Regions of robust relative stability for PI controllers and LTI plants with unstructured multiplicative uncertainty: A second-order-based example

. 2023 Aug ; 9 (8) : e18924. [epub] 20230806

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37600380
Odkazy

PubMed 37600380
PubMed Central PMC10433004
DOI 10.1016/j.heliyon.2023.e18924
PII: S2405-8440(23)06132-7
Knihovny.cz E-zdroje

This example-oriented article addresses the computation of regions of all robustly relatively stabilizing Proportional-Integral (PI) controllers under various robust stability margins α for Linear Time-Invariant (LTI) plants with unstructured multiplicative uncertainty, where the plant model with multiplicative uncertainty is built on the basis of the second-order plant with three uncertain parameters. The applied graphical method, adopted from the authors' previous work, is grounded in finding the contour that is linked to the pairs of P-I coefficients marginally fulfilling the condition of robust relative stability expressed using the H∞ norm. The illustrative example in the current article emphasizes that the technique itself for plotting the boundary contour of robust relative stability needs to be combined with the precondition of the nominally stable feedback control system and with the line for which the integral parameter equals zero in order to get the final robust relative stability regions. The calculations of the robust relative stability regions for various robust stability margins α are followed by the demonstration of the control behavior for two selected controllers applied to a set of members from the family of plants.

Zobrazit více v PubMed

Åström K.J., Hägglund T. second ed. Instrument Society of America; Research Triangle Park, NC, USA: 1995. PID Controllers: Theory, Design, and Tuning.

Desborough L., Miller R. Chemical Process Control-VI, Assessment and New Directions for Research – Proceedings of the Sixth International Conference on Chemical Process Control, AIChE Symposium Series No. 326. vol. 98. American Institute of Chemical Engineers; 2002. Increasing customer value of industrial control performance monitoring-Honeywell's experience; pp. 169–189.

O'Dwyer A. third ed. Imperial College Press; London, UK: 2009. Handbook of PI and PID Controller Tuning Rules.

Wu H., Su W., Liu Z. Proceedings of the 9th IEEE Conference on Industrial Electronics and Applications. Hangzhou; China: 2014. PID controllers: design and tuning methods; pp. 808–813.

Samad T. A survey on industry impact and challenges thereof [technical activities] IEEE Control Syst. Mag. 2017;37(1):17–18. doi: 10.1109/MCS.2016.2621438. DOI

Vilanova R., Alfaro V.M., Arrieta O. In: PID Control in the Third Millennium, Advances in Industrial Control. Vilanova R., Visioli A., editors. Springer; London: 2012. Robustness in PID control. DOI

Matušů R., Şenol B., Pekař L. Calculation of robustly relatively stabilizing PID controllers for linear time-invariant systems with unstructured uncertainty. ISA (Instrum. Soc. Am.) Trans. 2022;131:579–597. doi: 10.1016/j.isatra.2022.04.037. PubMed DOI

Matušů R., Şenol B., Pekař L. Design of robust PI controllers for interval plants with worst-case gain and phase margin specifications in presence of multiple crossover frequencies. IEEE Access. 2022;10:67713–67726.

Ackermann J., Bartlett A., Kaesbauer D., Sienel W., Steinhauser R. Springer-Verlag; London, UK: 1993. Robust Control – Systems with Uncertain Physical Parameters.

Barmish B.R. Macmillan; New York, USA: 1994. New Tools for Robustness of Linear Systems.

Bhattacharyya S.P., Datta A., Keel L.H. CRC Press, Taylor & Francis Group; Boca Raton, Florida, USA: 2009. Linear Control Theory: Structure, Robustness, and Optimization.

Bhattacharyya S.P. Robust control under parametric uncertainty: an overview and recent results. Annu. Rev. Control. 2017;44:45–77.

Doyle J.C., Francis B., Tannenbaum A. Macmillan; New York, USA: 1992. Feedback Control Theory.

Skogestad S., Postlethwaite I. John Wiley and Sons; Chichester, UK: 2005. Multivariable Feedback Control: Analysis and Design.

Kučera V. Robustní regulátory (robust controllers) Automa. 2001;7(6):43–45. (In Czech)

Matušů R., Şenol B., Yeroğlu C. Linear systems with unstructured multiplicative uncertainty: modeling and robust stability analysis. PLoS One. 2017;12(7) PubMed PMC

Matušů R., Prokop R., Pekař L. Parametric and unstructured approach to uncertainty modelling and robust stability analysis. International Journal of Mathematical Models and Methods in Applied Sciences. 2011;5(6):1011–1018.

Doyle J.C. Proceedings of the 22nd IEEE Conference on Decision and Control. San Antonio; Texas, USA: 1983. Synthesis of robust controllers and filters; pp. 109–114.

Zhou K., Doyle J.C., Glover K. Prentice Hall; Upper Saddle River, New Jersey, USA: 1996. Robust and Optimal Control.

Yang J., Zhu Y., Yin W., Hu C., Yang K., Mu H. LFT structured uncertainty modeling and robust loop-shaping controller optimization for an ultraprecision positioning stage. IEEE Trans. Ind. Electron. 2014;61(12):7013–7025.

Pfifer H., Hecker S. Generation of optimal linear parametric models for LFT-based robust stability analysis and control design. IEEE Trans. Control Syst. Technol. 2011;19(1):118–131.

Sarjaš A., Svečko R., Chowdhury A. Strong stabilization servo controller with optimization of performance criteria. ISA (Instrum. Soc. Am.) Trans. 2011;50(3):419–431. doi: 10.1016/j.isatra.2011.03.005. PubMed DOI

Lao Y., Scruggs J.T. Proceeding of the 2020 American Control Conference. ACC); Denver, CO, USA: 2020. Robust control of wave energy converters using unstructured uncertainty; pp. 4237–4244. DOI

Ramos E.T.G., Acioli G., Barros P.R., Neto J.S. da R. Proceedings of the 2020 7th International Conference on Control. Decision and Information Technologies (CoDIT); Prague, Czech Republic: 2020. H∞ robust control using LMI and unstructured uncertainty applied to a temperature process; pp. 1087–1092. DOI

Söylemez M.T., Bayhan N. Calculation of all H∞ robust stabilizing gains for SISO LTI systems. IFAC Proc. Vol. 2008;41(2):3982–3987. doi: 10.3182/20080706-5-KR-1001.00670. DOI

Zhai G., Murao S., Koyama N., Yoshida M. Proceedings of the 2003 European Control Conference. 2003. Low order H∞ controller design: an LMI approach; pp. 3070–3075. DOI

Ankelhed D. Linköping University; Linköping, Sweden: 2011. On Design of Low Order H-Infinity Controllers, Doctoral Dissertation.

Mitchell T., Overton M.L. Fixed low-order controller design and H∞ optimization for large-scale dynamical systems. IFAC-PapersOnLine. 2015;48(14):25–30. doi: 10.1016/j.ifacol.2015.09.428. DOI

Yaniv O. Design of low-order controllers satisfying sensitivity constraints for unstructured uncertain plants. Int. J. Robust Nonlinear Control. 2004;14(16):1359–1370.

Dúbravská M., Harsányi L. Control of uncertain systems. J. Electr. Eng. 2007;58(4):228–231.

Emami T., Watkins J.M. Robust performance characterization of PID controllers in the frequency domain. WSEAS Trans. Syst. Control. 2009;4(5):232–242.

Karšaiová M., Bakošová M., Vasičkaninová A. Proceedings of the 18th International Conference on Process Control. Tatranská Lomnica; Slovakia: 2011. Robust control of a hydraulic system with unstructured uncertainties; pp. 344–347.

Matušů R., Prokop R. Proceedings of the 29th DAAAM International Symposium. Vienna; Austria: 2018. Robustly stabilizing regions of PI controllers parameters for systems with additive uncertainty; pp. 176–179.

Chokkadi S., Kumar S.S. Proceedings of the 2019 International Conference on Automation. Computational and Technology Management (ICACTM); London, UK: 2019. Design of robust controller for an uncertain system described by unstructured uncertainty model using small gain theorem; pp. 459–463.

Matušů R. Springer Nature Switzerland AG; Cham: 2019. Calculation of Robustly Stabilizing PI Controllers for Linear Time-Invariant Systems with Multiplicative Uncertainty. In Intelligent Systems in Cybernetics and Automation Control Theory – Advances in Intelligent Systems and Computing; pp. 259–263. 860. DOI

Keshtkar N., Röbenack K. Unstructured uncertainty based modeling and robust stability analysis of textile-reinforced composites with embedded shape memory alloys. Algorithms. 2020;13(1) doi: 10.3390/a13010024. DOI

Shenton A.T., Shafiei Z. Relative stability for control systems with adjustable parameters. J. Guid. Control Dynam. 1994;17(2):304–310.

Cavicehi T.J. Phase-root locus and relative stability. IEEE Control Syst. Mag. 1996;16(No. 4):69–77.

Barth E.J., Zhang J., Goldfarb M. Control design for relative stability in a PWM-controlled pneumatic system. J. Dyn. Syst. Meas. Control. 2003;125(No. 3):504–508.

Tan N., Kaya I., Yeroglu C., Atherton D.P. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Convers. Manag. 2006;47(No. 18–19):3045–3058.

Younce R.C., Rohrs C.E. Proceedings of the 29th IEEE Conference on Decision and Control. Honolulu, Hawaii; USA: 1990. Identification with nonparametric uncertainty; pp. 3154–3161.

Krause J.M., Khargonekar P.P. Parameter identification in the presence of non-parametric dynamic uncertainty. Automatica. 1990;26(No. 1):113–123.

Zhou T., Kimura H. Simultaneous identification of nominal model, parametric uncertainty and unstructured uncertainty for robust control. Automatica. 1994;30(No. 3):391–402.

Matušů R., Şenol B., Shaikh I. Data Science an Algorithms in Systems – Lecture Notes in Networks and Systems. Springer Nature Switzerland AG; Cham: 2023. Robust control of air flow speed in laboratory model of hot-air tunnel: multiplicative uncertainty-based approach; pp. 529–538. 597. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...