Transcription elongation factor ELOF1 is required for efficient somatic hypermutation and class switch recombination
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
R01 AI127642
NIAID NIH HHS - United States
PubMed
40049160
PubMed Central
PMC11972161
DOI
10.1016/j.molcel.2025.02.007
PII: S1097-2765(25)00133-9
Knihovny.cz E-resources
- Keywords
- AID, ELOF1, RNA polymerase II, class switch recombination, somatic hypermutation, transcription,
- MeSH
- AICDA (Activation-Induced Cytidine Deaminase) MeSH
- B-Lymphocytes * immunology metabolism MeSH
- Cytidine Deaminase metabolism genetics MeSH
- Phosphoproteins * genetics metabolism MeSH
- Phosphorylation MeSH
- Transcription, Genetic MeSH
- Humans MeSH
- Mice, Knockout MeSH
- Mice MeSH
- DNA Repair MeSH
- Immunoglobulin Class Switching * MeSH
- RNA Polymerase II metabolism genetics MeSH
- Somatic Hypermutation, Immunoglobulin * MeSH
- Transcriptional Elongation Factors * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- AICDA (Activation-Induced Cytidine Deaminase) MeSH
- Cytidine Deaminase MeSH
- Phosphoproteins * MeSH
- RNA Polymerase II MeSH
- Transcriptional Elongation Factors * MeSH
Somatic hypermutation (SHM) and class switch recombination (CSR) diversify immunoglobulin (Ig) genes and are initiated by the activation-induced deaminase (AID), a single-stranded DNA cytidine deaminase thought to engage its substrate during RNA polymerase II (RNAPII) transcription. Through a genetic screen, we identified numerous potential factors involved in SHM, including elongation factor 1 homolog (ELOF1), a component of the RNAPII elongation complex that functions in transcription-coupled nucleotide excision repair (TC-NER) and transcription elongation. Loss of ELOF1 compromises SHM, CSR, and AID action in mammalian B cells and alters RNAPII transcription by reducing RNAPII pausing downstream of transcription start sites and levels of serine 5 but not serine 2 phosphorylated RNAPII throughout transcribed genes. ELOF1 must bind to RNAPII to be a proximity partner for AID and to function in SHM and CSR, and TC-NER is not required for SHM. We propose that ELOF1 helps create the appropriate stalled RNAPII substrate on which AID acts.
See more in PubMed
Di Noia JM, and Neuberger MS (2007). Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem 76, 1–22. 10.1146/annurev.biochem.76.061705.090740. PubMed DOI
Alt FW, Zhang Y, Meng FL, Guo C, and Schwer B (2013). Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152, 417–429. 10.1016/j.cell.2013.01.007. PubMed DOI PMC
Methot SP, and Di Noia JM (2017). Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv. Immunol 133, 37–87. 10.1016/bs.ai.2016.11.002. PubMed DOI
Storb U (2014). Why does somatic hypermutation by AID require transcription of its target genes? Adv. Immunol 122, 253–277. 10.1016/B978-0-12-800267-4.00007-9. PubMed DOI
Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, Zhang T, Myers D, Wasserman CR, Wesemann DR, et al. (2011). The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144, 353–363. 10.1016/j.cell.2011.01.001. PubMed DOI PMC
Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, Resch W, Yamane A, Reina San-Martin B, Barreto V, et al. (2010). Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143, 122–133. 10.1016/j.cell.2010.09.017. PubMed DOI PMC
Willmann KL, Milosevic S, Pauklin S, Schmitz KM, Rangam G, Simon MT, Maslen S, Skehel M, Robert I, Heyer V, et al. (2012). A role for the RNA pol II-associated PAF complex in AID-induced immune diversification. J. Exp. Med 209, 2099–2111. 10.1084/jem.20112145. PubMed DOI PMC
Methot SP, Litzler LC, Subramani PG, Eranki AK, Fifield H, Patenaude AM, Gilmore JC, Santiago GE, Bagci H, Cote JF, et al. (2018). A licensing step links AID to transcription elongation for mutagenesis in B cells. Nat. Commun 9, 1248. 10.1038/s41467-018-03387-6. PubMed DOI PMC
Duan Z, Baughn LB, Wang X, Zhang Y, Gupta V, MacCarthy T, Scharff MD, and Yu G (2021). Role of Dot1L and H3K79 methylation in regulating somatic hypermutation of immunoglobulin genes. Proc. Natl. Acad. Sci. USA 118. 10.1073/pnas.2104013118. PubMed DOI PMC
Xu Z, Zan H, Pone EJ, Mai T, and Casali P (2012). Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol 12, 517–531. 10.1038/nri3216. PubMed DOI PMC
Keim C, Kazadi D, Rothschild G, and Basu U (2013). Regulation of AID, the B-cell genome mutator. Genes Dev 27, 1–17. 10.1101/gad.200014.112. PubMed DOI PMC
Maul RW, Cao Z, Venkataraman L, Giorgetti CA, Press JL, Denizot Y, Du H, Sen R, and Gearhart PJ (2014). Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo-activated cells. J. Exp. Med 211, 2297–2306. 10.1084/jem.20131512. PubMed DOI PMC
Kenter AL (2012). AID targeting is dependent on RNA polymerase II pausing. Semin. Immunol 24, 281–286. 10.1016/j.smim.2012.06.001. PubMed DOI PMC
Sun J, Rothschild G, Pefanis E, and Basu U (2013). Transcriptional stalling in B-lymphocytes: a mechanism for antibody diversification and maintenance of genomic integrity. Transcription 4, 127–135. 10.4161/trns.24556. PubMed DOI PMC
Tarsalainen A, Maman Y, Meng FL, Kylaniemi MK, Soikkeli A, Budzynska P, McDonald JJ, Senigl F, Alt FW, Schatz DG, et al. (2022). Ig Enhancers Increase RNA Polymerase II Stalling at Somatic Hypermutation Target Sequences. J. Immunol 208, 143–154. 10.4049/jimmunol.2100923. PubMed DOI PMC
Rada C, and Milstein C (2001). The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially. EMBO J 20, 4570–4576. 10.1093/emboj/20.16.4570. PubMed DOI PMC
Longerich S, Basu U, Alt F, and Storb U (2006). AID in somatic hypermutation and class switch recombination. Curr. Opin. Immunol 18, 164–174. 10.1016/j.coi.2006.01.008. PubMed DOI
Core L, and Adelman K (2019). Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev 33, 960–982. 10.1101/gad.325142.119. PubMed DOI PMC
Vos SM, Farnung L, Urlaub H, and Cramer P (2018). Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560, 601–606. 10.1038/s41586-018-0442-2. PubMed DOI PMC
Ehara H, Yokoyama T, Shigematsu H, Yokoyama S, Shirouzu M, and Sekine SI (2017). Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 357, 921–924. 10.1126/science.aan8552. PubMed DOI
Vos SM, Farnung L, Boehning M, Wigge C, Linden A, Urlaub H, and Cramer P (2018). Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 560, 607–612. 10.1038/s41586-018-0440-4. PubMed DOI
Feng Y, Li C, Stewart JA, Barbulescu P, Seija Desivo N, Alvarez-Quilon A, Pezo RC, Perera MLW, Chan K, Tong AHY, et al. (2021). FAM72A antagonizes UNG2 to promote mutagenic repair during antibody maturation. Nature 600, 324–328. 10.1038/s41586-021-04144-4. PubMed DOI PMC
Wu L, Shukla V, Yadavalli AD, Dinesh RK, Xu D, Rao A, and Schatz DG (2022). HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation. Genes Dev 36, 433–450. 10.1101/gad.349438.122. PubMed DOI PMC
Wang M, Yang Z, Rada C, and Neuberger MS (2009). AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat. Struct. Mol. Biol 16, 769–776. 10.1038/nsmb.1623. PubMed DOI PMC
Geijer ME, Zhou D, Selvam K, Steurer B, Mukherjee C, Evers B, Cugusi S, van Toorn M, van der Woude M, Janssens RC, et al. (2021). Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nat. Cell Biol 23, 608–619. 10.1038/s41556-021-00692-z. PubMed DOI PMC
van der Weegen Y, de Lint K, van den Heuvel D, Nakazawa Y, Mevissen TET, van Schie JJM, San Martin Alonso M, Boer DEC, Gonzalez-Prieto R, Narayanan IV, et al. (2021). ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation. Nat. Cell Biol 23, 595–607. 10.1038/s41556-021-00688-9. PubMed DOI PMC
Kokic G, Yakoub G, van den Heuvel D, Wondergem AP, van der Meer PJ, van der Weegen Y, Chernev A, Fianu I, Fokkens TJ, Lorenz S, et al. (2024). Structural basis for RNA polymerase II ubiquitylation and inactivation in transcription-coupled repair. Nat. Struct. Mol. Biol 31, 536–547. 10.1038/s41594-023-01207-0. PubMed DOI PMC
Sarsam RD, Xu J, Lahiri I, Gong W, Li Q, Oh J, Zhou Z, Hou P, Chong J, Hao N, et al. (2024). Elf1 promotes Rad26’s interaction with lesion-arrested Pol II for transcription-coupled repair. Proc. Natl. Acad. Sci. USA 121, e2314245121. 10.1073/pnas.2314245121. PubMed DOI PMC
Ehara H, Kujirai T, Fujino Y, Shirouzu M, Kurumizaka H, and Sekine SI (2019). Structural insight into nucleosome transcription by RNA polymerase II with elongation factors. Science 363, 744–747. 10.1126/science.aav8912. PubMed DOI
Ehara H, Kujirai T, Shirouzu M, Kurumizaka H, and Sekine SI (2022). Structural basis of nucleosome disassembly and reassembly by RNAPII elongation complex with FACT. Science 377, eabp9466. 10.1126/science.abp9466. PubMed DOI
Papadopoulou V, Postigo A, Sanchez-Tillo E, Porter AC, and Wagner SD (2010). ZEB1 and CtBP form a repressive complex at a distal promoter element of the BCL6 locus. Biochem. J 427, 541–550. 10.1042/BJ20091578. PubMed DOI
Kuppers R (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251–262. 10.1038/nrc1589. PubMed DOI
Liu M, and Schatz DG (2009). Balancing AID and DNA repair during somatic hypermutation. Trends Immunol 30, 173–181. 10.1016/j.it.2009.01.007. PubMed DOI
Nabet B, Roberts JM, Buckley DL, Paulk J, Dastjerdi S, Yang A, Leggett AL, Erb MA, Lawlor MA, Souza A, et al. (2018). The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol 14, 431–441. 10.1038/s41589-018-0021-8. PubMed DOI PMC
Wang D, Wu W, Callen E, Pavani R, Zolnerowich N, Kodali S, Zong D, Wong N, Noriega S, Nathan WJ, et al. (2022). Active DNA demethylation promotes cell fate specification and the DNA damage response. Science 378, 983–989. 10.1126/science.add9838. PubMed DOI PMC
Canela A, Sridharan S, Sciascia N, Tubbs A, Meltzer P, Sleckman BP, and Nussenzweig A (2016). DNA Breaks and End Resection Measured Genome-wide by End Sequencing. Mol. Cell 63, 898–911. 10.1016/j.molcel.2016.06.034. PubMed DOI PMC
Nakamura M, Kondo S, Sugai M, Nazarea M, Imamura S, and Honjo T (1996). High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int. Immunol 8, 193–201. 10.1093/intimm/8.2.193. PubMed DOI
Casellas R, Basu U, Yewdell WT, Chaudhuri J, Robbiani DF, and Di Noia JM (2016). Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat. Rev. Immunol 16, 164–176. 10.1038/nri.2016.2. PubMed DOI PMC
Senigl F, Maman Y, Dinesh RK, Alinikula J, Seth RB, Pecnova L, Omer AD, Rao SSP, Weisz D, Buerstedde JM, et al. (2019). Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. Cell Rep 29, 3902–3915 e3908. 10.1016/j.celrep.2019.11.039. PubMed DOI PMC
Qian J, Wang Q, Dose M, Pruett N, Kieffer-Kwon KR, Resch W, Liang G, Tang Z, Mathe E, Benner C, et al. (2014). B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159, 1524–1537. 10.1016/j.cell.2014.11.013. PubMed DOI PMC
Aoi Y, Takahashi YH, Shah AP, Iwanaszko M, Rendleman EJ, Khan NH, Cho BK, Goo YA, Ganesan S, Kelleher NL, et al. (2021). SPT5 stabilization of promoter-proximal RNA polymerase II. Mol. Cell 81, 4413–4424 e4415. 10.1016/j.molcel.2021.08.006. PubMed DOI PMC
Hu S, Peng L, Xu C, Wang Z, Song A, and Chen FX (2021). SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape. Mol. Cell 81, 4425–4439 e4426. 10.1016/j.molcel.2021.08.029. PubMed DOI
Skene PJ, and Henikoff S (2017). An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6. 10.7554/eLife.21856. PubMed DOI PMC
Liu X, Liu T, Shang Y, Dai P, Zhang W, Lee BJ, Huang M, Yang D, Wu Q, Liu LD, et al. (2020). ERCC6L2 promotes DNA orientation-specific recombination in mammalian cells. Cell Res 30, 732–744. 10.1038/s41422-020-0328-3. PubMed DOI PMC
Ruthenburg AJ, Allis CD, and Wysocka J (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30. 10.1016/j.molcel.2006.12.014. PubMed DOI
Buratowski S (2009). Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546. 10.1016/j.molcel.2009.10.019. PubMed DOI PMC
Nojima T, Gomes T, Grosso ARF, Kimura H, Dye MJ, Dhir S, Carmo-Fonseca M, and Proudfoot NJ (2015). Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing. Cell 161, 526–540. 10.1016/j.cell.2015.03.027. PubMed DOI PMC
Schofield JA, Duffy EE, Kiefer L, Sullivan MC, and Simon MD (2018). TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods 15, 221–225. 10.1038/nmeth.4582. PubMed DOI PMC
Rada C, Ehrenstein MR, Neuberger MS, and Milstein C (1998). Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141. 10.1016/s1074-7613(00)80595-6. PubMed DOI
Bemark M, and Neuberger MS (2000). The c-MYC allele that is translocated into the IgH locus undergoes constitutive hypermutation in a Burkitt’s lymphoma line. Oncogene 19, 3404–3410. 10.1038/sj.onc.1203686. PubMed DOI
Kodgire P, Mukkawar P, Ratnam S, Martin TE, and Storb U (2013). Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID. J. Exp. Med 210, 1481–1492. 10.1084/jem.20121523. PubMed DOI PMC
Meng FL, Du Z, Federation A, Hu J, Wang Q, Kieffer-Kwon KR, Meyers RM, Amor C, Wasserman CR, Neuberg D, et al. (2014). Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 159, 1538–1548. 10.1016/j.cell.2014.11.014. PubMed DOI PMC
Pefanis E, Wang J, Rothschild G, Lim J, Chao J, Rabadan R, Economides AN, and Basu U (2014). Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 514, 389–393. 10.1038/nature13580. PubMed DOI PMC
Sun J, Keim CD, Wang J, Kazadi D, Oliver PM, Rabadan R, and Basu U (2013). E3-ubiquitin ligase Nedd4 determines the fate of AID-associated RNA polymerase II in B cells. Genes Dev 27, 1821–1833. 10.1101/gad.210211.112. PubMed DOI PMC
Laffleur B, Lim J, Zhang W, Chen Y, Pefanis E, Bizarro J, Batista CR, Wu L, Economides AN, Wang J, et al. (2021). Noncoding RNA processing by DIS3 regulates chromosomal architecture and somatic hypermutation in B cells. Nat. Genet 53, 230–242. 10.1038/s41588-020-00772-0. PubMed DOI PMC
Dai P, Tan Y, Luo Y, Liu T, HUang Y, Liu X, Zhang S, Wang Y, Li Q, Li N, et al. (2025). Transcription-coupled AID Deamination Damage Depends on ELOF1-associated RNA Polymerase II. Mol. Cell, in press. PubMed
Alvarez-Prado AF, Perez-Duran P, Perez-Garcia A, Benguria A, Torroja C, de Yebenes VG, and Ramiro AR (2018). A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J. Exp. Med 215, 761–771. 10.1084/jem.20171738. PubMed DOI PMC
Martin M (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12. 10.14806/ej.17.1.200. DOI
Langmead B, and Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. 10.1038/nmeth.1923. PubMed DOI PMC
Langmead B, Trapnell C, Pop M, and Salzberg SL (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25. 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, and Gingeras TR (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, and Genome Project Data Processing, S. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC
Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, and Manke T (2016). deepTools2: a next generation web server for deep-sequencing data analysis. Nucl. Acids Res 44, W160–165. 10.1093/nar/gkw257. PubMed DOI PMC
Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis (New York: Springer-Verlag; ) 978–3-319–24277-4.
Love MI, Huber W, and Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550. 10.1186/s13059-014-0550-8. PubMed DOI PMC
Quinlan AR, and Hall IM (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. 10.1093/bioinformatics/btq033. PubMed DOI PMC
Bushnell B (2014). BBMap: A fast, accurate, splice-aware aligner. SourceForge https://doi.org/https://sourceforge.net/projects/bbmap/.
Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, Irizarry RA, Liu JS, Brown M, and Liu XS (2014). MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15, 554. 10.1186/s13059-014-0554-4. PubMed DOI PMC
Smith T, Heger A, and Sudbery I (2017). UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 27, 491–499. 10.1101/gr.209601.116. PubMed DOI PMC
Thorvaldsdottir H, Robinson JT, and Mesirov JP (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14, 178–192. 10.1093/bib/bbs017. PubMed DOI PMC
Shukla V, Halabelian L, Balagere S, Samaniego-Castruita D, Feldman DE, Arrowsmith CH, Rao A, and Aravind L (2020). HMCES Functions in the Alternative End-Joining Pathway of the DNA DSB Repair during Class Switch Recombination in B Cells. Mol. Cell 77, 384–394 e384. 10.1016/j.molcel.2019.10.031. PubMed DOI PMC
Dinesh RK, Barnhill B, Ilanges A, Wu L, Michelson DA, Senigl F, Alinikula J, Shabanowitz J, Hunt DF, and Schatz DG (2020). Transcription factor binding at Ig enhancers is linked to somatic hypermutation targeting. Eur. J. Immunol 50, 380–395. 10.1002/eji.201948357. PubMed DOI PMC
Xu D, Jiang W, Wu L, Gaudet RG, Park ES, Su M, Cheppali SK, Cheemarla NR, Kumar P, Uchil PD, et al. (2023). PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 619, 819–827. 10.1038/s41586-023-06322-y. PubMed DOI PMC
Zhu Y, Denholtz M, Lu H, and Murre C (2021). Calcium signaling instructs NIPBL recruitment at active enhancers and promoters via distinct mechanisms to reconstruct genome compartmentalization. Genes Dev 35, 65–81. 10.1101/gad.343475.120. PubMed DOI PMC
Parreno J, Delve E, Andrejevic K, Paez-Parent S, Wu PH, and Kandel R (2016). Efficient, Low-Cost Nucleofection of Passaged Chondrocytes. Cartilage 7, 82–91. 10.1177/1947603515609399. PubMed DOI PMC
Nojima T, Gomes T, Carmo-Fonseca M, and Proudfoot NJ (2016). Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide. Nat. Protoc 11, 413–428. 10.1038/nprot.2016.012. PubMed DOI PMC
Matos-Rodrigues G, van Wietmarschen N, Wu W, Tripathi V, Koussa NC, Pavani R, Nathan WJ, Callen E, Belinky F, Mohammed A, et al. (2022). S1-END-seq reveals DNA secondary structures in human cells. Mol. Cell 82, 3538–3552 e3535. 10.1016/j.molcel.2022.08.007. PubMed DOI PMC
Wong N, John S, Nussenzweig A, and Canela A (2021). END-seq: An Unbiased, High-Resolution, and Genome-Wide Approach to Map DNA Double-Strand Breaks and Resection in Human Cells. Methods Mol. Biol 2153, 9–31. 10.1007/978-1-0716-0644-5_2. PubMed DOI
Wu W, Hill SE, Nathan WJ, Paiano J, Callen E, Wang D, Shinoda K, van Wietmarschen N, Colon-Mercado JM, Zong D, et al. (2021). Neuronal enhancers are hotspots for DNA single-strand break repair. Nature 593, 440–444. 10.1038/s41586-021-03468-5. PubMed DOI PMC
Tubbs A, Sridharan S, van Wietmarschen N, Maman Y, Callen E, Stanlie A, Wu W, Wu X, Day A, Wong N, et al. (2018). Dual Roles of Poly(dA:dT) Tracts in Replication Initiation and Fork Collapse. Cell 174, 1127–1142 e1119. 10.1016/j.cell.2018.07.011. PubMed DOI PMC
Day DS, Zhang B, Stevens SM, Ferrari F, Larschan EN, Park PJ, and Pu WT (2016). Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol 17, 120. 10.1186/s13059-016-0984-2. PubMed DOI PMC
Liu D (2019). Algorithms for efficiently collapsing reads with Unique Molecular Identifiers. PeerJ 7, e8275. 10.7717/peerj.8275. PubMed DOI PMC
Vock IW, and Simon MD (2023). bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with Bayesian hierarchical modeling. RNA 29, 958–976. 10.1261/rna.079451.122. PubMed DOI PMC
Robinson JT, Thorvaldsdottir H, Turner D, and Mesirov JP (2023). igv.js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics 39. 10.1093/bioinformatics/btac830. PubMed DOI PMC