Indian Red Jungle fowl reveals a genetic relationship with South East Asian Red Jungle fowl and Indian native chicken breeds as evidenced through whole mitochondrial genome sequences
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
37621706
PubMed Central
PMC10445952
DOI
10.3389/fgene.2023.1083976
PII: 1083976
Knihovny.cz E-resources
- Keywords
- SNPs, chicken, mitochondrial DNA, molecular phylogeny, mutations and variants, next-generation sequencing,
- Publication type
- Journal Article MeSH
Background: Native chickens are dispersed in a wide geographical range and have hereditary assets that are kept by farmers for various purposes. Mitochondrial DNA (mtDNA) is a widely utilized marker in molecular studies because of its quick advancement, matrilineal legacy, and simple molecular structure. Method and Results: We performed NGS sequencing to investigate mitochondrial genomes and to evaluate the hereditary connections, diversity, and measure of gene stream estimation in Indian native chicken breeds and Red Jungle fowl. The chicken breeds were genotyped using the D-loop region and 23 haplotypes were identified. When compared to Indian native breeds, more haplotypes were identified in the NADH dehydrogenase subunits, Cytochrome c oxidase, Cytochrome b, ATP synthase subunit 6, and Ribosomal RNA genes. The phylogenetic examination indicated that the analyzed chicken breeds were divided into six significant clades, namely A, B, C, D, E, and F, of which the F clade indicated the domestication of chicken breeds in India. Additionally, our work affirmed that the Indian Red Jungle Fowl is the origin for both reference Red Jungle Fowl as well as all Indian breeds, which is reflected in the dendrogram as well as network analysis based on the whole mtDNA and D-loop region. Indian Red Jungle Fowl is distributed as an outgroup, suggesting that this ancestry was reciprocally monophyletic. Conclusion: The mtDNA sequences of Indian native chickens provided novel insights into adaptation mechanisms and the significance of important mtDNA variations in understanding the maternal lineages of native birds.
See more in PubMed
Ahmed S. U., Shukla S., Das H. (2017). Molecular Characterization of Mitochondrial D Loop of Indian Red Jungle Fowl. Int. J. Livest. Res. 7 (6), 1–152. 10.5455/ijlr.20170423033604 DOI
Altshuler D. L., Dudley R. (2006). The physiology and biomechanics of avian flight at high altitude. Integr. Comp. Biol. 46, 62–71. 10.1093/icb/icj008 PubMed DOI
Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature 290 (5806), 457–465. 10.1038/290457a0 PubMed DOI
Bandelt H. J., Forster P., Rohl A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16 (1), 37–48. 10.1093/oxfordjournals.molbev.a026036 PubMed DOI
Bao H., Zhao C., Li J., Wu C. (2007). Association of MT-ND5 gene variation with mitochondrial respiratory control ratio and NADH dehydrogenase activity in Tibet chicken embryos. Anim. Genet. 38, 514–516. 10.1111/j.1365-2052.2007.01622.x PubMed DOI
Bao H., Zhao C., Li J., Wu C. (2008). Sequencing and alignment of mitochondrial genomes of Tibetan chicken and two lowland chicken breeds. Sci. China Life Sci. 51, 47–51. 10.1007/s11427-008-0005-0 PubMed DOI
Beebe W. (1918). Monograph of the Pheasants. London, UK: New York Zoological Society.
Brisbin I. L., Peterson A. T., Okimoto R., Amato R. G. (2002). Characterization of the genetic status of populations of red jungle fowl. J. Bombay Nat. Hist. Soc. 99, 217–223.
Buehler D. M., Baker A. J. (2003). Characterization of the red knot (Calidris canutus) mitochondrial control region. Genome 46 (4), 565–572. 10.1139/g03-034 PubMed DOI
Chandel N. S., Schumacker P. T. (2000). Cellular oxygen sensing by mitochondria: old questions, new insight. J. Appl. Physiol. 88, 1880–1889. 10.1152/jappl.2000.88.5.1880 PubMed DOI
Crawford R. (1984). “Domestic fowl,” in Evolution of Domesticated Animals. Editor Mason L. L. (London: Longman; ), 298–311.
Danforth C. H. (1958). Gallus sonnerati and the domestic fowl. J. Hered. 49, 167–170. 10.1093/oxfordjournals.jhered.a106797 DOI
Darwin C. (1868). The Variation of Animals and Plants Under Domestication. London, UK: John Murray.
Di Lorenzo P., Ceccobelli S., Panella F., Attard G., Lasagna E. (2015). The role of mitochondrial DNA to determine the origin of domestic chicken. World's Poult. Sci. J. 71 (2), 311–318. 10.1017/S0043933915000318 DOI
Eriksson J., Larson G., Gunnarsson U., Bed'Hom B., Tixier-Boichard M., Strömstedt L., et al. (2008). Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet 4, e1000010. 10.1371/journal.pgen.1000010 PubMed DOI PMC
Excoffier L., Smouse P., Quattro J. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131 (2), 479–491. 10.1093/genetics/131.2.479 PubMed DOI PMC
Fernandes M., Mukesh S. S., Sathyakumar S., Kaul R., Kalsi R. S., Sharma D. (2009). Conservation of red junglefowl Gallus gallus in India. Int. J. Galli. Conserv. 1, 94–101.
Foran D. R., Hixson J. E., Brown W. M. (1988). Comparisons of ape and human sequences that regulate mitochondrial DNA transcription and D-loop DNA synthesis. Nucleic Acids Res 16 (13), 5841–5861. 10.1093/nar/16.13.5841 PubMed DOI PMC
Fumihito A., Miyake T., Sumi S., Takada M., Ohno S., Kondo N. (1994). One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc. Natl. Acad. Sci. U. S. A. 91 (26), 12505–12509. 10.1073/pnas.91.26.12505 PubMed DOI PMC
Fumihito A., Miyake T., Takada M., Shingu R., Endo T., Gojobori T., et al. (1996). Monophyletic origin and unique dispersal patterns of domestic fowls. Proc. Natl. Acad. Sci. U. S. A. 93 (13), 6792–6795. 10.1073/pnas.93.13.6792 PubMed DOI PMC
Gering E., Johnsson M., Willis P., Getty T., Wright D. (2015). Mixed ancestry and admixture in Kauai's feral chickens: invasion of domestic genes into ancient Red Junglefowl reservoirs. Mol. Ecol. 24 (9), 2112–24. 10.1111/mec.13096 PubMed DOI
Gifford-Gonzalez D., Hanotte O. (2011). Domesticating animals in Africa: implications of genetic and archaeological findings. J. World Prehist. 24, 1–23. 10.1007/s10963-010-9042-2 DOI
Gu J., Li S. (2020). Next-generation sequencing of the complete mitochondrial genome of the Piao chicken (Gallus gallus). Mit. DNA Part B 5 (3), 2870–2871. 10.1080/23802359.2020.1791755 PubMed DOI PMC
Gupta J., Mathew J., Shukla S. J. K., Mehra S., Mehra M., Sharma A., et al. (2009). Mitochondrial DNA variation within and between the Gallus species. Asian J. Microbiol. Biotechnol. Environ. Sci. 11 (4), 717–721.
Haring E., Kruckenhauser L., Gamauf A., Riesing M. J., Pinsker W. (2001). The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors. Mol. Biol. Evol. 18 (10), 1892–904. 10.1093/oxfordjournals.molbev.a003730 PubMed DOI
Hu B., Yang M., Liao Z., Wei H., Zhao C., Li D., et al. (2020). Mutation of TWNK Gene Is One of the Reasons of Runting and Stunting Syndrome Characterized by mtDNA Depletion in Sex-Linked Dwarf Chicken. Front. Cell Dev. Biol. 8, 581. 10.3389/fcell.2020.00581 PubMed DOI PMC
Jia X-X., Tang X-J., Lu J-X., Fan Y-F., Chen D-W., Tang M-J., et al. (2016). The investigation of genetic diversity and evolution of Daweishan Mini chicken based on the complete mitochondrial (mt) DNA D-loop region sequence. Mit. DNA Part A 27 (4), 3001–3004. 10.3109/19401736.2015.1060478 PubMed DOI
Karsli T., Balcıoğlu M. S. (2019). Genetic characterization and population structure of six brown layer pure lines using microsatellite markers. Asian-Australas. J. Anim. Sci. 32 (1), 49–57. 10.5713/ajas.17.0870 PubMed DOI PMC
Kanakachari M., Rahman H., Chatterjee R. N., Bhattacharya T. K. (2022). Signature of Indian native chicken breeds: a perspective. World's Poult. Sci. J. 78 (2), 421–445. 10.1080/00439339.2022.2026201 DOI
Kang K. I., El-Gazzar M., Sellers H. S., Dorea F., Williams S. M., Kim T., et al. (2012). Investigation into the aetiology of runting and stunting syndrome in chickens. Avian Pathol 41 (1), 41–50. 10.1080/03079457.2011.632402 PubMed DOI
Kanginakudru S., Metta M., Jakati R. D., Nagaraju J. (2008). Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evol. Biol. 8, 174–178. 10.1186/1471-2148-8-174 PubMed DOI PMC
Kawabe K., Worawut R., Taura S., Shimogiri T., Nishida T., Okamoto S. (2014). Genetic Diversity of mtDNA D-loop Polymorphisms in Laotian Native Fowl Populations. Asian-Australas. J. Anim. Sci. 27 (1), 19–23. 10.5713/ajas.2013.13443 PubMed DOI PMC
Keeling L., Andersson L., Schütz K. E., Kerje S., Fredriksson R., Carlborg Ö., et al. (2004). Chicken genomics: feather-pecking and victim pigmentation. Nature 431, 645–646. 10.1038/431645a PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Kumar S., Tamura K., Nei M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinformatics 5 (2), 150–163. 10.1093/bib/5.2.150 PubMed DOI
Lawal R. A. (2017). “Signatures of Selection and Introgression in the Genus Gallus,”. Ph.D. thesis (Nottingham: University of Nottingham; ).
Li H., Hu B., Luo Q., Hu S., Luo Y., Zhao B., et al. (2019). Runting and stunting syndrome is associated with mitochondrial dysfunction in sex-linked dwarf chicken. Front. Genet. 10, 1337. 10.3389/fgene.2019.01337 PubMed DOI PMC
Lin Q., Cao R., Jiang G. T., Qiu L., Hu G. B., Dai Q. Z., et al. (2016). The complete mitochondrial genome of the Xupu goose. Mit. DNA Part A 27 (2), 1010–1011. 10.3109/19401736.2014.926528 PubMed DOI
Lin Q., Jiang G. T., Li Y. H., Yan H. F., Liu X., Lu B. (2019). Removal of bisphenol A from aqueous solution via host-guest interactions based on beta-cyclodextrin grafted cellulose bead. Braz. J. Poult. Sci. 21, 1–9. 10.1016/j.ijbiomac.2019.08.116 PubMed DOI
Liu L. L., Xie H. B., Yang Y. S., Yu Q. F., He J. H. (2016a). The complete mitochondrial genome of the Xuefeng black-boned chicken. Mit. DNA Part A 27 (1), 30–31. 10.3109/19401736.2013.869679 PubMed DOI
Liu L. L., Xie H. B., Yu Q. F., He S. P., He J. H. (2016b). Determination and analysis of the complete mitochondrial genome sequence of Taoyuan chicken. Mit. DNA part A 27 (1), 371–372. 10.3109/19401736.2014.895991 PubMed DOI
Liu Y. P., Wu G. S., Yao Y. G., Miao Y. W., Luikart G., Baig M., et al. (2006). Multiple maternal origins of chickens: out of the Asian jungles. Mol. Phylogenet. Evol. 38 (1), 12–19. 10.1016/j.ympev.2005.09.014 PubMed DOI
Liu Z. G., Lei C. Z., Luo J., Ding C., Chen G. H., Chang H., et al. (2004). Genetic variability of mtDNA sequences in Chinese native chicken breeds. Asian-Australs. J. Anim. Sci. 17 (7), 903–909. 10.5713/ajas.2004.903 DOI
Maw A. A., Kawabe K., Shimogiri T., Rerkamnuaychoke W., Kawamoto Y., Masuda S., et al. (2015). Genetic diversity and population structure in native chicken populations from Myanmar, Thailand and Laos by using 102 indels markers. Asian-Australas. J. Anim. Sci. 8 (1), 14–19. 10.5713/ajas.14.0212 PubMed DOI PMC
Mekchay S., Supakankul P., Assawamakin A., Wilantho A., Chareanchim W., Tongsima S. (2014). Population structure of four Thai indigenous chicken breeds. BMC Genet 15, 40–45. 10.1186/1471-2156-15-40 PubMed DOI PMC
Miao Y. W., Peng M. S., Wu G. S., Ouyang Y. N., Yang Z. Y., Yu N., et al. (2013). Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity 110 (3), 277–282. 10.1038/hdy.2012.83 PubMed DOI PMC
Mobegi V. A. (2006). Genetic characterization of African chicken using mitochondrial DNA D-loop sequences [M.S. thesis]. Nairobi, Kenya: University of Nairobi.
Moiseyeva I. G., Romanov M. N., Nikiforov A. A., Sevastyanova A. A., Semyenova S. K. (2003). Evolutionary relationships of Red Jungle Fowl and chicken breeds. Genet. Sel. Evol. 35 (4), 403–423. 10.1186/1297-9686-35-5-403 PubMed DOI PMC
Moore W. S. (1995). Inferring phylogenies from mtDNA variation: mitochondrial‐gene trees versus nuclear‐gene trees. Evolution 49 (4), 718–726. 10.1111/j.1558-5646.1995.tb02308.x PubMed DOI
Morejohn G. V. (1968). Breakdown of isolation mechanisms in two species of captive junglefowl (Gallus gallus and Gallus sonneratii). Evolution 22, 576–582. 10.1111/j.1558-5646.1968.tb03993.x PubMed DOI
Mwacharo J. M., Bjørnstad G., Mobegi V., Nomura K., Hanada H., Amano T., et al. (2011). Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Mol. Phylogenet. Evol. 58, 374–382. 10.1016/j.ympev.2010.11.027 PubMed DOI
Nei M. (1987). Molecular Evolution Genetics. New York, USA: Columbia University Press.
Nishibori M. (2004). Complete sequence of mitochondrial D-loop region of red jungle fowls (Gallus gallus) and their genetic diversity in Myanmar and its neighbor countries. Report of the Society for Researches on Native Livestock 21, 213–223.
Nishibori M., Shimogiri T., Hayashi T., Yasue H. (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim. Genet. 36 (5), 367–375. 10.1111/j.1365-2052.2005.01318.x PubMed DOI
Niu D., Fu Y., Luo J., Ruan H., Yu X-P., Chen G., et al. (2002). The origin and genetic diversity of Chinese native chicken breeds. Biochem. Genet. 40 (5-6), 163–174. 10.1023/a:1015832108669 PubMed DOI
Oka T., Ino Y., Nomura K., Kawashima S., Kuwayama T., Hanada H., et al. (2007). Analysis of mtDNA sequences shows Japanese native chickens have multiple origins. Anim. Genet. 38 (3), 287–293. 10.1111/j.1365-2052.2007.01604.x PubMed DOI
Padhi M. K. (2016). Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica 2016, 2604685. 10.1155/2016/2604685 PubMed DOI PMC
Peters J., Lebrasseur O., Best J., Miller H., Fothergill T., Dobney K., et al. (2015). Questioning new answers regarding Holocene chicken domestication in China. Proc. Natl. Acad. Sci. U. S. A. 12, E2415. 10.1073/pnas.1503579112 PubMed DOI PMC
Peterson A. T., Brisbin I. L. (1999). Genetic endangerment of wild red jungle fowl (Gallus gallus)?. Bird Conserv. Int. 9, 387–394. 10.1017/S0959270900002148 DOI
Quinn T. W., Wilson A. C. (1993). Sequence evolution in and around the mitochondrial control region in birds. J. Mol. Evol. 37 (4), 417–425. 10.1007/BF00178871 PubMed DOI
Rozas J., Sanchez-DelBarrio J. C., Messeguer X., Rozas R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19 (18), 2496–2497. 10.1093/bioinformatics/btg359 PubMed DOI
Ruokonen M., Kvist L. (2002). Structure and evolution of the avian mitochondrial control region. Mol. Phylogenet. Evol. 23 (3), 422–432. 10.1016/S1055-7903(02)00021-0 PubMed DOI
Sambrook J., Russell D. W. (2001). Molecular cloning: A laboratory manual. 3rd. New York, NY: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Schneider S., Roessli D., Excoffier L. (2000). Arlequin Version 2.000: Software for Population Genetics and Data Analysis. Geneva, Switzerland: Genetics and Biometry Laboratory, University of Geneva, 1–11.
Schütz K. E., Forkman B., Jensen P. (2001). Domestication effects on foraging strategy, social behaviour, and different fear responses: a comparison between the red junglefowl (Gallus gallus) and a modern layer strain. Appl. Anim. Behav. Sci. 74, 1–14. 10.1016/S0168-1591(01)00156-3 DOI
Scott G. R., Milsom W. K. (2006). Flying high: A theoretical analysis of the factors limiting exercise performance in birds at altitude. Respir. Physiol. Neurobiol. 154, 284–301. 10.1016/j.resp.2006.02.012 PubMed DOI
Scott G. R. (2011). Elevated performance: the unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455–2462. 10.1242/jeb.052548 PubMed DOI
Silva P., Guan X., Ho-Shing O., Jones J., Xu J., Hui D., et al. (2009). Mitochondrial DNA-based analysis of genetic variation and relatedness among Sri Lankan indigenous chickens and the Ceylon junglefowl (Gallus lafayetti). Anim. Genet. 40 (1), 1–9. 10.1111/j.1365-2052.2008.01783.x PubMed DOI PMC
Stevens L. (1991). Genetic and evolution of the domestic fowl. New York, NY: Cambridge University Press.
Sun J., Zhong H., Chen S. Y., Yao Y. G., Liu Y. P. (2013). Association between MT-CO3 haplotypes and high-altitude adaptation in Tibetan chicken. Gene 529, 131–137. 10.1016/j.gene.2013.06.075 PubMed DOI
Tachibana M., Sparman M., Sritanaudomchai H., Ma H., Clepper L., Woodward J., et al. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461 (7262), 367–372. 10.1038/nature08368 PubMed DOI PMC
Tamura K., Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526. 10.1093/oxfordjournals.molbev.a040023 PubMed DOI
Taylor R. W., Turnbull D. M. (2005). Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6 (5), 389–402. 10.1038/nrg1606 PubMed DOI PMC
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 (24), 4876–4882. 10.1093/nar/25.24.4876 PubMed DOI PMC
Tixier-Boichard M., Bed’hom B., Rognon X. (2011). Chicken domestication: from archeology to genomics. C. R. Biol. 334, 197–204. 10.1016/j.crvi.2010.12.012 PubMed DOI
Tonsing M. V., Sailo C. V., Chhakchhuak L., Chhakchhuak Z., Pandit B., Kumar D., et al. (2020). Analysis of variants in mitochondrial genome and their putative pathogenicity in Tuberculosis patients from Mizoram, North east India. Mitochondrion 54, 21–25. 10.1016/j.mito.2020.06.012 PubMed DOI
Tuppen H. A., Blakely E. L., Turnbull D. M., Taylor R. W. (2010). Mitochondrial DNA mutations and human disease. BBA-Bioenergetics 1797 (2), 113–128. 10.1016/j.bbabio.2009.09.005 PubMed DOI
Ulfah M., Kawahara-Miki R., Farajalllah A., Muladno M., Dorshorst B., Martin A., et al. (2016). Genetic features of red and green jungle fowls and relationship with Indonesian native chickens Sumatera and Kedu Hitam. BMC Genomics 17, 320–325. 10.1186/s12864-016-2652-z PubMed DOI PMC
Wani C. E., Yousif I. A., Ibrahim M. E., Musa H. H. (2014). Molecular characterization of Sudanese and Southern Sudanese chicken breeds using mtDNA D-Loop. Genet. Res. Int. 2014, 928420. 10.1155/2014/928420 PubMed DOI PMC
West B., Zhou B-X. (1988). Did chicken go north? New evidence for domestication. J. Archaeol. Sci. 15, 515–533. 10.1016/0305-4403(88)90080-5 DOI
Wright S. (1951). The genetical structure of populations. Ann. Eugenics 15 (1), 323–354. 10.1111/j.1469-1809.1949.tb02451.x PubMed DOI
Xiang H., Gao J., Yu B., Zhou H., Cai D., Zhang Y., et al. (2014). Early Holocene chicken domestication in northern China. Proc. Natl. Acad. Sci. U. S. A. 111, 17564–17569. 10.1073/pnas.1411882111 PubMed DOI PMC
Xu S., Luosang J., Hua S., He J., Ciren A., Wang W., et al. (2007). High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome. J. Genet. Genom. 34 (8), 720–729. 10.1016/S1673-8527(07)60081-2 PubMed DOI
Yacoub H. A., Fathi M. M. (2013). Phylogenetic analysis using d-loop marker of mtDNA of Saudi native chicken strains. Mitochondrial DNA 24 (5), 538–551. 10.3109/19401736.2013.770494 PubMed DOI
Yang S., Huo Y., Wang H., Ji J., Chen W., Huang Y. (2020). The spatio-temporal features of chicken mitochondrial ND2 gene heteroplasmy and the effects of nutrition factors on this gene. Sci. Rep. 10 (1), 2972–9. 10.1038/s41598-020-59703-y PubMed DOI PMC
Yu Q. F., Liu L. L., Fu C. X., He S. P., Li S., He J. H. (2016). The complete mitochondrial genome of the Huang Lang chicken. Mitochondrial DNA Part A 27 (1), 216–217. 10.3109/19401736.2014.880895 PubMed DOI
Zeuner F. E. (1963). A History of Domesticated Animals. London: Hutchinson and Co. (Publishers) Ltd.
Zhao X., Wu N., Zhu Q., Gaur U., Gu T., Li D. (2015). High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective. Mitochondrial DNA Part A 27 (5), 3280–3288. 10.3109/19401736.2015.1015006 PubMed DOI
Zhou T., Shen X., Irwin D. M., Shen Y., Zhang Y. (2014). Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds. Mitochondrion 18, 70–75. 10.1016/j.mito.2014.07.012 PubMed DOI