Longevity and other practical benefits of monolithic silica columns in the analysis of samples with complex matrices
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MH CZ NU22-A-108
Ministry of Health, Czech Republic
MH CZ-DRO (UHHK 00179906)
Ministry of Health, Czech Republic
STARSS
ERDF
PubMed
37582639
DOI
10.1002/jssc.202300448
Knihovny.cz E-zdroje
- Klíčová slova
- benefits of monolithic silica columns, clinical analysis, column longevity, complex matrix samples, high performance liquid chromatography, monolithic silica columns, sequential injection chromatography,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
At the turn of the millennium, the monolithic columns invoked new chances in HPLC. Even more than their organic polymer-based siblings, the inorganic silica-based monoliths targeted the territory of classical fully porous particle-packed columns, promising many benefits. Based on the number of published articles, the monoliths attracted academics just in the first few years after their introduction to the market. Lately, as superficially porous particles and sub-2-micron fully porous particles dominated the market, they stayed in the focus of routine laboratories and those who really appreciated the high porosity of the monolithic bed. The monoliths' practical benefits cannot be easily traced in the literature when they gradually lose academics' interest. Nevertheless, after more than 20 years of our experience, we still favor silica monoliths for their low back pressure and longevity when analyzing samples of clinical, pharmaceutical, and environmental origin. At the same time, the high permeability of monoliths enabled the birth of sequential injection chromatography, the medium-pressure separation technique based on the flexible flow manifold. This minireview aims to check, discuss, and summarize the practical aspects of monolithic silica columns in HPLC and medium-pressure sequential injection chromatography (SIC) that may not be visible at first sight but are evident retrospectively.
Zobrazit více v PubMed
Khoo HT, Leow CH. Advancements in the preparation and application of monolithic silica columns for efficient separation in liquid chromatography. Talanta. 2021;224:121777.
Broeckhoven K, Desmet G. Advances and innovations in liquid chromatography stationary phase supports. Anal Chem. 2021;93:257-72.
Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J Chromatogr A. 1997;762:135-46.
Cabooter D, Broeckhoven K, Sterken R, Vanmessen A, Vandendael I, Nakanishi K, et al. Detailed characterization of the kinetic performance of first and second generation silica monolithic columns for reversed-phase chromatography separations. J Chromatogr A. 2014;1325:72-82.
Niu Z, Zhang W, Yu C, Zhang J, Wen Y. Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. TrAC, Trends Anal Chem. 2018;102:123-46.
Šatínský D, Solich P, Chocholous P, Karlicek R. Monolithic columns: A new concept of separation in the sequential injection technique. Anal Chim Acta. 2003;499:205-14.
Ruzicka J, Marshall GD. Sequential injection: A new concept for chemical sensors, process analysis and laboratory assays. Anal Chim Acta. 1990;237:329-43.
Hatta M, Measures CI, Ruzicka J. Programmable flow injection. Principle, methodology and application for trace analysis of iron in a sea water matrix. Talanta. 2018;178:698-703.
Chocholous P, Satinsky D, Solich P. Fast simultaneous spectrophotometric determination of naphazoline nitrate and methylparaben by sequential injection chromatography. Talanta. 2006;70:408-13.
Chocholouš P, Šatínský D, Solich P. New generation of sequential injection chromatography: Great enhancement of capabilities of separation using flow analysis. Talanta. 2019;204:272-7.
Klimundova J, Satinsky D, Sklenarova H, Solich P. Automation of simultaneous release tests of two substances by sequential injection chromatography coupled with Franz cell. Talanta. 2006;69:730-5.
Urbánek L, Kujovská Krčmová L, Solichová D. Method for determination of Neopterine and creatinine in human urine using HPLC. Internal protocol of laboratory of Department of Clinical Biochemistry and Diagnostics, Hradec Králové. 2005.
Krcmova L, Solichova D, Melichar B, Kasparova M, Plisek J, Sobotka L, et al. Determination of neopterin, kynurenine, tryptophan and creatinine in human serum by high throughput HPLC. Talanta. 2011;85:1466-71.
Krcmova LK, Cervinkova B, Solichova D, Sobotka L, Hansmanova L, Melichar B, et al. Fast and sensitive HPLC method for the determination of neopterin, kynurenine and tryptophan in amniotic fluid, malignant effusions and wound exudates. Bioanalysis. 2015;7:2751-62.
Vernerova A, Krcmova LK, Heneberk O, Radochova V, Strouhal O, Kasparovsky A, et al. Chromatographic method for the determination of inflammatory biomarkers and uric acid in human saliva. Talanta. 2021;233:122598.
Urbanek L, Solichova D, Melichar B, Dvorak J, Svobodova I, Solich P. Optimization and validation of a high performance liquid chromatography method for the simultaneous determination of vitamins A and E in human serum using monolithic column and diode-array detection. Anal Chim Acta. 2006;573:267-72.
Chocholous P, Satinsky D, Sklenarova H, Solich P. Two-column sequential injection chromatography-new approach for fast and effective analysis and its comparison with gradient elution chromatography. Anal Chim Acta. 2010;668:61-6.
Chocholous P, Kosarova L, Satinsky D, Sklenarova H, Solich P. Enhanced capabilities of separation in Sequential Injection Chromatography-fused-core particle column and its comparison with narrow-bore monolithic column. Talanta. 2011;85:1129-34.
Chocholouš P, Dědková L, Boháčová T, Šatínský D, Solich P. Fast separation of red colorants in beverages using cyano monolithic column in Sequential Injection Chromatography. Microchem J. 2017;130:384-9.
Davletbaeva P, Chocholouš P, Bulatov A, Šatínský D, Solich P. Sub-1 min separation in sequential injection chromatography for determination of synthetic water-soluble dyes in pharmaceutical formulation. J Pharm Biomed Anal. 2017;143:123-9.
Mihalčíková L, Boonjob W, Sklenářová H. Automated sequential injection method for determination of caffeine in coffee drinks. Food Anal Methods. 2018;11:111-8.
Fikarova K, Cocovi-Solberg DJ, Rosende M, Horstkotte B, Sklenarova H, Miro M. A flow-based platform hyphenated to on-line liquid chromatography for automatic leaching tests of chemical additives from microplastics into seawater. J Chromatogr A. 2019;1602:160-7.
Sramkova I, Chocholous P, Sklenarova H, Satinsky D. On-line coupling of micro-extraction by packed sorbent with sequential injection chromatography system for direct extraction and determination of betaxolol in human urine. Talanta. 2015;143:132-7.
Koblova P, Sklenarova H, Chocholous P, Polasek M, Solich P. Simple automated generation of gradient elution conditions in sequential injection chromatography using monolithic column. Talanta. 2011;84:1273-7.
Sklenářová H, Koblová P, Chocholouš P, Šatínský D, Krčmová L, Kašparová M, et al. Separation of vitamins retinol acetate, ergocalciferol, or cholecalciferol and tocopherol acetate using sequential injection chromatography. Anal Lett. 2011;44:446-56.
Chocholouš P, Gil R, Acebal CC, Kubala V, Šatínský D, Solich P. Multilayered particle-packed column: Evaluation and comparison with monolithic and core-shell particle columns for the determination of red azo dyes in sequential injection chromatography. J Sep Sci. 2017;40:1225-33.