Length-Dependent Translation Efficiency of ER-Destined Proteins
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GACR21-21413S
Czech Science Foundation
No. CZ.02.1.01/0.0/0.0/17_049/0008440
ERDF - Cell Coolab Ostrava - Research and Development Center for Cell Therapy in Hematology and Oncology
PubMed
37623244
PubMed Central
PMC10453119
DOI
10.3390/cimb45080425
PII: cimb45080425
Knihovny.cz E-resources
- Keywords
- endoplasmic reticulum, mRNA, proteosynthesis, ribosome stalling, signal peptide,
- Publication type
- Journal Article MeSH
Gene expression is a fundamental process that enables cells to produce specific proteins in a timely and spatially dependent manner. In eukaryotic cells, the complex organization of the cell body requires precise control of protein synthesis and localization. Certain mRNAs encode proteins with an N-terminal signal sequences that direct the translation apparatus toward a specific organelle. Here, we focus on the mechanisms governing the translation of mRNAs, which encode proteins with an endoplasmic reticulum (ER) signal in human cells. The binding of a signal-recognition particle (SRP) to the translation machinery halts protein synthesis until the mRNA-ribosome complex reaches the ER membrane. The commonly accepted model suggests that mRNA that encodes a protein that contains an ER signal peptide continuously repeats the cycle of SRP binding followed by association and dissociation with the ER. In contrast to the current view, we show that the long mRNAs remain on the ER while being translated. On the other hand, due to low ribosome occupancy, the short mRNAs continue the cycle, always facing a translation pause. Ultimately, this leads to a significant drop in the translation efficiency of small, ER-targeted proteins. The proposed mechanism advances our understanding of selective protein synthesis in eukaryotic cells and provides new avenues to enhance protein production in biotechnological settings.
Faculty of Medicine University of Ostrava Syllabova 19 703 00 Ostrava Czech Republic
Laboratory of Medical Genetics SPADIA LAB a s 700 30 Ostrava Czech Republic
See more in PubMed
Munro A., Jackson R., Korner A. Studies on the Nature of Polysomes. Biochem. J. 1964;92:289–299. doi: 10.1042/bj0920289. PubMed DOI PMC
Thompson M.K., Gilbert W.V. MRNA Length-Sensing in Eukaryotic Translation: Reconsidering the “Closed Loop” and Its Implications for Translational Control. Curr. Genet. 2017;63:613–620. doi: 10.1007/s00294-016-0674-3. PubMed DOI PMC
Panda A., Martindale J., Gorospe M. Polysome Fractionation to Analyze MRNA Distribution Profiles. Bio-Protocol. 2017;7:e2126. doi: 10.21769/BioProtoc.2126. PubMed DOI PMC
Arpat A.B., Liechti A., De Matos M., Dreos R., Janich P., Gatfield D. Transcriptome-Wide Sites of Collided Ribosomes Reveal Principles of Translational Pausing. Genome Res. 2020;30:985–999. doi: 10.1101/gr.257741.119. PubMed DOI PMC
Shoemaker C.J., Green R. Translation Drives MRNA Quality Control. Nat. Struct. Mol. Biol. 2012;19:594–601. doi: 10.1038/nsmb.2301. PubMed DOI PMC
Flanagan J.J., Chen J.-C., Miao Y., Shao Y., Lin J., Bock P.E., Johnson A.E. Signal Recognition Particle Binds to Ribosome-Bound Signal Sequences with Fluorescence-Detected Subnanomolar Affinity That Does Not Diminish as the Nascent Chain Lengthens. J. Biol. Chem. 2003;278:18628–18637. doi: 10.1074/jbc.M300173200. PubMed DOI
Lingappa V.R., Blobel G. Proceedings of the 1979 Laurentian Hormone Conference. Elsevier; Amsterdam, The Netherlands: 1980. Early Events in the Biosynthesis of Secretory and Membrane Proteins: The Signal Hypothesis; pp. 451–475. PubMed
Blobel G. Protein Targeting (Nobel Lecture) ChemBioChem. 2000;1:86–102. doi: 10.1002/1439-7633(20000818)1:2<86::AID-CBIC86>3.0.CO;2-A. PubMed DOI
Ellgaard L., McCaul N., Chatsisvili A., Braakman I. Co- and Post-Translational Protein Folding in the ER. Traffic. 2016;17:615–638. doi: 10.1111/tra.12392. PubMed DOI
Nandi D., Tahiliani P., Kumar A., Chandu D. The Ubiquitin-Proteasome System. J. Biosci. 2006;31:137–155. doi: 10.1007/BF02705243. PubMed DOI
Sitia R., Braakman I. Quality Control in the Endoplasmic Reticulum Protein Factory. Nature. 2003;426:891–894. doi: 10.1038/nature02262. PubMed DOI
McCaffrey K., Braakman I. Protein Quality Control at the Endoplasmic Reticulum. Essays Biochem. 2016;60:227–235. doi: 10.1042/EBC20160003. PubMed DOI
Juszkiewicz S., Hegde R.S. Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination. Mol. Cell. 2017;65:743–750. doi: 10.1016/j.molcel.2016.11.039. PubMed DOI PMC
Yoshikawa H., Larance M., Harney D.J., Sundaramoorthy R., Ly T., Owen-Hughes T., Lamond A.I. Efficient Analysis of Mammalian Polysomes in Cells and Tissues Using Ribo Mega-SEC. eLife. 2018;7:e36530. doi: 10.7554/eLife.36530. PubMed DOI PMC
Jagannathan S., Nwosu C., Nicchitta C.V. Analyzing MRNA Localization to the Endoplasmic Reticulum via Cell Fractionation. Humana Press; Totowa, NJ, USA: 2011. pp. 301–321. PubMed PMC
Uhlén M., Fagerberg L., Hallström B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson Å., Kampf C., Sjöstedt E., Asplund A., et al. Tissue-Based Map of the Human Proteome. Science. 2015;347:1260419. doi: 10.1126/science.1260419. PubMed DOI
Cunningham F., Allen J.E., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Austine-Orimoloye O., Azov A.G., Barnes I., Bennett R., et al. Ensembl 2022. Nucleic Acids Res. 2022;50:D988–D995. doi: 10.1093/nar/gkab1049. PubMed DOI PMC
Wang M., Herrmann C.J., Simonovic M., Szklarczyk D., Mering C. Version 4.0 of PaxDb: Protein Abundance Data, Integrated across Model Organisms, Tissues, and Cell-lines. Proteomics. 2015;15:3163–3168. doi: 10.1002/pmic.201400441. PubMed DOI PMC
Walter P., Blobel G. Translocation of Proteins across the Endoplasmic Reticulum III. Signal Recognition Protein (SRP) Causes Signal Sequence-Dependent and Site-Specific Arrest of Chain Elongation That Is Released by Microsomal Membranes. J. Cell Biol. 1981;91:557–561. doi: 10.1083/jcb.91.2.557. PubMed DOI PMC
Reid D.W., Nicchitta C.V. Diversity and Selectivity in MRNA Translation on the Endoplasmic Reticulum. Nat. Rev. Mol. Cell Biol. 2015;16:221–231. doi: 10.1038/nrm3958. PubMed DOI PMC
Pyhtila B., Zheng T., Lager P.J., Keene J.D., Reedy M.C., Nicchitta C.V. Signal Sequence- and Translation-Independent MRNA Localization to the Endoplasmic Reticulum. RNA. 2008;14:445–453. doi: 10.1261/rna.721108. PubMed DOI PMC
Li G.-W., Burkhardt D., Gross C., Weissman J.S. Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell. 2014;157:624–635. doi: 10.1016/j.cell.2014.02.033. PubMed DOI PMC
Yan X., Hoek T.A., Vale R.D., Tanenbaum M.E. Dynamics of Translation of Single MRNA Molecules In Vivo. Cell. 2016;165:976–989. doi: 10.1016/j.cell.2016.04.034. PubMed DOI PMC
Thompson M.K., Rojas-Duran M.F., Gangaramani P., Gilbert W. V The Ribosomal Protein Asc1/RACK1 Is Required for Efficient Translation of Short MRNAs. eLife. 2016;5:e11154. doi: 10.7554/eLife.11154. PubMed DOI PMC
Tomek W., Wollenhaupt K. The “Closed Loop Model” in Controlling MRNA Translation during Development. Anim. Reprod. Sci. 2012;134:2–8. doi: 10.1016/j.anireprosci.2012.08.005. PubMed DOI
Rogers D.W., Böttcher M.A., Traulsen A., Greig D. Ribosome Reinitiation Can Explain Length-Dependent Translation of Messenger RNA. PLoS Comput. Biol. 2017;13:e1005592. doi: 10.1371/journal.pcbi.1005592. PubMed DOI PMC
Guo J., Lian X., Zhong J., Wang T., Zhang G. Length-Dependent Translation Initiation Benefits the Functional Proteome of Human Cells. Mol. BioSystems. 2015;11:370–378. doi: 10.1039/C4MB00462K. PubMed DOI
Eisenberg E., Levanon E.Y. Human Housekeeping Genes Are Compact. Trends Genet. 2003;19:362–365. doi: 10.1016/S0168-9525(03)00140-9. PubMed DOI