;83(19):10106–10118. PubMed PMC
Vilchez R.A., Madden C.R., Kozinetz C.A., Halvorson S.J., White Z.S., Jorgensen J.L., et al. Association between simian virus 40 and non-Hodgkin lymphoma. Lancet. 2002;359(9309):817–823. PubMed
Malkin D., Chilton-Macneill S., Meister L.A., Sexsmith E., Diller L., Garcea R.L. Tissue-specific expression of SV40 in tumors associated with the Li-Fraumeni syndrome. Oncogene. 2001;20(33):4441–4449. PubMed
Shein H.M., Enders J.F. JDL. Transformation induced by simian virus 40 in human renal cell cultures. II. Cell-virus relationships. Proc. Natl. Acad. Sci. U.S.A. 1962;48:1350–1357. PubMed PMC
López-Ríos F., Illei P.B., Rusch V., Ladanyi M. Evidence against a role for SV40 infection in human mesotheliomas and high risk of false-positive PCR results owing to presence of SV40 sequences in common laboratory plasmids. Lancet. 2004;364(9440):1157–1166. PubMed
Rizzo P., Carbone M., Fisher S.G., Matker C., Swinnen L.J., Powers A., et al. Simian virus 40 is present in most United States human mesotheliomas, but it is rarely present in non-Hodgkin’s lymphoma. Chest. 1999;116(6 SUPPL):470S–473S. doi: 10.1378/chest.116.suppl_3.470S. [Internet] PubMed DOI
Krainer M., Schenk T., Zielinski Cm C.C. Failure to confirm presence of SV40 sequences in human tumours. Eur. J. Cancer. 1995;31(11):1893–1895. PubMed
Nonaka T., Minato N., Kinoshita K., Nonaka T., Toda Y., Hiai H., et al. Involvement of activation-induced cytidine deaminase in skin cancer development Find the latest version : involvement of activation-induced cytidine deaminase in skin cancer development. 2016;126(4):1367–1382. PubMed PMC
Endo Y., Marusawa H., Kou T., Nakase H., Fujii S., Fujimori T., et al. Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology. 2008;135(3):889–898. PubMed
Endo Y., Marusawa H., Kinoshita K., Morisawa T., Sakurai T., Okazaki I.M., et al. Expression of activation-induced cytidine deaminase in human hepatocytes via NF-κB signaling. Oncogene. 2007;26(38):5587–5595. PubMed
Kothapalli N., Norton D.D., Fugmann S.D. Cutting edge: a cis -acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus. J. Immunol. 2008;180(4):2019–2023. PubMed
Gu X., Booth C.J., Liu Z., Strout M.P. AID-associated DNA repair pathways regulate malignant transformation in a murine model of BCL6-driven diffuse large. B-cell lymphoma. 2019;127(1):102–113. PubMed PMC
Shen H.M., Tanaka A., Bozek G., Nicolae D., Storb U. Somatic hypermutation and class switch recombination in Msh6−/−Ung−/− double-knockout mice. J. Immunol. 2006;177(8):5386–5392. PubMed
O'Neill F.J., Greenlee J.E., Carney H. The archetype enhancer of simian virus 40 DNA is duplicated during virus growth in human cells and rhesus monkey kidney cells but not in green monkey kidney cells. Virology. 2003;310(1):173–182. PubMed
Ondek B., Shepard A., Herr W. Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities. EMBO J. 1987;6(4):1017–1025. PubMed PMC
Schmidt K., Keiser S., Günther V., Georgiev O., Hirsch H.H., Schaffner W., et al. Transcription enhancers as major determinants of SV40 polyomavirus growth efficiency and host cell tropism. J. Gen. Virol. 2016;97(7):1597–1603. PubMed PMC
Mendoza S.M., Konishi T., Miller C.W. Integration of SV40 in human osteosarcoma DNA. Oncogene. 1998;17(19):2457–2462. PubMed
Hara H., Kaji H. Random integration of SV40 in SV40-transformed, immortalized human fibroblasts. Exp. Cell Res. 1987;168(2):531–538. PubMed
Liu J., Li H., Nomura K., Dofuku R., Kitagawa T. Cytogenetic analysis of hepatic cell lines derived from SV40-T antigen gene-harboring transgenic mice. Cancer Genet. Cytogenet. 1991;55(2):207–216. PubMed
Baker S.C., Mason A.S., Slip R.G., Skinner K.T., Macdonald A., Masood O., et al. Induction of APOBEC3-mediated genomic damage in urothelium implicates BK polyomavirus (BKPyV) as a hit-and-run driver for bladder cancer. Oncogene. 2022;41(15):2139–2151. PubMed PMC