Expression Profile of New Marker Genes Involved in Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells into Chondrocytes, Osteoblasts, Adipocytes and Neural-like Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
0070/DW/2018/02
Polish Ministry of Education and Science
NC7082
National Institute of Food and Agriculture
PubMed
37629120
PubMed Central
PMC10455417
DOI
10.3390/ijms241612939
PII: ijms241612939
Knihovny.cz E-zdroje
- Klíčová slova
- MSC, RNA-seq, Wharton’s jelly, differentiation, mesenchymal stem cells,
- MeSH
- buněčná diferenciace genetika MeSH
- chondrocyty MeSH
- gastrointestinální hormony * MeSH
- imunologické faktory MeSH
- lidé MeSH
- osteoblasty MeSH
- tukové buňky MeSH
- vaskulární endoteliální růstový faktor endokrinních žlaz * MeSH
- Whartonův rosol * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gastrointestinální hormony * MeSH
- imunologické faktory MeSH
- PROK1 protein, human MeSH Prohlížeč
- vaskulární endoteliální růstový faktor endokrinních žlaz * MeSH
Wharton's jelly (WJ) contains mesenchymal stem cells (MSCs) exhibiting broad immunomodulatory properties and differentiation capacity, which makes them a promising tool for cellular therapies. Although the osteogenic, chondrogenic and adipogenic differentiation is a gold standard for proper identification of MSCs, it is important to elucidate the exact molecular mechanisms governing these processes to develop safe and efficient cellular therapies. Umbilical cords were collected from healthy, full-term deliveries, for subsequent MSCs (WJ-MSCs) isolation. WJ-MSCs were cultivated in vitro for osteogenic, chondrogenic, adipogenic and neurogenic differentiation. The RNA samples were isolated and the transcript levels were evaluated using NovaSeq platform, which led to the identification of differentially expressed genes. Expression of H19 and SLPI was enhanced in adipocytes, chondrocytes and osteoblasts, and NPPB was decreased in all analyzed groups compared to the control. KISS1 was down-regulated in adipocytes, chondrocytes, and neural-like cells compared to the control. The most of identified genes were already implicated in differentiation of MSCs; however, some genes (PROK1, OCA2) have not yet been associated with initiating final cell fate. The current results indicate that both osteo- and adipo-induced WJ-MSCs share many similarities regarding the most overexpressed genes, while the neuro-induced WJ-MSCs are quite distinctive from the other three groups. Overall, this study provides an insight into the transcriptomic changes occurring during the differentiation of WJ-MSCs and enables the identification of novel markers involved in this process, which may serve as a reference for further research exploring the role of these genes in physiology of WJ-MSCs and in regenerative medicine.
Cellivia 3 S A 61 623 Poznan Poland
Department of Cancer Immunology Poznan University of Medical Sciences 61 866 Poznan Poland
Department of Histology and Embryology Poznan University of Medical Sciences 60 781 Poznan Poland
Department of Toxicology Poznan University of Medical Sciences 60 631 Poznan Poland
Physiology Graduate Faculty North Carolina State University Raleigh NC 27695 USA
Prestage Department of Poultry Sciences North Carolina State University Raleigh NC 27695 USA
Zobrazit více v PubMed
Arutyunyan I., Elchaninov A., Makarov A., Fatkhudinov T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int. 2016;2016:6901286. doi: 10.1155/2016/6901286. PubMed DOI PMC
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Rucinski M., Zok A., Guidolin D., de Caro R., Malendowicz L.K. Expression of precerebellins in cultured rat calvaria osteoblast-like cells. Int. J. Mol. Med. 2008;22:553–558. doi: 10.3892/IJMM_00000055. PubMed DOI
Lyons F.G., Mattei T.A. Sources, Identification, and Clinical Implications of Heterogeneity in Human Umbilical Cord Stem Cells. Adv. Exp. Med. Biol. 2019;1169:243–256. doi: 10.1007/978-3-030-24108-7_13. PubMed DOI
Subramanian A., Fong C.Y., Biswas A., Bongso A. Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS ONE. 2015;10:e0127992. doi: 10.1371/journal.pone.0127992. PubMed DOI PMC
Martin-Rendon E., Sweeney D., Lu F., Girdlestone J., Navarrete C., Watt S.M. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008;95:137–148. doi: 10.1111/j.1423-0410.2008.01076.x. PubMed DOI
Tong C.K., Vellasamy S., Chong Tan B., Abdullah M., Vidyadaran S., Fong Seow H., Ramasamy R. Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol. Int. 2011;35:221–226. doi: 10.1042/CBI20100326. PubMed DOI
Karahuseyinoglu S., Cinar O., Kilic E., Kara F., Akay G.G., Demiralp D.Ö., Tukun A., Uckan D., Can A. Biology of Stem Cells in Human Umbilical Cord Stroma: In Situ and In Vitro Surveys. Stem Cells. 2007;25:319–331. doi: 10.1634/stemcells.2006-0286. PubMed DOI
Weiss M.L., Anderson C., Medicetty S., Seshareddy K.B., Weiss R.J., VanderWerff I., Troyer D., McIntosh K.R. Immune Properties of Human Umbilical Cord Wharton’s Jelly-Derived Cells. Stem Cells. 2008;26:2865–2874. doi: 10.1634/stemcells.2007-1028. PubMed DOI
da Rosa N.N., Appel J.M., Irioda A.C., Mogharbel B.F., de Oliveira N.B., Perussolo M.C., Stricker P.E.F., Rosa-Fernandes L., Marinho C.R.F., de Carvalho K.A.T. Three-Dimensional Bioprinting of an In Vitro Lung Model. Int. J. Mol. Sci. 2023;24:5852. doi: 10.3390/ijms24065852. PubMed DOI PMC
Zhang W., Sun T., Zhang J., Hu X., Yang M., Han L., Xu G., Zhao Y., Li Z. Construction of artificial periosteum with methacrylamide gelatin hydrogel-wharton’s jelly based on stem cell recruitment and its application in bone tissue engineering. Mater. Today Bio. 2023;18:100528. doi: 10.1016/j.mtbio.2022.100528. PubMed DOI PMC
Mansour R.N., Hasanzadeh E., Abasi M., Gholipourmalekabadi M., Mellati A., Enderami S.E. The Effect of Fetal Bovine Acellular Dermal Matrix Seeded with Wharton’s Jelly Mesenchymal Stem Cells for Healing Full-Thickness Skin Wounds. Genes. 2023;14:909. doi: 10.3390/genes14040909. PubMed DOI PMC
Lizarazo-Fonseca L., Correa-Araujo L., Prieto-Abello L., Camacho-Rodríguez B., Silva-Cote I. In vitro and in vivo evaluation of electrospun poly (ε-caprolactone)/collagen scaffolds and Wharton’s jelly mesenchymal stromal cells (hWJ-MSCs) constructs as potential alternative for skin tissue engineering. Regen. Ther. 2023;24:11–24. doi: 10.1016/j.reth.2023.05.005. PubMed DOI PMC
Taherpour A., Hosseini-khah Z., Zargari M., Ehsan Enderami S. The microenvironment of silk/gelatin nanofibrous scaffold improves proliferation and differentiation of Wharton’s jelly-derived mesenchymal cells into islet-like cells. Gene. 2022;833:146586. doi: 10.1016/j.gene.2022.146586. PubMed DOI
Doğan A. Cell Biology and Translational Medicine, Volume 1. Volume 1079. Springer; Cham, Switzerland: 2018. Embryonic Stem Cells in Development and Regenerative Medicine; pp. 1–15. Advances in Experimental Medicine and Biology. PubMed DOI
Cabrera-Pérez R., Monguió-Tortajada M., Gámez-Valero A., Rojas-Márquez R., Borràs F.E., Roura S., Vives J. Osteogenic commitment of Wharton’s jelly mesenchymal stromal cells: Mechanisms and implications for bioprocess development and clinical application. Stem Cell Res. Ther. 2019;10:356. doi: 10.1186/s13287-019-1450-3. PubMed DOI PMC
Wang H.-S., Hung S.-C., Peng S.-T., Huang C.-C., Wei H.-M., Guo Y.-J., Fu Y.-S., Lai M.-C., Chen C.-C. Mesenchymal Stem Cells in the Wharton’s Jelly of the Human Umbilical Cord. Stem Cells. 2004;22:1330–1337. doi: 10.1634/stemcells.2004-0013. PubMed DOI
Ansari A.S., Yazid M.D., Sainik N.Q.A.V., Razali R.A., Saim A.B., Idrus R.B.H. Osteogenic Induction of Wharton’s Jelly-Derived Mesenchymal Stem Cell for Bone Regeneration: A Systematic Review. Stem Cells Int. 2018;2018:2406462. doi: 10.1155/2018/2406462. PubMed DOI PMC
Stefańska K., Nemcova L., Blatkiewicz M., Pieńkowski W., Ruciński M., Zabel M., Mozdziak P., Podhorska-Okołów M., Dzięgiel P., Kempisty B. Apoptosis Related Human Wharton’s Jelly-Derived Stem Cells Differentiation into Osteoblasts, Chondrocytes, Adipocytes and Neural-like Cells—Complete Transcriptomic Assays. Int. J. Mol. Sci. 2023;24:10023. doi: 10.3390/ijms241210023. PubMed DOI PMC
Stelcer E., Komarowska H., Jopek K., Żok A., Iżycki D., Malińska A., Szczepaniak B., Komekbai Z., Karczewski M., Wierzbicki T., et al. Biological response of adrenal carcinoma and melanoma cells to mitotane treatment. Oncol. Lett. 2022;23:120. doi: 10.3892/ol.2022.13240. PubMed DOI PMC
Budna J., Chachuła A., Kaźmierczak D., Rybska M., Ciesiółka S., Bryja A., Kranc W., Borys S., Zok A., Bukowska D., et al. Morphogenesis-related gene-expression profile in porcine oocytes before and after in vitro maturation. Zygote. 2017;25:331–340. doi: 10.1017/S096719941700020X. PubMed DOI
Golkar-Narenji A., Antosik P., Nolin S., Rucinski M., Jopek K., Zok A., Sobolewski J., Jankowski M., Zdun M., Bukowska D., et al. Gene Ontology Groups and Signaling Pathways Regulating the Process of Avian Satellite Cell Differentiation. Genes. 2022;13:242. doi: 10.3390/genes13020242. PubMed DOI PMC
Potier E., Ferreira E., Meunier A., Sedel L., Logeart-Avramoglou D., Petite H. Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 2007;13:1325–1331. doi: 10.1089/ten.2006.0325. PubMed DOI
Binder B.Y.K., Genetos D.C., Leach J.K. Lysophosphatidic Acid Protects Human Mesenchymal Stromal Cells from Differentiation-Dependent Vulnerability to Apoptosis. Tissue Eng. Part A. 2014;20:1156. doi: 10.1089/ten.tea.2013.0487. PubMed DOI PMC
Pesarini J.R., de Oliveira E.J.T., Pessatto L.R., Rabacow A.P.M., Camassola M., dos Santos B.P., de Barros M.E., Cantero W.d.B., Antoniolli-Silva A.C.M.B., Oliveira R.J. Calcitriol combined with calcium chloride causes apoptosis in undifferentiated adipose tissue-derived human mesenchymal stem cells, but this effect decreases during adipogenic differentiation. Biomed. Pharmacother. 2018;108:914–924. doi: 10.1016/j.biopha.2018.09.083. PubMed DOI
Oliver L., Hue E., Séry Q., Lafargue A., Pecqueur C., Paris F., Vallette F.M. Differentiation-related response to DNA breaks in human mesenchymal stem cells. Stem Cells. 2013;31:800–807. doi: 10.1002/stem.1336. PubMed DOI
Manna C., Das K., Mandal D., Banerjee D., Mukherjee J., Ganguly I., Naskar S., Bag S. Canine umbilical cord tissue derived mesenchymal stem cells naturally express mRNAs of some antimicrobial peptides. Vet. Res. Commun. 2023. in press . PubMed DOI
Wu Y., Shao Y., Xie D., Pan J., Chen H., Yao J., Liang J., Ke H., Cai D., Zeng C. Effect of secretory leucocyte protease inhibitor on early tendon-to-bone healing after anterior cruciate ligament reconstruction in a rat model. Bone Jt. Res. 2022;11:503. doi: 10.1302/2046-3758.117.BJR-2021-0358.R2. PubMed DOI PMC
Choi B.D., Lee S.Y., Jeong S.J., Lim D.S., Cha H.J., Chung W.G., Jeong M.J. Secretory leukocyte protease inhibitor promotes differentiation and mineralization of MC3T3-E1 preosteoblasts on a titanium surface. Mol. Med. Rep. 2016;14:1241–1246. doi: 10.3892/mmr.2016.5381. PubMed DOI
Ohlsson S., Tufvesson B., Polling Å., Ohlsson K. Distribution of the secretory leucocyte proteinase inhibitor in human articular cartilage. Biol. Chem. 1997;378:1055–1058. doi: 10.1515/bchm.1997.378.9.1055. PubMed DOI
Jacoby A.S., Melrose J., Robinson B.G., Hyland V.J., Ghosh P. Secretory leucocyte proteinase inhibitor is produced by human articular cartilage chondrocytes and intervertebral disc fibrochondrocytes. Eur. J. Biochem. 1993;218:951–957. doi: 10.1111/j.1432-1033.1993.tb18452.x. PubMed DOI
Adapala V.J., Buhman K.K., Ajuwon K.M. Novel anti-inflammatory role of SLPI in adipose tissue and its regulation by high fat diet. J. Inflamm. 2011;8:5. doi: 10.1186/1476-9255-8-5. PubMed DOI PMC
Zhong Q.Q., Wang X., Li Y.F., Peng L.J., Jiang Z.S. Secretory leukocyte protease inhibitor promising protective roles in obesity-associated atherosclerosis. Exp. Biol. Med. 2017;242:250. doi: 10.1177/1535370216672747. PubMed DOI PMC
Liang W.C., Fu W.M., Wang Y.B., Sun Y.X., Xu L.L., Wong C.W., Chan K.M., Li G., Waye M.M.Y., Zhang J.F. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci. Rep. 2016;6:20121. doi: 10.1038/srep20121. PubMed DOI PMC
Zheng X., Gan S., Su C., Zheng Z., Liao Y., Shao J., Zhu Z., Chen W. Screening and preliminary identification of long non-coding RNAs critical for osteogenic differentiation of human umbilical cord mesenchymal stem cells. Bioengineered. 2022;13:6880. doi: 10.1080/21655979.2022.2044274. PubMed DOI PMC
Cao B., Dai X. Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells by regulating the lncRNA H19/miR-29b-3p/SOX9 axis. FEBS Open Bio. 2020;10:2656. doi: 10.1002/2211-5463.13002. PubMed DOI PMC
Huang Y., Zheng Y., Jin C., Li X., Jia L., Li W. Long Non-coding RNA H19 Inhibits Adipocyte Differentiation of Bone Marrow Mesenchymal Stem Cells through Epigenetic Modulation of Histone Deacetylases. Sci. Rep. 2016;6:28897. doi: 10.1038/srep28897. PubMed DOI PMC
Li K., Wu Y., Yang H., Hong P., Fang X., Hu Y. H19/miR-30a/C8orf4 axis modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. J. Cell. Physiol. 2019;234:20925–20934. doi: 10.1002/jcp.28697. PubMed DOI
Saidi S., Bouri F., Lencel P., Duplomb L., Baud’huin M., Delplace S., Leterme D., Miellot F., Heymann D., Hardouin P., et al. IL-33 is expressed in human osteoblasts, but has no direct effect on bone remodeling. Cytokine. 2011;53:347–354. doi: 10.1016/j.cyto.2010.11.021. PubMed DOI
Schulze J., Bickert T., Beil F.T., Zaiss M.M., Albers J., Wintges K., Streichert T., Klaetschke K., Keller J., Hissnauer T.N., et al. Interleukin-33 is expressed in differentiated osteoblasts and blocks osteoclast formation from bone marrow precursor cells. J. Bone Miner. Res. 2011;26:704–717. doi: 10.1002/jbmr.269. PubMed DOI
Wood I.S., Wang B., Trayhurn P. IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes. Biochem. Biophys. Res. Commun. 2009;384:105–109. doi: 10.1016/j.bbrc.2009.04.081. PubMed DOI
Ngan E.S.W., Lee K.Y., Sit F.Y.L., Poon H.C., Chan J.K.Y., Sham M.H., Lui V.C.H., Tam P.K.H. Prokineticin-1 modulates proliferation and differentiation of enteric neural crest cells. Biochim. Biophys. Acta. 2007;1773:536–545. doi: 10.1016/j.bbamcr.2007.01.013. PubMed DOI
da Silva C., Durandt C., Kallmeyer K., Ambele M.A., Pepper M.S. The Role of Pref-1 during Adipogenic Differentiation: An Overview of Suggested Mechanisms. Int. J. Mol. Sci. 2020;21:4104. doi: 10.3390/ijms21114104. PubMed DOI PMC
Zhang X., Hirai M., Cantero S., Ciubotariu R., Dobrila L., Hirsh A., Igura K., Satoh H., Yokomi I., Nishimura T., et al. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: Reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J. Cell. Biochem. 2011;112:1206–1218. doi: 10.1002/JCB.23042. PubMed DOI
Karagianni M., Brinkmann I., Kinzebach S., Grassl M., Weiss C., Bugert P., Bieback K. A comparative analysis of the adipogenic potential in human mesenchymal stromal cells from cord blood and other sources. Cytotherapy. 2013;15:76–88. doi: 10.1016/j.jcyt.2012.11.001. PubMed DOI
Morganstein D.L., Wu P., Mane M.R., Fisk N.M., White R., Parker M.G. Human fetal mesenchymal stem cells differentiate into brown and white adipocytes, and reveal a role for ERRα in human UCP1 expression. Cell Res. 2010;20:434. doi: 10.1038/cr.2010.11. PubMed DOI PMC
Farr J.N., Weivoda M.M., Nicks K.M., Fraser D.G., Negley B.A., Onken J.L., Thicke B.S., Ruan M., Liu H., Forrest D., et al. Osteoprotection Through the Deletion of the Transcription Factor Rorβ in Mice. J. Bone Miner. Res. 2018;33:720. doi: 10.1002/jbmr.3351. PubMed DOI PMC
Roforth M.M., Khosla S., Monroe D.G. Identification of Rorβ targets in cultured osteoblasts and in human bone. Biochem. Biophys. Res. Commun. 2013;440:768–773. doi: 10.1016/j.bbrc.2013.10.006. PubMed DOI PMC
Lorenzo P., Bayliss M.T., Heinegårdt D. A novel cartilage protein (CILP) present in the mid-zone of human articular cartilage increases with age. J. Biol. Chem. 1998;273:23463–23468. doi: 10.1074/jbc.273.36.23463. PubMed DOI
Derfoul A., Perkins G.L., Hall D.J., Tuan R.S. Glucocorticoids Promote Chondrogenic Differentiation of Adult Human Mesenchymal Stem Cells by Enhancing Expression of Cartilage Extracellular Matrix Genes. Stem Cells. 2006;24:1487–1495. doi: 10.1634/stemcells.2005-0415. PubMed DOI
Vidács D.L., Veréb Z., Bozó R., Flink L.B., Polyánka H., Németh I.B., Póliska S., Papp B.T., Manczinger M., Gáspár R., et al. Phenotypic plasticity of melanocytes derived from human adult skin. Pigment Cell Melanoma Res. 2022;35:38–51. doi: 10.1111/pcmr.13012. PubMed DOI
Lecorguillé M., McAuliffe F.M., Twomey P.J., Viljoen K., Mehegan J., Kelleher C.C., Suderman M., Phillips C.M. Maternal Glycaemic and Insulinemic Status and Newborn DNA Methylation: Findings in Women with Overweight and Obesity. J. Clin. Endocrinol. Metab. 2022;108:85–98. doi: 10.1210/clinem/dgac553. PubMed DOI PMC
Lacana E., Maceyka M., Milstien S., Spiegel S. Cloning and characterization of a protein kinase A anchoring protein (AKAP)-related protein that interacts with and regulates sphingosine kinase 1 activity. J. Biol. Chem. 2002;277:32947–32953. doi: 10.1074/jbc.M202841200. PubMed DOI
Jiang Z.J., Gong L.W. The SphK1/S1P Axis Regulates Synaptic Vesicle Endocytosis via TRPC5 Channels. J. Neurosci. 2023;43:3807–3824. doi: 10.1523/JNEUROSCI.1494-22.2023. PubMed DOI PMC
Cui X.Y., Hu Q.D., Tekaya M., Shimoda Y., Ang B.T., Nie D.Y., Sun L., Hu W.P., Karsak M., Duka T., et al. NB-3/Notch1 pathway via Deltex1 promotes neural progenitor cell differentiation into oligodendrocytes. J. Biol. Chem. 2004;279:25858–25865. doi: 10.1074/jbc.M313505200. PubMed DOI
Cheng Y.-C., Huang Y.-C., Yeh T.-H., Shih H.-Y., Lin C.-Y., Lin S.-J., Chiu C.-C., Huang C.-W., Jiang Y.-J. Deltex1 is inhibited by the Notch–Hairy/E(Spl) signaling pathway and induces neuronal and glial differentiation. Neural Dev. 2015;10:28. doi: 10.1186/s13064-015-0055-5. PubMed DOI PMC
Michael G.J., Esmailzadeh S., Moran L.B., Christian L., Pearce R.K.B., Graeber M.B. Up-regulation of metallothionein gene expression in Parkinsonian astrocytes. Neurogenetics. 2011;12:295–305. doi: 10.1007/s10048-011-0294-5. PubMed DOI
Sobieszczuk D.F., Poliakov A., Xu Q., Wilkinson D.G. A feedback loop mediated by degradation of an inhibitor is required to initiate neuronal differentiation. Genes Dev. 2010;24:206. doi: 10.1101/gad.554510. PubMed DOI PMC
Zhu X., Wang Z., Sun Y.E., Liu Y., Wu Z., Ma B., Cheng L. Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells From Different Donors on Spinal Cord Injury in Mice. Front. Cell. Neurosci. 2021;15:768711. doi: 10.3389/fncel.2021.768711. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Yan L. Draw Venn Diagram by “ggplot2” [R Package ggvenn Version 0.1.10] 2023. [(accessed on 28 May 2023)]. Available online: https://cran.r-project.org/web/packages/ggvenn/ggvenn.pdf.
Dennis G., Sherman B.T., Hosack D.A., Yang J., Gao W., Lane H.C., Lempicki R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:R60. doi: 10.1186/gb-2003-4-9-r60. PubMed DOI
Fresno C., Fernández E.A. RDAVIDWebService: A versatile R interface to DAVID. Bioinformatics. 2013;29:2810–2811. doi: 10.1093/bioinformatics/btt487. PubMed DOI
Benjamini Y., Cohen R. Weighted false discovery rate controlling procedures for clinical trials. Biostatistics. 2017;18:91–104. doi: 10.1093/biostatistics/kxw030. PubMed DOI PMC
Goesmann A., Haubrock M., Meyer F., Kalinowski J., Giegerich R. PathFinder: Reconstruction and dynamic visualization of metabolic pathways. Bioinformatics. 2002;18:124–129. doi: 10.1093/bioinformatics/18.1.124. PubMed DOI
Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC
Bader G.D., Hogue C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2. doi: 10.1186/1471-2105-4-2. PubMed DOI PMC