Ig Enhancers Increase RNA Polymerase II Stalling at Somatic Hypermutation Target Sequences
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 AI127642
NIAID NIH HHS - United States
T32 AI007019
NIAID NIH HHS - United States
UL1 TR001863
NCATS NIH HHS - United States
PubMed
34862258
PubMed Central
PMC8702490
DOI
10.4049/jimmunol.2100923
PII: jimmunol.2100923
Knihovny.cz E-zdroje
- MeSH
- AICDA (aktivací indukovaná cytidindeamináza) MeSH
- aktivace lymfocytů MeSH
- Burkittův lymfom genetika imunologie MeSH
- cytidindeaminasa genetika MeSH
- genetická transkripce MeSH
- imunoglobuliny genetika metabolismus MeSH
- kur domácí MeSH
- lidé MeSH
- mutace genetika MeSH
- mutageneze cílená MeSH
- podskupiny B-lymfocytů imunologie MeSH
- ptačí proteiny genetika metabolismus MeSH
- RNA-polymerasa II genetika metabolismus MeSH
- rozmanitost protilátek MeSH
- somatická hypermutace imunoglobulinových genů MeSH
- zesilovače transkripce genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- AICDA (aktivací indukovaná cytidindeamináza) MeSH
- cytidindeaminasa MeSH
- imunoglobuliny MeSH
- ptačí proteiny MeSH
- RNA-polymerasa II MeSH
Somatic hypermutation (SHM) drives the genetic diversity of Ig genes in activated B cells and supports the generation of Abs with increased affinity for Ag. SHM is targeted to Ig genes by their enhancers (diversification activators [DIVACs]), but how the enhancers mediate this activity is unknown. We show using chicken DT40 B cells that highly active DIVACs increase the phosphorylation of RNA polymerase II (Pol II) and Pol II occupancy in the mutating gene with little or no accompanying increase in elongation-competent Pol II or production of full-length transcripts, indicating accumulation of stalled Pol II. DIVAC has similar effect also in human Ramos Burkitt lymphoma cells. The DIVAC-induced stalling is weakly associated with an increase in the detection of ssDNA bubbles in the mutating target gene. We did not find evidence for antisense transcription, or that DIVAC functions by altering levels of H3K27ac or the histone variant H3.3 in the mutating gene. These findings argue for a connection between Pol II stalling and cis-acting targeting elements in the context of SHM and thus define a mechanistic basis for locus-specific targeting of SHM in the genome. Our results suggest that DIVAC elements render the target gene a suitable platform for AID-mediated mutation without a requirement for increasing transcriptional output.
Department of Genetics Harvard University Boston MA
Department of Immunobiology Yale School of Medicine New Haven CT; and
Institute of Molecular Genetics Academy of Sciences of the Czech Republic Praha Czech Republic
The Azrieli Faculty of Medicine Bar Ilan University Safed Israel
Unit of Infections and Immunity Institute of Biomedicine University of Turku Turku Finland
Unit of Infections and Immunity Institute of Biomedicine University of Turku Turku Finland;
Zobrazit více v PubMed
Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, and Honjo T. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553–563. PubMed
Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, and Honjo T. 1999. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem 274: 18470–18476. PubMed
Arakawa H, Hauschild J, and Buerstedde J-M. 2002. Requirement of the Activation-Induced Deaminase(AID) gene for Immunoglobulin Gene Conversion. Science 295: 1301–1306. PubMed
Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Lagelouse R, Gennery A, Tezcan I, Ersoy F, Kayserili H, Ugazio AG, Brousse N, Muramatsu M, Notarangelo LD, Kinoshita K, Honjo T, Fischer A, and Durandy A. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102: 565–575. PubMed
Methot SP, and Di Noia JM. 2016. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv. Immunol 133: 37–87. PubMed
Casellas R, Basu U, Yewdell WT, Chaudhuri J, Robbiani DF, and Di Noia JM. 2016. Mutations, kataegis and translocations in B cells: Understanding AID promiscuous activity. Nat. Rev. Immunol 16: 164–176. PubMed PMC
Robbiani DF, and Nussenzweig MC. 2013. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. Annu Rev Pathol 8: 79–103. PubMed
Xu Z, Zan H, Pone EJ, Mai T, and Casali P. 2012. Immunoglobulin class-switch DNA recombination: Induction, targeting and beyond. Nat. Rev. Immunol 12: 517–531. PubMed PMC
Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH, and Schatz DG. 2008. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451: 841–845. PubMed
Martin OA, Garot A, Le Noir S, Aldigier J-C, Cogné M, Pinaud E, and Boyer F. 2018. Detecting Rare AID-Induced Mutations in B-Lineage Oncogenes from High-Throughput Sequencing Data Using the Detection of Minor Variants by Error Correction Method. J. Immunol 201: 950–956. PubMed
Liu M, and Schatz DG. 2009. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol 30: 173–181. PubMed
Yamane A, Resch W, Kuo N, Kuchen S, Li Z, Sun HW, Robbiani DF, McBride K, Nussenzweig MC, and Casellas R. 2011. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat. Immunol 12: 62–69. PubMed PMC
Matthews AJ, Husain S, and Chaudhuri J. 2014. Binding of AID to DNA Does Not Correlate with Mutator Activity. J. Immunol 193: 252–257. PubMed PMC
Pham P, Malik S, Mak C, Calabrese PC, Roeder RG, and Goodman MF. 2019. AID-RNA polymerase II transcription-dependent deamination of IgV DNA. Nucleic Acids Res 47: 10815–10829. PubMed PMC
Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, and Alt FW. 2003. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422: 726–730. PubMed
Yeap LS, and Meng FL. 2019. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv. Immunol 141: 51–103. PubMed
Keim C, Kazadi D, Rothschild G, and Basu U. 2013. Regulation of AID, the B-cell genome mutator. Genes Dev 27: 1–17. PubMed PMC
Core L, and Adelman K. 2019. Promoter-proximal pausing of RNA polymerase II: A nexus of gene regulation. Genes Dev 33: 960–982. PubMed PMC
Buratowski S 2009. Progression through the RNA Polymerase II CTD Cycle. Mol. Cell 36: 541–546. PubMed PMC
Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, Resch W, Yamane A, San-Martin BR, Barreto V, Nieland TJ, Root DE, Casellas R, and Nussenzweig MC. 2010. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143: 122–133. PubMed PMC
Maul RW, Cao Z, Venkataraman L, Giorgetti CA, Press JL, Denizot Y, Du H, Sen R, and Gearhart PJ. 2014. Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo-activated cells. J Exp Med 211: 2297–2306. PubMed PMC
Methot SP, Litzler LC, Subramani PG, Eranki AK, Fi H, Patenaude A, Gilmore JC, Santiago GE, Bagci H, Côté J, Larijani M, Verdun RE, and Di Noia JM. 2018. A licensing step links AID to transcription elongation for mutagenesis in B cells PubMed PMC
Willmann KL, Milosevic S, Pauklin S, Schmitz KM, Rangam G, Simon MT, Maslen S, Skehel M, Robert I, Heyer V, Schiavo E, Reina-San-Martin B, and Petersen-Mahrt SK. 2012. A role for the RNA pol II-associated PAF complex in AID-induced immune diversification. J. Exp. Med 209: 2099–2111. PubMed PMC
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, and Young RA. 2013. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153: 307–319. PubMed PMC
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, and Young RA. 2013. Super-enhancers in the control of cell identity and disease. Cell 155: 934. PubMed PMC
Meng FL, Du Z, Federation A, Hu J, Wang Q, Kieffer-Kwon KR, Meyers RM, Amor C, Wasserman CR, Neuberg D, Casellas R, Nussenzweig MC, Bradner JE, Liu XS, and Alt FW. 2014. Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 159: 1538–1548. PubMed PMC
Qian J, Wang Q, Dose M, Pruett N, Kieffer-Kwon KR, Resch W, Liang G, Tang Z, Mathé E, Benner C, Dubois W, Nelson S, Vian L, Oliveira TY, Jankovic M, Hakim O, Gazumyan A, Pavri R, Awasthi P, Song B, Liu G, Chen L, Zhu S, Feigenbaum L, Staudt L, Murre C, Ruan Y, Robbiani DF, Pan-Hammarström Q, Nussenzweig MC, and Casellas R. 2014. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159: 1524–1537. PubMed PMC
Pefanis E, Wang J, Rothschild G, Lim J, Chao J, Rabadan R, Economides AN, and Basu U. 2014. Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 514: 389–393. PubMed PMC
Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, Zhang T, Myers D, Wasserman CR, Wesemann DR, Januszyk K, Gregory RI, Deng H, Lima CD, and Alt FW. 2011. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144: 353–363. PubMed PMC
Kohler KM, McDonald JJ, Duke JL, Arakawa H, Tan S, Kleinstein SH, Buerstedde J-M, and Schatz DG. 2012. Identification of core DNA elements that target somatic hypermutation. J. Immunol 189: 5314–26. PubMed PMC
McDonald JJ, Alinikula J, Buerstedde J-M, and Schatz DG. 2013. A Critical Context-Dependent Role for E Boxes in the Targeting of Somatic Hypermutation. J. Immunol 191: 1556–1566. PubMed PMC
Buerstedde J-MM, Alinikula J, Arakawa H, McDonald JJ, and Schatz DG. 2014. Targeting Of Somatic Hypermutation By immunoglobulin Enhancer And Enhancer-Like Sequences. PLoS Biol 12: e1001831. PubMed PMC
Blagodatski A, Batrak V, Schmidl S, Schoetz U, Caldwell RB, Arakawa H, and Buerstedde JM. 2009. A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet 5: e1000332. PubMed PMC
Kothapalli N, Norton DD, and Fugmann SD. 2008. Cutting Edge: A cis -Acting DNA Element Targets AID-Mediated Sequence Diversification to the Chicken Ig Light Chain Gene Locus. J. Immunol 180: 2019–2023. PubMed
Kothapalli NR, Collura KM, Norton DD, and Fugmann SD. 2011. Separation of Mutational and Transcriptional Enhancers in Ig Genes. J. Immunol 187: 3247–3255. PubMed PMC
Dinesh RK, Barnhill B, Ilanges A, Wu L, Michelson DA, Senigl F, Alinikula J, Shabanowitz J, Hunt DF, and Schatz DG. 2020. Transcription factor binding at Ig enhancers is linked to somatic hypermutation targeting. Eur. J. Immunol 50: 380–395. PubMed PMC
Rouaud P, Vincent-fabert C, Saintamand A, Fiancette R, Marquet M, Robert I, Reina-san-martin B, Pinaud E, Cogné M, and Denizot Y. 2013. The IgH 3 9 regulatory region controls somatic hypermutation in germinal center B cells 210: 1501–1508. PubMed PMC
Vincent-Fabert C, Fiancette R, Pinaud E, Truffinet V, Cogné N, Cogné M, and Denizot Y. 2010. Genomic deletion of the whole IgH 3′ regulatory region (hs3a, hs1,2, hs3b, and hs4) dramatically affects class switch recombination and Ig secretion to all isotypes. Blood 116: 1895–1898. PubMed
Cogné M, Lansford R, Bottaro A, Zhang J, Gorman J, Young F, Cheng HL, and Alt FW. 1994. A class switch control region at the 3′ end of the immunoglobulin heavy chain locus. Cell 77: 737–747. PubMed
Saintamand A, Vincent-Fabert C, Garot A, Rouaud P, Oruc Z, Magnone V, Cogné M, and Denizot Y. 2016. Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3’ regulatory region. Nat. Commun 7. PubMed PMC
Senigl F, Maman Y, Dinesh RK, Alinikula J, Seth RB, Pecnova L, Omer AD, Rao SSP, Weisz D, Buerstedde JM, Aiden EL, Casellas R, Hejnar J, and Schatz DG. 2019. Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. Cell Rep 29: 3902–3915.e8. PubMed PMC
Zhang X, Zhang Y, Ba Z, Kyritsis N, Casellas R, and Alt FW. 2019. Fundamental roles of chromatin loop extrusion in antibody class switching. Nature 575: 385–389. PubMed PMC
Ronai D, Iglesias-Ussel MD, Fan M, Li Z, Martin A, and Scharff MD. 2007. Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation. J. Exp. Med 204: 181–190. PubMed PMC
Williams AM, Maman Y, Alinikula J, and Schatz DG. 2016. Bcl6 is required for somatic hypermutation and gene conversion in chicken DT40 cells. PLoS One 11: e0149146. PubMed PMC
Langmead B, and Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357–359. PubMed PMC
Core LJ, Waterfall JJ, and Lis JT. 2008. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science (80-. ) 322: 1845–1848. PubMed PMC
Arakawa H, and Buerstedde JM. 2009. Activation-induced cytidine deaminase-mediated hypermutation in the DT40 cell line. In Philosophical Transactions of the Royal Society B: Biological Sciences vol. 364. Royal Society. 639–644. PubMed PMC
Romanello M, Schiavone D, Frey A, and Sale JE. 2016. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA. EMBO J 2: 1–13. PubMed PMC
Kodgire P, Mukkawar P, Ratnam S, Martin TE, and Storb U. 2013. Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID. J. Exp. Med 210: 1481–1492. PubMed PMC
Tanaka A, Shen HM, Ratnam S, Kodgire P, and Storb U. 2010. Attracting AID to targets of somatic hypermutation. J Exp Med 207: 405–415. PubMed PMC
Chandra V, Bortnick A, and Murre C. 2015. AID targeting: Old mysteries and new challenges. Trends Immunol 36: 527–535. PubMed PMC
Yabuki M, Ordinario EC, Cummings WJ, Fujii MM, and Maizels N. 2009. E2A Acts in cis in G 1 Phase of Cell Cycle to Promote Ig Gene Diversification. J. Immunol 182: 408–415. PubMed PMC
Budzyńska PM, Kyläniemi MK, Kallonen T, Soikkeli AI, Nera K-P, Lassila O, and Alinikula J. 2017. Bach2 regulates AID-mediated immunoglobulin gene conversion and somatic hypermutation in DT40 B cells. Eur. J. Immunol 47: 993–1001. PubMed
Wang Q, Oliveira T, Jankovic M, Silva IT, Hakim O, Yao K, Gazumyan A, Mayer CT, Pavri R, Casellas R, Nussenzweig MC, and Robbiani DF. 2014. Epigenetic targeting of activation-induced cytidine deaminase. Proc. Natl. Acad. Sci. U. S. A 111: 18667–18672. PubMed PMC
Li J, Ahn JH, and Wang GG. 2019. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell. Mol. Life Sci 76: 2899–2916. PubMed PMC
Aida M, Hamad N, Stanlie A, Begum NA, and Honjo T. 2013. Accumulation of the FACT complex, as well as histone H3.3, serves as a target marker for somatic hypermutation. Proc. Natl. Acad. Sci. U. S. A 110: 7784–9. PubMed PMC
Parsa JY, Ramachandran S, Zaheen A, Nepal RM, Kapelnikov A, Belcheva A, Berru M, Ronai D, and Martin A. 2012. Negative supercoiling creates single-stranded patches of DNA that are substrates for AID-mediated mutagenesis. PLoS Genet 8: e1002518. PubMed PMC
Odegard VH, and Schatz DG. 2006. Targeting of somatic hypermutation. Nat. Rev. Immunol 6: 573–83. PubMed
Rajagopal D, Maul RW, Ghosh A, Chakraborty T, Khamlichi AA, Sen R, and Gearhart PJ. 2009. Immunoglobulin switch μ sequence causes RNA polymerase II accumulation and reduces dA hypermutation 206. PubMed PMC
Wang L, Wuerffel R, Feldman S, Khamlichi AA, and Kenter AL. 2009. S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination. J. Exp. Med 206: 1817–1830. PubMed PMC
Yu K, and Lieber MR. 2019. Current insights into the mechanism of mammalian immunoglobulin class switch recombination. Crit. Rev. Biochem. Mol. Biol 54: 333–351. PubMed PMC
Wang X, Fan M, Kalis S, Wei L, and Scharff MD. 2014. A source of the single-stranded DNA substrate for activation-induced deaminase during somatic hypermutation. Nat. Commun 5. PubMed PMC
Canugovi C, Samaranayake M, and Bhagwat AS. 2009. Transcriptional pausing and stalling causes multiple clustered mutations by human activation‐induced deaminase. FASEB J 23: 34–44. PubMed PMC
Begum NA, Stanlie A, Nakata M, Akiyama H, and Honjo T. 2012. The histone chaperone Spt6 is required for activation-induced cytidine deaminase target determination through H3K4me3 regulation. J. Biol. Chem 287: 32415–32429. PubMed PMC
Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, and Wu H. 2017. AID Recognizes Structured DNA for Class Switch Recombination. Mol. Cell 67: 361–373.e4. PubMed PMC
Zheng S, Vuong BQ, Vaidyanathan B, Lin JY, Huang FT, and Chaudhuri J. 2015. Non-coding RNA Generated following Lariat Debranching Mediates Targeting of AID to DNA. Cell 161: 762–773. PubMed PMC
Kanehiro Y, Todo K, Negishi M, Fukuoka J, Gan W, Hikasa T, Kaga Y, Takemoto M, Magari M, Li X, Manley JL, Ohmori H, and Kanayama N. 2012. Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1. Proc. Natl. Acad. Sci. U. S. A 109: 1216–1221. PubMed PMC
Singh AK, Tamrakar A, Jaiswal A, Kanayama N, and Kodgire P. 2020. SRSF1–3, a splicing and somatic hypermutation regulator, controls transcription of IgV genes via chromatin regulators SATB2, UBN1 and histone variant H3.3. Mol. Immunol 119: 69–82. PubMed
Feng Y, Seija N, Di Noia JM, and Martin A. 2020. AID in Antibody Diversification: There and Back Again. Trends Immunol 41: 586–600. PubMed PMC
Pefanis E, and Basu U. 2015. RNA exosome regulates AID DNA mutator activity in the B cell genome. Adv. Immunol 127: 257–308. PubMed PMC
Maul RW, Saribasak H, Cao Z, and Gearhart PJ. 2015. Topoisomerase I deficiency causes RNA polymerase II accumulation and increases AID abundance in immunoglobulin variable genes. DNA Repair (Amst) 30: 46–52. PubMed PMC
Vojnic E, Simon B, Strahl BD, Sattler M, and Cramer P. 2006. Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription. J. Biol. Chem 281: 13–15. PubMed
Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, and Strahl BD. 2005. A Novel Domain in Set2 Mediates RNA Polymerase II Interaction and Couples Histone H3 K36 Methylation with Transcript Elongation. Mol. Cell. Biol 25: 3305–3316. PubMed PMC
Li M, Phatnani HP, Guan Z, Sage H, Greenleaf AL, and Zhou P. 2005. Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc. Natl. Acad. Sci. U. S. A 102: 17636–17641. PubMed PMC
Edmunds JW, Mahadevan LC, and Clayton AL. 2008. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27: 406–420. PubMed PMC
Carvalho S, Raposo AC, Martins FB, Grosso AR, Sridhara SC, Rino J, Carmo-Fonseca M, and De Almeida SF. 2013. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res 41: 2881–2893. PubMed PMC
Sun Z, Zhang Y, Jia J, Fang Y, Tang Y, Wu H, and Fang D. 2020. H3K36me3, message from chromatin to DNA damage repair. Cell Biosci 10: 1–9. PubMed PMC
Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencowe BJ, and Frey BJ. 2010. Deciphering the splicing code. Nature 465: 53–59. PubMed
Barnes CO, Calero M, Malik I, Graham BW, Spahr H, Lin G, Cohen AE, Brown IS, Zhang Q, Pullara F, Trakselis MA, Kaplan CD, and Calero G. 2015. Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete Transcription Bubble. Mol. Cell 59: 258–269. PubMed PMC
King JJ, Manuel CA, Barrett CV, Raber S, Lucas H, Sutter P, and Larijani M. 2015. Catalytic pocket inaccessibility of activation-induced cytidine deaminase is a safeguard against excessive mutagenic activity. Structure 23: 615–627. PubMed
Larijani M, Petrov AP, Kolenchenko O, Berru M, Krylov SN, and Martin A. 2007. AID Associates with Single-Stranded DNA with High Affinity and a Long Complex Half-Life in a Sequence-Independent Manner. Mol. Cell. Biol 27: 20–30. PubMed PMC