The Neglected Uterine NK Cells/Hamperl Cells/Endometrial Stromal Granular Cell, or K Cells: A Narrative Review from History through Histology and to Medical Education
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
VEGA 1/0625/23
Slovak Ministry of Education
PubMed
37628873
PubMed Central
PMC10454298
DOI
10.3390/ijms241612693
PII: ijms241612693
Knihovny.cz E-resources
- Keywords
- Hamperl cells, Terminologia Histologica, endometrium, histology, immunohistochemistry, medical education, uterine NK cells,
- MeSH
- Killer Cells, Natural MeSH
- Endometrium MeSH
- Humans MeSH
- Placenta * MeSH
- Education, Medical * MeSH
- Pregnancy MeSH
- Uterus MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Reproductive immunology is at the forefront of research interests, aiming to better understand the mechanisms of immune regulation during gestation. The relationship between the immune system and the implanting embryo is profound because the embryo is semi-allogenic but not targeted by the maternal immune system, as expected in graft-versus-host reactions. The most prominent cell population at the maternal-fetal interface is the population of uterine natural killer (uNK) cells. Uterine NK cells are two-faced immunologically active cells, bearing comparison with Janus, the ancient Roman god of beginnings and endings. Their first face can be seen as natural killer cells, namely lymphocytes, which are critical for host defense against viruses and tumors. Even though uNK cells contain cytolytic molecules, their cytotoxic effect is not applied to classical target cells in vivo, playing a permissive rather than a defensive role. Their second face is crucial in maintaining physiological gestation-uNK cells show critical immunomodulatory functions with the potential to control embryo implantation and trophoblast invasion, regulate placental vascular remodeling, and promote embryonic/fetal growth. Therefore, we believe that their current designation "natural killer cells" (the first "cytotoxic" Janus's face) is misleading and inappropriate, considering their principal function is supporting and maintaining pregnancy. In this narrative review, we will focus on three lesser-known areas of knowledge about uNK cells. First, from the point of view of histology, we will comprehensively map the history of the discovery of these cells, as well as the current histological possibilities of their identification within the endometrium. To be brief, the discovery of uNK cells is generally attributed to Herwig Hamperl, one of the most influential and prominent representatives of German pathology in the 20th century, and his co-worker, Gisela Hellweg. Secondly, we will discuss the interesting aspect of terminology, since uNK cells are probably one of the human cells with the highest number of synonymous names, leading to significant discrepancies in their descriptions in scientific literature. From the first description of this cell type, they were referred to as endometrial granulocytes, granular endometrial stromal cells, or large granular lymphocytes until the end of the 1980s and the beginning of the 1990s of the last century, when the first publications appeared where the name "uterine NK cells" was used. The third area of present review is medical teaching of histology and clinical embryology. We can confirm that uNK cells are, in most textbooks, overlooked and almost forgotten cells despite their enormous importance. In the present narrative review, we summarize the lesser-known historical and terminological facts about uNK cells. We can state that within the textbooks of histology and embryology, this important cell population is still "overlooked and neglected" and is not given the same importance as in fields of clinical research and clinical practice.
Faculty of Health Care Studies University of Western Bohemia 30100 Pilsen Czech Republic
Faculty of Medicine Comenius University in Bratislava Spitalska 24 842 15 Bratislava Slovakia
See more in PubMed
Maxwell A.J., You Y., Aldo P.B., Zhang Y., Ding J., Mor G. The role of immune system during pregnancy: General concepts. In: Mor G., editor. Reproductive Immunology. Volume 1. Elsevier Academic Press; London, UK: 2021. pp. 1–21.
Lamps L.W., Quick C.M., Chang A., McKenney J.K., Cox R.M. In: Diagnostic Pathology: Normal Histology. 1st ed. Lamps L.W., editor. Amirsys Publishing, Inc.; Salt Lake City, UT, USA: 2013.
Flynn L., Byrne B., Carton J., Kelehan P., O’Herlihy C., O’Farrelly C. Menstrual cycle dependent fluctuations in NK and T-lymphocyte subsets from non-pregnant human endometrium. Am. J. Reprod. Immunol. 2000;43:209–217. doi: 10.1111/j.8755-8920.2000.430405.x. PubMed DOI
Fu B., Wei H. Natural killer cells in reproduction: Before, during and after pregnancy. In: Mor G., editor. Reproductive Immunology. Volume 1. Elsevier Academic Press; London, UK: 2021. pp. 55–72.
Kanter J.R., Mani S., Gordon S.M., Mainigi M. Uterine natural killer cell biology and role in early pregnancy establishment and outcomes. FS Rev. 2021;2:265–286. doi: 10.1016/j.xfnr.2021.06.002. PubMed DOI PMC
Co E.C., Gormley M., Kapidzic M., Rosen D.B., Scott M.A., Stolp H.A., McMaster M., Lanier L.L., Bárcena A., Fisher S.J. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy. Biol. Reprod. 2013;88:155. doi: 10.1095/biolreprod.112.099465. PubMed DOI PMC
Crespo A.C., Strominger J.L., Tilburgs T. Expression of KIR2DS1 by Decidual Natural Killer Cells Increases Their Ability to Control Placental HCMV Infection. Proc. Natl. Acad. Sci. USA. 2016;113:15072–15077. doi: 10.1073/pnas.1617927114. PubMed DOI PMC
Xu H., Su X., Zhao Y., Tang L., Chen J., Zhong G. Innate Lymphoid Cells Are Required for Endometrial Resistance to Chlamydia trachomatis Infection. Infect. Immun. 2020;88:e00152-20. doi: 10.1128/IAI.00152-20. PubMed DOI PMC
Kitazawa J., Kimura F., Nakamura A., Morimune A., Takahashi A., Takashima A., Amano T., Tsuji S., Kaku S., Kasahara K., et al. Endometrial Immunity for Embryo Implantation and Pregnancy Establishment. Tohoku J. Exp. Med. 2020;250:49–60. doi: 10.1620/tjem.250.49. PubMed DOI
Goldman-Wohl D., Gamliel M., Mandelboim O., Yagel S. Learning from experience: Cellular and molecular bases for improved outcome in subsequent pregnancies. Am. J. Obstet. Gynecol. 2019;221:183–193. doi: 10.1016/j.ajog.2019.02.037. PubMed DOI
Male V., Moffett A. Natural Killer Cells in the Human Uterine Mucosa. Annu. Rev. Immunol. 2023;41:127–151. doi: 10.1146/annurev-immunol-102119-075119. PubMed DOI
Gross D., Kaiser S., Gräf C., Uhlendahl H., Schmidt M. Between fiction and reality: Herwig Hamperl (1899–1976) and the Third Reich as reflected in his autobiography. Pathol. Res. Pract. 2019;215:832–841. doi: 10.1016/j.prp.2018.12.019. PubMed DOI
Haitinger M., Hamperl H. Die Anwendung des Fluoreszenzmikroskops zur Untersuchung tierischer Gewebe. Ztschr. Mikro. Anat. 1933;33:193–221.
Hamperl H. Über fluorescierende Körnchenzellen (“Fluorocyten”) Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 1950;318:32–47. doi: 10.1007/BF00950684. PubMed DOI
Marchand F. On the so-called decidual tumors following normal childbirth, hydatidiform mole and ex-trauterine pregnancy. Obstet. Gynecol. 1895;1:419.
Weill P. Etudes sur les leucocytes.I.Les cellules des muqueuses intestinale et uterines. Arch. Anat. Microsc. 1921;17:77–82.
Hellweg G. Über körnchenhaltige Zellen im menschlichen und tierischen Endometrium (endometriale Körnchenzellen, metachromasierende Zellen) Z. Zellforsch. Mikrosk. Anat. 1959;49:555–568. doi: 10.1007/BF00338865. DOI
Hamperl H. Über endometriale Granulocyten (endometriale Körnchenzellen) Klin. Wochenschr. 1954;32:665–668. doi: 10.1007/BF01481109. PubMed DOI
Hellweg G. Untersuchungen zur Charakterisierung der Granula in endometrialen Körnchenzellen. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 1956;329:111–120. doi: 10.1007/BF00955155. PubMed DOI
Hamperl H., Hellweg G. Granular endometrial stroma cells. Obstet. Gynecol. Surv. 1958;13:891–893. doi: 10.1097/00006254-195812000-00044. PubMed DOI
Bulmer J.N., Pace D., Ritson A. Immunoregulatory cells in human decidua: Morphology, immunohistochemistry and function. Reprod. Nutr. Dev. 1988;28:1599–1614. doi: 10.1051/rnd:19881006. PubMed DOI
Starkey P.M., Sargent I.L., Redman C.W. Cell populations in human early pregnancy decidua: Characterization and isolation of large granular lymphocytes by flow cytometry. Immunology. 1988;65:129–134. PubMed PMC
King A., Wellings V., Gardner L., Loke Y.W. Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughout the menstrual cycle. Hum. Immunol. 1989;24:195–205. doi: 10.1016/0198-8859(89)90060-8. PubMed DOI
Starkey P.M., Clover L.M., Rees M.C. Variation during the menstrual cycle of immune cell populations in human endometrium. Eur. J. Obstet. Gynecol. Reprod. Biol. 1991;39:203–207. doi: 10.1016/0028-2243(91)90058-S. PubMed DOI
Bulmer J.N., Morrison L., Longfellow M., Ritson A., Pace D. Granulated lymphocytes in human endometrium: Histochemical and immunohistochemical studies. Hum. Reprod. 1991;6:791–798. doi: 10.1093/oxfordjournals.humrep.a137430. PubMed DOI
Croy B.A., Waterfield A., Wood W., King G.J. Normal murine and porcine embryos recruit NK cells to the uterus. Cell. Immunol. 1988;115:471–480. doi: 10.1016/0008-8749(88)90199-2. PubMed DOI
Parr E.L., Parr M.B., Zheng L.M., Young J.D. Mouse granulated metrial gland cells originate by local activation of uterine natural killer lymphocytes. Biol. Reprod. 1991;44:834–841. doi: 10.1095/biolreprod44.5.834. PubMed DOI
King A., Balendran N., Wooding P., Carter N.P., Loke Y.W. CD3− leukocytes present in the human uterus during early placentation: Phenotypic and morphologic characterization of the CD56++ population. Dev. Immunol. 1991;1:169–190. doi: 10.1155/1991/83493. PubMed DOI PMC
Burdan F., Dworzański W., Cendrowska-Pinkosz M., Burdan M., Dworzańska A. Anatomical eponyms—unloved names in medical terminology. Folia Morphol. 2016;75:413–438. doi: 10.5603/FM.a2016.0012. PubMed DOI
Winkelmann A. Should we teach Abernethy and Zuckerkandl? Clin. Anat. 2012;25:241–245. doi: 10.1002/ca.21228. PubMed DOI
Fadare O., Roma A.A. Atlas of Uterine Pathology. Springer Nature; Berlin/Heidelberg, Germany: 2019. p. 269.
Young B., O’Dowd G., Woodford P. Wheaters’s Functional Histology. 6th ed. Elsevier Churchill Livingstone; Amsterdam, The Netherlands: 2014.
Mills S.E., editor. Histology for Pathologists. 5th ed. Wolters Kluwer; Tokyo, Japan: 2020.
FIPAT . Terminologia Histologica: International Terms for Human Cytology and Histology. 1st ed. Lippincott Raven; Philadelphia, PA, USA: 2008.
Moore K.L., Persaud T.V.N., Torchia M.G. Clinically Oriented Embryology. 11th ed. Elsevier; Amsterdam, The Netherlands: 2020. The developing human.
Male V., Sharkey A., Masters L., Kennedy P.R., Farrell L.E., Moffett A. The effect of pregnancy on the uterine NK cell KIR repertoire. Eur. J. Immunol. 2011;41:3017–3027. doi: 10.1002/eji.201141445. PubMed DOI PMC
Xie M., Li Y., Meng Y.Z., Xu P., Yang Y.G., Dong S., He J., Hu Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front. Immunol. 2022;13:918550. doi: 10.3389/fimmu.2022.918550. PubMed DOI PMC
Huhn O., Zhao X., Esposito L., Moffett A., Colucci F., Sharkey A.M. How Do Uterine Natural Killer and Innate Lymphoid Cells Contribute to Successful Pregnancy? Front. Immunol. 2021;12:607669. doi: 10.3389/fimmu.2021.607669. PubMed DOI PMC
Bulmer J.N., Lash G.E. The Role of Uterine NK Cells in Normal Reproduction and Reproductive Disorders. Adv. Exp. Med. Biol. 2015;868:95–126. PubMed
Pace D., Morrison L., Bulmer J.N. Proliferative activity in endometrial stromal granulocytes throughout menstrual cycle and early pregnancy. J. Clin. Pathol. 1989;42:35–39. doi: 10.1136/jcp.42.1.35. PubMed DOI PMC
King A., Loke Y.W. Human trophoblast and JEG choriocarcinoma cells are sensitive to lysis by IL-2-stimulated decidual NK cells. Cell. Immunol. 1990;129:435–448. doi: 10.1016/0008-8749(90)90219-H. PubMed DOI
Croy B.A., Kiso Y. Granulated metrial gland cells: A natural killer cell subset of the pregnant murine uterus. Microsc. Res. Tech. 1993;25:189–200. doi: 10.1002/jemt.1070250302. PubMed DOI
Goodridge J.P., Jacobs B., Saetersmoen M.L., Clement D., Hammer Q., Clancy T., Skarpen E., Brech A., Landskron J., Grimm C., et al. Remodeling of secretory lysosomes during education tunes functional potential in NK cells. Nat. Commun. 2019;10:514. doi: 10.1038/s41467-019-08384-x. PubMed DOI PMC
Huhn O., Ivarsson M.A., Gardner L., Hollinshead M., Stinchcombe J.C., Chen P., Shreeve N., Chazara O., Farrell L.E., Theorell J., et al. Distinctive phenotypes and functions of innate lymphoid cells in human decidua during early pregnancy. Nat. Commun. 2020;11:381. doi: 10.1038/s41467-019-14123-z. PubMed DOI PMC
Sojka D.K., Tian Z., Yokoyama W.M. Tissue-resident natural killer cells and their potential diversity. Semin. Immunol. 2014;26:127–131. doi: 10.1016/j.smim.2014.01.010. PubMed DOI PMC
Haugstøyl M.E., Cornillet M., Strand K., Stiglund N., Sun D., Lawrence-Archer L., Hjellestad I.D., Busch C., Mellgren G., Björkström N.K., et al. Phenotypic diversity of human adipose tissue-resident NK cells in obesity. Front. Immunol. 2023;14:1130370. doi: 10.3389/fimmu.2023.1130370. PubMed DOI PMC
Bulmer J.N., Sunderland C.A. Immunohistological characterization of lymphoid cell populations in the early human placental bed. Immunology. 1984;52:349–357. PubMed PMC
Bulmer J.N., Hollings D., Ritson A. Immunocytochemical evidence that endometrial stromal granulocytes are granulated lymphocytes. J. Pathol. 1987;153:281–288. doi: 10.1002/path.1711530313. PubMed DOI
Bulmer J.N., Lunny D.P., Hagin S.V. Immunohistochemical characterization of stromal leucocytes in non-pregnant human endometrium. Am. J. Reprod. Immunol. Microbiol. 1988;17:83–90. doi: 10.1111/j.1600-0897.1988.tb00208.x. PubMed DOI
Ritson A., Bulmer J.N. Endometrial granulocytes in human decidua react with a natural-killer (NK) cell marker, NKH1. Immunology. 1987;62:329–331. PubMed PMC
Manaster I., Mandelboim O. The unique properties of uterine NK cells. Am. J. Reprod. Immunol. 2010;63:434–444. doi: 10.1111/j.1600-0897.2009.00794.x. PubMed DOI
Vento-Tormo R., Efremova M., Botting R.A., Turco M.Y., Vento-Tormo M., Meyer K.B., Park J.E., Stephenson E., Polański K., Goncalves A., et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347–353. doi: 10.1038/s41586-018-0698-6. PubMed DOI PMC
Croy B.A., Zhang J., Tayade C., Colucci F., Yadi H., Yamada A.T. Analysis of uterine natural killer cells in mice. Methods Mol. Biol. 2010;612:465–503. PubMed
Kusakabe K., Okada T., Sasaki F., Kiso Y. Cell death of uterine natural killer cells in murine placenta during placentation and preterm periods. J. Vet. Med. Sci. 1999;61:1093–1100. doi: 10.1292/jvms.61.1093. PubMed DOI
Lapides L., Klein M., Belušáková V., Csöbönyeiová M., Varga I., Babál P. Uterine Natural Killer Cells in the Context of Implantation: Immunohistochemical Analysis of Endometrial Samples from Women with Habitual Abortion and Recurrent Implantation Failure. Physiol. Res. 2022;71:S99–S105. doi: 10.33549/physiolres.935012. PubMed DOI PMC
Lapides L., Varga I., Klein M., Rybánska L., Belušáková V., Babál P. When Less Is More—Pipelle Endometrial Sampling for Quantification of Uterine Natural Killer Cells in Patients With Recurrent Implantation Failure or Habitual Abortion. Physiol. Res. 2022;71:S65–S73. doi: 10.33549/physiolres.934961. PubMed DOI PMC
Kuon R.J., Weber M., Heger J., Santillán I., Vomstein K., Bär C., Strowitzki T., Markert U.R., Toth B. Uterine natural killer cells in patients with idiopathic recurrent miscarriage. Am. J. Reprod. Immunol. 2017;78:e12721. doi: 10.1111/aji.12721. PubMed DOI
Alfer J., Fattahi A., Bleisinger N., Antoniadis S., Krieg J., Dittrich R., Beckmann M.W., Hartmann A., Popovici R.M., Tremellen K. Individual dynamics of uterine natural killer cells in natural and stimulated cycles monitored using a new endometrial dating method. Am. J. Reprod. Immunol. 2022;88:e13620. PubMed PMC
Yang W.J., Chen X., Zhao Y., Cheung W.C., Hsiao S.Y., Liu Y., Law T.S.M., Chung J.P.W., Li T.C. A comparison of uterine natural killer cell density in the peri-implantation period between natural cycles and hormone replacement therapy cycles. Am. J. Reprod. Immunol. 2019;82:e13156. doi: 10.1111/aji.13156. PubMed DOI
Zhao Y., Man G.C.W., Wang J., Liu Y., Kwong J., Zhang T., Chung J.P.W., Wang C.C., Chen X., Li T.C. The identification of endometrial immune cell densities and clustering analysis in the mid-luteal phase as predictor for pregnancy outcomes after IVF-ET treatment. J. Reprod. Immunol. 2021;148:103431. doi: 10.1016/j.jri.2021.103431. PubMed DOI
Sudoma I., Goncharova Y., Dons’koy B., Mykytenko D. Immune phenotype of the endometrium in patients with recurrent implantation failures after the transfer of genetically tested embryos in assisted reproductive technology programs. J. Reprod. Immunol. 2023;157:103943. doi: 10.1016/j.jri.2023.103943. PubMed DOI
Marron K., Harrity C. Potential utility of a non-invasive menstrual blood immunophenotype analysis in reproductive medicine. Reprod. Fertil. 2022;3:255–261. doi: 10.1530/RAF-22-0047. PubMed DOI PMC
Li Y., Yu S., Huang C., Lian R., Chen C., Liu S., Li L., Diao L., Markert U.R., Zeng Y. Evaluation of peripheral and uterine immune status of chronic endometritis in patients with recurrent reproductive failure. Fertil. Steril. 2020;113:187–196.e1. doi: 10.1016/j.fertnstert.2019.09.001. PubMed DOI
Marron K., Walsh D., Harrity C. Detailed endometrial immune assessment of both normal and adverse reproductive outcome populations. J. Assist. Reprod. Genet. 2019;36:199–210. doi: 10.1007/s10815-018-1300-8. PubMed DOI PMC
Tohma Y.A., Musabak U., Gunakan E., Akilli H., Onalan G., Zeyneloglu H.B. The Role of Analysis of NK Cell Subsets in Peripheral Blood and Uterine Lavage Samples in Evaluation of Patients with Recurrent Implantation Failure. J. Gynecol. Obstet. Hum. Reprod. 2020;49:101793. doi: 10.1016/j.jogoh.2020.101793. PubMed DOI
Lai Z.-Z., Wang Y., Zhou W.-J., Liang Z., Shi J.-W., Yang H.-L., Xie F., Chen W.-D., Zhu R., Zhang C., et al. Single-cell transcriptome profiling of the human endometrium of patients with recurrent implantation failure. Theranostics. 2022;12:6527–6547. doi: 10.7150/thno.74053. PubMed DOI PMC
Bajpai K., Acharya N., Prasad R., Wanjari M.B. Endometrial Receptivity During the Preimplantation Period: A Narrative Review. Cureus. 2023;15:e37753. PubMed PMC
Mahajan D., Sharma N.R., Kancharla S., Kolli P., Tripathy A., Sharma A.K., Singh S., Kumar S., Mohanty A.K., Jena M.K. Role of Natural Killer Cells during Pregnancy and Related Complications. Biomolecules. 2022;12:68. doi: 10.3390/biom12010068. PubMed DOI PMC
Gong H., Chen Y., Xu J., Xie X., Yu D., Yang B., Kuang H. The regulation of ovary and conceptus on the uterine natural killer cells during early pregnancy. Reprod. Biol. Endocrinol. 2017;15:73. doi: 10.1186/s12958-017-0290-1. PubMed DOI PMC
Tang Z., Abrahams V.M., Mor G., Guller S. Placental Hofbauer cells and complications of pregnancy. Ann. N. Y. Acad. Sci. 2011;1221:103–108. doi: 10.1111/j.1749-6632.2010.05932.x. PubMed DOI PMC
Lee J.Y., Lee M., Lee S.K. Role of endometrial immune cells in implantation. Clin. Exp. Reprod. Med. 2011;38:119–125. doi: 10.5653/cerm.2011.38.3.119. PubMed DOI PMC
Lédée N., Petitbarat M., Prat-Ellenberg L., Dray G., Cassuto G.N., Chevrier L., Kazhalawi A., Vezmar K., Chaouat G. The uterine immune profile: A method for individualizing the management of women who have failed to implant an embryo after IVF/ICSI. J. Reprod. Immunol. 2020;142:103207. PubMed
Sacks G. Enough! Stop the arguments and get on with the science of natural killer cell testing. Hum. Reprod. 2015;30:1526–1531. doi: 10.1093/humrep/dev096. PubMed DOI
Robson A., Harris L.K., Innes B.A., Lash G.E., Aljunaidy M.M., Aplin J.D., Baker P.N., Robson S.C., Bulmer J.N. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J. 2012;26:4876–4885. doi: 10.1096/fj.12-210310. PubMed DOI
Ross M.H., Pawlina W. Histology with Correlated Cell and Molecular Biology. 7th ed. Wolters Kluwer; Philadelphia, PA, USA: 2016.
Ovalle W.K., Nahirney P.C. Netter’s Essential Histology. 2nd ed. Elsevier Saunders; Philadelphia, PA, USA: 2013.
Mescher A.L. Junqueira’s Basic Histology. 14th ed. McGraw Hill Education; New York, NY, USA: 2016.
Gartner L.P. Textbook of Histology. 4th ed. Elsevier; Philadelphia, PA, USA: 2017.
Lowe J.S., Anderson P.G., Anderson S.I. Stevens & Lowe’s Human Histology. 5th ed. Elsevier; Amsterdam, The Netherlands: 2020.
Sadler T.W. Langman’s Medical Embryology. 14th ed. Wolters Kluwer; Tokyo, Japan: 2019.
Carlson B.M. Human Embryology and Developmental Biology. 6th ed. Elsevier; Amsterdam, The Netherlands: 2018.
Schoenwolf G.C., Bleyl S.B., Brauer P.R., Francis-West P.H. Larsen’s Human Embryology. 6th ed. Elsevier; Amsterdam, The Netherlands: 2021.
Balko J., Tonar Z., Varga I. Memorix Histology. 1st ed. Triton; Prague, Czech Republic: 2018.
Kierszenbaum A.L., Tres L.L. Histology and Cell Biology: An Introduction to Pathology. 4th ed. Elsevier; Philadelphia, PA, USA: 2016.
Von Woon E., Greer O., Shah N., Nikolaou D., Johnson M., Male V. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: A systematic review and meta-analysis. Hum. Reprod. Update. 2022;28:548–582. doi: 10.1093/humupd/dmac006. PubMed DOI PMC
Kanter J., Gordon S.M., Mani S., Sokalska A., Park J.Y., Senapati S., Huh D.D., Mainigi M. Hormonal stimulation reduces numbers and impairs function of human uterine natural killer cells during implantation. Hum. Reprod. 2023;38:1047–1059. doi: 10.1093/humrep/dead069. PubMed DOI PMC
Balen A. Infertility in Practice. 5th ed. CRC Press; Boca Raton, FL, USA: 2022. (Reproductive Medicine and Assisted Reproductive Techniques Series).
Benkhalifa M., Joao F., Duval C., Montjean D., Bouricha M., Cabry R., Bélanger M.C., Bahri H., Miron P., Benkhalifa M. Endometrium Immunomodulation to Prevent Recurrent Implantation Failure in Assisted Reproductive Technology. Int. J. Mol. Sci. 2022;23:12787. doi: 10.3390/ijms232112787. PubMed DOI PMC
Ban Y., Yang X., Xing Y., Que W., Yu Z., Gui W., Chen Y., Liu X. Intrauterine Infusion of Leukocyte-Poor Platelet-Rich Plasma Is an Effective Therapeutic Protocol for Patients with Recurrent Implantation Failure: A Retrospective Cohort Study. J. Clin. Med. 2023;12:2823. PubMed PMC
Kumar P., Marron K., Harrity C. Intralipid therapy and adverse reproductive outcome: Is there any evidence? Reprod. Fertil. 2021;2:173–186. doi: 10.1530/RAF-20-0052. PubMed DOI PMC
Arefi S., Fazeli E., Esfahani M., Borhani N., Yamini N., Hosseini A., Farifteh F. Granulocyte-colony stimulating factor may improve pregnancy outcome in patients with history of unexplained recurrent implantation failure: An RCT. Int. J. Reprod. Biomed. 2018;16:299–304. doi: 10.29252/ijrm.16.5.299. PubMed DOI PMC
Eapen A., Joing M., Kwon P., Tong J., Maneta E., De Santo C., Mussai F., Lissauer D., Carter D., RESPONSE Study Group Recombinant human granulocyte- colony stimulating factor in women with unexplained recurrent pregnancy losses: A randomized clinical trial. Hum. Reprod. 2019;34:424–432. PubMed PMC
Sun Y., Cui L., Lu Y., Tan J., Dong X., Ni T., Yan J., Guan Y., Hao G., Liu J.Y., et al. Prednisone vs Placebo and Live Birth in Patients With Recurrent Implantation Failure Undergoing In Vitro Fertilization: A Randomized Clinical Trial. JAMA. 2023;329:1460–1468. doi: 10.1001/jama.2023.5302. PubMed DOI PMC
Lucas E.S., Dyer N.P., Fishwick K., Ott S., Brosens J.J. Success after failure: The role of endometrial stem cells in recurrent miscarriage. Reproduction. 2016;152:R159–R166. doi: 10.1530/REP-16-0306. PubMed DOI
Sfakianoudis K., Rapani A., Grigoriadis S., Pantou A., Maziotis E., Kokkini G., Tsirligkani C., Bolaris S., Nikolettos K., Chronopoulou M., et al. The Role of Uterine Natural Killer Cells on Recurrent Miscarriage and Recurrent Implantation Failure: From Pathophysiology to Treatment. Biomedicines. 2021;9:1425. doi: 10.3390/biomedicines9101425. PubMed DOI PMC
Cooper S., Laird S.M., Mariee N., Li T.C., Metwally M. The effect of prednisolone on endometrial uterine NK cell concentrations and pregnancy outcome in women with reproductive failure. A retrospective cohort study. J. Reprod. Immunol. 2019;131:1–6. doi: 10.1016/j.jri.2018.10.001. PubMed DOI
Michimata T., Ogasawara M.S., Tsuda H., Suzumori K., Aoki K., Sakai M., Fujimura M., Nagata K., Nakamura M., Saito S. Distributions of endometrial NK cells, B cells, T cells, and Th2/Tc2 cells fail to predict pregnancy outcome following recurrent abortion. Am. J. Reprod. Immunol. 2002;47:196–202. doi: 10.1034/j.1600-0897.2002.01048.x. PubMed DOI
Seshadri S., Sunkara S.K. Natural killer cells in female infertility and recurrent miscarriage: A systematic review and meta-analysis. Hum. Reprod. Update. 2014;20:429–438. doi: 10.1093/humupd/dmt056. PubMed DOI