Apoptosis Related Human Wharton's Jelly-Derived Stem Cells Differentiation into Osteoblasts, Chondrocytes, Adipocytes and Neural-like Cells-Complete Transcriptomic Assays

. 2023 Jun 12 ; 24 (12) : . [epub] 20230612

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37373173

Grantová podpora
0070/DW/2018/02 Ministry of Science and Higher Education
CZ.02.1.01/0.0/0.0/15_003/0000460 Ministry of Education Youth and Sports

Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exhibit multilineage differentiation potential, adhere to plastic, and express a specific set of surface markers-CD105, CD73, CD90. Although there are relatively well-established differentiation protocols for WJ-MSCs, the exact molecular mechanisms involved in their in vitro long-term culture and differentiation remain to be elucidated. In this study, the cells were isolated from Wharton's jelly of umbilical cords obtained from healthy full-term deliveries, cultivated in vitro, and differentiated towards osteogenic, chondrogenic, adipogenic and neurogenic lineages. RNA samples were isolated after the differentiation regimen and analyzed using an RNA sequencing (RNAseq) assay, which led to the identification of differentially expressed genes belonging to apoptosis-related ontological groups. ZBTB16 and FOXO1 were upregulated in all differentiated groups as compared to controls, while TGFA was downregulated in all groups. In addition, several possible novel marker genes associated with the differentiation of WJ-MSCs were identified (e.g., SEPTIN4, ITPR1, CNR1, BEX2, CD14, EDNRB). The results of this study provide an insight into the molecular mechanisms involved in the long-term culture in vitro and four-lineage differentiation of WJ-MSCs, which is crucial to utilize WJ-MSCs in regenerative medicine.

Zobrazit více v PubMed

Jarrige M., Frank E., Herardot E., Martineau S., Darle A., Benabides M., Domingues S., Chose O., Habeler W., Lorant J., et al. The future of regenerative medicine: Cell therapy using pluripotent stem cells and acellular therapies based on extracellular vesicles. Cells. 2021;10:240. doi: 10.3390/cells10020240. PubMed DOI PMC

Doğan A. Advances in Experimental Medicine and Biology. Volume 1079. Springer; Cham, Switzerland: 2018. Embryonic stem cells in development and regenerative medicine; pp. 1–15. PubMed

Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI

Young H.E., Black A.C. Adult Stem Cells. Anat. Rec.-Part A Discov. Mol. Cell. Evol. Biol. 2004;276:75–102. doi: 10.1002/ar.a.10134. PubMed DOI

Pochon C., Notarantonio A.B., Laroye C., Reppel L., Bensoussan D., Bertrand A., Rubio M.T., D’Aveni M. Wharton’s jelly-derived stromal cells and their cell therapy applications in allogeneic haematopoietic stem cell transplantation. J. Cell. Mol. Med. 2022;26:1339–1350. doi: 10.1111/jcmm.17105. PubMed DOI PMC

Arutyunyan I., Elchaninov A., Makarov A., Fatkhudinov T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int. 2016;2016:6901286. doi: 10.1155/2016/6901286. PubMed DOI PMC

Conconi M.T., Liddo R.D., Tommasini M., Calore C., Parnigotto P.P. Phenotype and Differentiation Potential of Stromal Populations Obtained from Various Zones of Human Umbilical Cord: An Overview. Open Tissue Eng. Regen. Med. J. 2011;4:6–20. doi: 10.2174/1875043501104010006. DOI

Can A., Karahuseyinoglu S. Concise Review: Human Umbilical Cord Stroma with Regard to the Source of Fetus-Derived Stem Cells. Stem Cells. 2007;25:2886–2895. doi: 10.1634/stemcells.2007-0417. PubMed DOI

Bongso A., Fong C.Y. The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Rev. Rep. 2013;9:226–240. doi: 10.1007/s12015-012-9418-z. PubMed DOI

Lyons F.G., Mattei T.A. Advances in Experimental Medicine and Biology. Volume 1169. Springer; Cham, Switzerland: 2019. Sources, Identification, and Clinical Implications of Heterogeneity in Human Umbilical Cord Stem Cells; pp. 243–256. PubMed

Sobolewski K., Bańkowski E., Chyczewski L., Jaworski S. Collagen and glycosaminoglycans of wharton’s jelly. Neonatology. 1997;71:11–21. doi: 10.1159/000244392. PubMed DOI

Meyer F.A., Laver-Rudich Z., Tanenbaum R. Evidence for a mechanical coupling of glycoprotein microfibrils with collagen fibrils in Wharton’s jelly. BBA-Gen. Subj. 1983;755:376–387. doi: 10.1016/0304-4165(83)90241-6. PubMed DOI

Takechi K., Kuwabara Y., Mizuno M. Ultrastructural and immunohistochemical studies of Wharton’s jelly umbilical cord cells. Placenta. 1993;14:235–245. doi: 10.1016/S0143-4004(05)80264-4. PubMed DOI

Nanaev A.K., Kohnen G., Milovanov A.P., Domogatsky S.P., Kaufmann P. Stromal differentiation and architecture of the human umbilical cord. Placenta. 1997;18:53–64. doi: 10.1016/S0143-4004(97)90071-0. PubMed DOI

Damsgaard T.M.E., Nielsen B.W., Sørensen F.B., Henriques U., Schiøtz P.O. Estimation of the total number of mast cells in the human umbilical cord: A methodological study. Apmis. 1992;100:845–850. doi: 10.1111/j.1699-0463.1992.tb04009.x. PubMed DOI

Wang X.Y., Lan Y., He W.Y., Zhang L., Yao H.Y., Hou C.M., Tong Y., Liu Y.L., Yang G., Liu X.D., et al. Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood. 2008;111:2436–2443. doi: 10.1182/blood-2007-07-099333. PubMed DOI

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Subramanian A., Fong C.Y., Biswas A., Bongso A. Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS ONE. 2015;10:e0127992. doi: 10.1371/journal.pone.0127992. PubMed DOI PMC

Cabrera-Pérez R., Monguió-Tortajada M., Gámez-Valero A., Rojas-Márquez R., Borràs F.E., Roura S., Vives J. Osteogenic commitment of Wharton’s jelly mesenchymal stromal cells: Mechanisms and implications for bioprocess development and clinical application. Stem Cell Res. Ther. 2019;10:356. doi: 10.1186/s13287-019-1450-3. PubMed DOI PMC

Ansari A.S., Yazid M.D., Sainik N.Q.A.V., Razali R.A., Saim A.B., Idrus R.B.H. Osteogenic induction of Wharton’s jelly-derived mesenchymal stem cell for bone regeneration: A systematic review. Stem Cells Int. 2018;2018:2406462. doi: 10.1155/2018/2406462. PubMed DOI PMC

Amable P.R., Teixeira M.V.T., Carias R.B.V., Granjeiro J.M., Borojevic R. Gene expression and protein secretion during human mesenchymal cell differentiation into adipogenic cells. BMC Cell Biol. 2014;15:46. doi: 10.1186/s12860-014-0046-0. PubMed DOI PMC

Amable P.R., Teixeira M.V.T., Carias R.B.V., Granjeiro J.M., Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res. Ther. 2014;5:53. doi: 10.1186/scrt442. PubMed DOI PMC

Reppel L., Margossian T., Yaghi L., Moreau P., Mercier N., Leger L., Hupont S., Stoltz J.-F., Bensoussan D., Huselstein C. Hypoxic Culture Conditions for Mesenchymal Stromal/Stem Cells from Wharton’s Jelly: A Critical Parameter to Consider in a Therapeutic Context. Curr. Stem Cell Res. Ther. 2014;9:306–318. doi: 10.2174/1574888X09666140213204850. PubMed DOI

Reppel L., Schiavi J., Charif N., Leger L., Yu H., Pinzano A., Henrionnet C., Stoltz J.F., Bensoussan D., Huselstein C. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton’s jelly embedded in alginate hydrogel and without added growth factor: An alternative stem cell source for cartilage tissue engineering. Stem Cell Res. Ther. 2015;6:260. doi: 10.1186/s13287-015-0263-2. PubMed DOI PMC

Mitchell K.E., Weiss M.L., Mitchell B.M., Martin P., Davis D., Morales L., Helwig B., Beerenstrauch M., Abou-Easa K., Hildreth T., et al. Matrix Cells from Wharton’s Jelly Form Neurons and Glia. Stem Cells. 2003;21:50–60. doi: 10.1634/stemcells.21-1-50. PubMed DOI

Fu Y.S., Shih Y.T., Cheng Y.C., Min M.Y. Transformation of human umbilical mesenchymal cells into neurons in vitro. J. Biomed. Sci. 2004;11:652–660. doi: 10.1007/BF02256131. PubMed DOI

Liang J., Wu S., Zhao H., Li S.L., Liu Z.X., Wu J., Zhou L. Human umbilical cord mesenchymal stem cells derived from Wharton’s jelly differentiate into cholinergic-like neurons in vitro. Neurosci. Lett. 2013;532:59–63. doi: 10.1016/j.neulet.2012.11.014. PubMed DOI

Alizadeh R., Bagher Z., Kamrava S.K., Falah M., Ghasemi Hamidabadi H., Eskandarian Boroujeni M., Mohammadi F., Khodaverdi S., Zare-Sadeghi A., Olya A., et al. Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton’s Jelly and olfactory mucosa as sources of MSCs. J. Chem. Neuroanat. 2019;96:126–133. doi: 10.1016/j.jchemneu.2019.01.003. PubMed DOI

Wang H.-S., Hung S.-C., Peng S.-T., Huang C.-C., Wei H.-M., Guo Y.-J., Fu Y.-S., Lai M.-C., Chen C.-C. Mesenchymal Stem Cells in the Wharton’s Jelly of the Human Umbilical Cord. Stem Cells. 2004;22:1330–1337. doi: 10.1634/stemcells.2004-0013. PubMed DOI

Conconi M.T., Burra P., Di Liddo R., Calore C., Turetta M., Bellini S., Bo P., Nussdorfer G.G., Parnigotto P.P. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int. J. Mol. Med. 2006;18:1089–1096. doi: 10.3892/ijmm.18.6.1089. PubMed DOI

Zhang Y.N., Lie P.C., Wei X. Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy. 2009;11:548–558. doi: 10.1080/14653240903051533. PubMed DOI

Bharti D., Shivakumar S.B., Park J.K., Ullah I., Subbarao R.B., Park J.S., Lee S.L., Park B.W., Rho G.J. Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res. 2018;372:51–65. doi: 10.1007/s00441-017-2699-4. PubMed DOI PMC

Prasajak P., Leeanansaksiri W. Developing a new two-step protocol to generate functional hepatocytes from wharton’s jelly-derived mesenchymal stem cells under hypoxic condition. Stem Cells Int. 2013;2013:762196. doi: 10.1155/2013/762196. PubMed DOI PMC

Hu Y., Liang J., Cui H.P., Wang X.M., Rong H., Shao B., Cui H. Wharton’s jelly mesenchymal stem cells differentiate into retinal progenitor cells. Neural Regen. Res. 2013;8:1783–1792. doi: 10.3969/j.issn.1673-5374.2013.19.006. PubMed DOI PMC

Huang P., Lin L.M., Wu X.Y., Tang Q.L., Feng X.Y., Lin G.Y., Lin X., Wang H.W., Huang T.H., Ma L. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J. Cell. Biochem. 2010;109:747–754. doi: 10.1002/jcb.22453. PubMed DOI

Chao K.C., Chao K.F., Fu Y.S., Liu S.H. Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE. 2008;3:e1451. doi: 10.1371/journal.pone.0001451. PubMed DOI PMC

Wu L.F., Wang N.N., Liu Y.S., Wei X. Differentiation of wharton’s jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng.-Part A. 2009;15:2865–2873. doi: 10.1089/ten.tea.2008.0579. PubMed DOI

Wu K.H., Zhou B., Lu S.H., Feng B., Yang S.G., Du W.T., Gu D.S., Han Z.C., Liu Y.L. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J. Cell. Biochem. 2007;100:608–616. doi: 10.1002/jcb.21078. PubMed DOI

Shi Q., Gao J., Jiang Y., Sun B., Lu W., Su M., Xu Y., Yang X., Zhang Y. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells. Stem Cell Res. Ther. 2017;8:246. doi: 10.1186/s13287-017-0700-5. PubMed DOI PMC

Potier E., Ferreira E., Meunier A., Sedel L., Logeart-Avramoglou D., Petite H. Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 2007;13:1325–1331. doi: 10.1089/ten.2006.0325. PubMed DOI

Stelcer E., Komarowska H., Jopek K., Żok A., Iżycki D., Malińska A., Szczepaniak B., Komekbai Z., Karczewski M., Wierzbicki T., et al. Biological response of adrenal carcinoma and melanoma cells to mitotane treatment. Oncol. Lett. 2022;23:120. doi: 10.3892/ol.2022.13240. PubMed DOI PMC

Budna J., Chachuła A., Kaźmierczak D., Rybska M., Ciesiółka S., Bryja A., Kranc W., Borys S., Zok A., Bukowska D., et al. Morphogenesis-related gene-expression profile in porcine oocytes before and after in vitro maturation. Zygote. 2017;25:331–340. doi: 10.1017/S096719941700020X. PubMed DOI

Wang Z., Gerstein M., Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57. doi: 10.1038/nrg2484. PubMed DOI PMC

Golkar-Narenji A., Antosik P., Nolin S., Rucinski M., Jopek K., Zok A., Sobolewski J., Jankowski M., Zdun M., Bukowska D., et al. Gene Ontology Groups and Signaling Pathways Regulating the Process of Avian Satellite Cell Differentiation. Genes. 2022;13:242. doi: 10.3390/genes13020242. PubMed DOI PMC

Jankowski M., Dompe C., Sibiak R., Wąsiatycz G., Mozdziak P., Jaśkowski J.M., Antosik P., Kempisty B., Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells. 2020;9:1783. doi: 10.3390/cells9081783. PubMed DOI PMC

Binder B.Y.K., Genetos D.C., Leach J.K. Lysophosphatidic Acid Protects Human Mesenchymal Stromal Cells from Differentiation-Dependent Vulnerability to Apoptosis. Tissue Eng. Part A. 2014;20:1156. doi: 10.1089/ten.tea.2013.0487. PubMed DOI PMC

Pesarini J.R., de Oliveira E.J.T., Pessatto L.R., Rabacow A.P.M., Camassola M., dos Santos B.P., de Barros M.E., Cantero W.d.B., Antoniolli-Silva A.C.M.B., Oliveira R.J. Calcitriol combined with calcium chloride causes apoptosis in undifferentiated adipose tissue-derived human mesenchymal stem cells, but this effect decreases during adipogenic differentiation. Biomed. Pharmacother. 2018;108:914–924. doi: 10.1016/j.biopha.2018.09.083. PubMed DOI

Lo Furno D., Graziano A.C.E., Caggia S., Perrotta R.E., Tarico M.S., Giuffrida R., Cardile V. Decrease of apoptosis markers during adipogenic differentiation of mesenchymal stem cells from human adipose tissue. Apoptosis. 2013;18:578–588. doi: 10.1007/s10495-013-0830-x. PubMed DOI

Oliver L., Hue E., Séry Q., Lafargue A., Pecqueur C., Paris F., Vallette F.M. Differentiation-related response to DNA breaks in human mesenchymal stem cells. Stem Cells. 2013;31:800–807. doi: 10.1002/stem.1336. PubMed DOI

Ming Liu T., Martina M., Hutmacher D.W., Hoi Po Hui J., Hin Lee E., Lim B., Hoi Hui J.P. Identification of Common Pathways Mediating Differentiation of Bone Marrow- and Adipose Tissue-Derived Human Mesenchymal Stem Cells into Three Mesenchymal Lineages. Stem Cells. 2007;25:750–760. doi: 10.1634/STEMCELLS.2006-0394. PubMed DOI

Onizuka S., Iwata T., Park S.J., Nakai K., Yamato M., Okano T., Izumi Y. ZBTB16 as a Downstream Target Gene of Osterix Regulates Osteoblastogenesis of Human Multipotent Mesenchymal Stromal Cells. J. Cell. Biochem. 2016;117:2423. doi: 10.1002/jcb.25634. PubMed DOI PMC

Marofi F., Vahedi G., Solali S., Alivand M., Salarinasab S., Zadi Heydarabad M., Farshdousti Hagh M. Gene expression of TWIST1 and ZBTB16 is regulated by methylation modifications during the osteoblastic differentiation of mesenchymal stem cells. J. Cell. Physiol. 2019;234:6230–6243. doi: 10.1002/jcp.27352. PubMed DOI

Liu T.M., Guo X.M., Tan H.S., Hui J.H., Lim B., Lee E.H. Zinc-finger protein 145, acting as an upstream regulator of SOX9, improves the differentiation potential of human mesenchymal stem cells for cartilage regeneration and repair. Arthritis Rheum. 2011;63:2711–2720. doi: 10.1002/art.30430. PubMed DOI

Al-Ali M.M., Khan A.A., Fayyad A.M., Abdallah S.H., Khattak M.N.K. Transcriptomic profiling of the telomerase transformed Mesenchymal stromal cells derived adipocytes in response to rosiglitazone. BMC Genom. Data. 2022;23:17. doi: 10.1186/s12863-022-01027-z. PubMed DOI PMC

Ambele M.A., Dessels C., Durandt C., Pepper M.S. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Res. 2016;16:725–734. doi: 10.1016/j.scr.2016.04.011. PubMed DOI

Sobieszczuk D.F., Poliakov A., Xu Q., Wilkinson D.G. A feedback loop mediated by degradation of an inhibitor is required to initiate neuronal differentiation. Genes Dev. 2010;24:206. doi: 10.1101/gad.554510. PubMed DOI PMC

Zhu X., Wang Z., Sun Y.E., Liu Y., Wu Z., Ma B., Cheng L. Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells From Different Donors on Spinal Cord Injury in Mice. Front. Cell. Neurosci. 2021;15:768711. doi: 10.3389/fncel.2021.768711. PubMed DOI PMC

Ludikhuize M.C., Rodríguez Colman M.J. Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Antioxid. Redox Signal. 2021;34:1004–1024. doi: 10.1089/ars.2020.8126. PubMed DOI

Kurakazu I., Akasaki Y., Hayashida M., Tsushima H., Goto N., Sueishi T., Toya M., Kuwahara M., Okazaki K., Duffy T., et al. FOXO1 transcription factor regulates chondrogenic differentiation through transforming growth factor β1 signaling. J. Biol. Chem. 2019;294:17555. doi: 10.1074/jbc.RA119.009409. PubMed DOI PMC

Chen P., Hu B., Xie L.Q., Jiang T.J., Xia Z.Y., Peng H. Scara3 regulates bone marrow mesenchymal stem cell fate switch between osteoblasts and adipocytes by promoting Foxo1. Cell Prolif. 2021;54:e13095. doi: 10.1111/cpr.13095. PubMed DOI PMC

Siqueira M.F., Flowers S., Bhattacharya R., Faibish D., Behl Y., Kotton D.N., Gerstenfeld L., Moran E., Graves D.T. FOXO1 Modulates Osteoblast Differentiation. Bone. 2011;48:1043. doi: 10.1016/j.bone.2011.01.019. PubMed DOI PMC

Teixeira C.C., Liu Y., Thant L.M., Pang J., Palmer G., Alikhani M. Foxo1, a Novel Regulator of Osteoblast Differentiation and Skeletogenesis. J. Biol. Chem. 2010;285:31055. doi: 10.1074/jbc.M109.079962. PubMed DOI PMC

Chen J., Lu Y., Tian M., Huang Q. Molecular mechanisms of FOXO1 in adipocyte differentiation. J. Mol. Endocrinol. 2019;62:R239–R253. doi: 10.1530/JME-18-0178. PubMed DOI

Nakae J., Kitamura T., Kitamura Y., Biggs W.H., Arden K.C., Accili D. The forkhead transcription factor Fox01 regulates adipocyte differentiation. Dev. Cell. 2003;4:119–129. doi: 10.1016/S1534-5807(02)00401-X. PubMed DOI

Domínguez-Castro M., Domínguez-Galicia A., Pérez-Pérez O., Hernández-Pineda J., Mancilla-Herrera I., Bazán-Tejeda M.L., Rodríguez-Cruz L., González-Torres M.C., Montoya-Estrada A., Reyes-Muñoz E., et al. Hyperglycemia affects neuronal differentiation and Nestin, FOXO1, and LMO3 mRNA expression of human Wharton’s jelly mesenchymal stem cells of children from diabetic mothers. Biochem. Biophys. Res. Commun. 2022;637:300–307. doi: 10.1016/j.bbrc.2022.11.029. PubMed DOI

Lotan R., Rotem A., Gonen H., Finberg J.P.M., Kemeny S., Steller H., Ciechanover A., Larisch S. Regulation of the proapoptotic ARTS protein by ubiquitin-mediated degradation. J. Biol. Chem. 2005;280:25802–25810. doi: 10.1074/jbc.M501955200. PubMed DOI

Gottfried Y., Rotem A., Lotan R., Steller H., Larisch S. The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J. 2004;23:1627. doi: 10.1038/sj.emboj.7600155. PubMed DOI PMC

Qi Z., Guo W., Zheng S., Fu C., Ma Y., Pan S., Liu Q., Yang X. Enhancement of neural stem cell survival, proliferation and differentiation by IGF-1 delivery in graphene oxide-incorporated PLGA electrospun nanofibrous mats. RSC Adv. 2019;9:8315. doi: 10.1039/C8RA10103E. PubMed DOI PMC

Zhao L., Feng Y., Chen X., Yuan J., Liu X., Chen Y., Zhao Y., Liu P., Li Y. Effects of IGF-1 on neural differentiation of human umbilical cord derived mesenchymal stem cells. Life Sci. 2016;151:93–101. doi: 10.1016/j.lfs.2016.03.001. PubMed DOI

Zhou Q., Li B., Zhao J., Pan W., Xu J., Chen S. IGF-I induces adipose derived mesenchymal cell chondrogenic differentiation in vitro and enhances chondrogenesis in vivo. Vitr. Cell. Dev. Biol. Anim. 2016;52:356–364. doi: 10.1007/s11626-015-9969-9. PubMed DOI

Feng J., Meng Z. Insulin growth factor-1 promotes the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells through the Wnt/β-catenin pathway. Exp. Ther. Med. 2021;22:891. doi: 10.3892/etm.2021.10323. PubMed DOI PMC

Kinoshita A., Ohyama K., Tanimura S., Matsuda K., Kishino T., Negishi Y., Asahina N., Shiraishi H., Hosoki K., Tomiwa K., et al. Itpr1 regulates the formation of anterior eye segment tissues derived from neural crest cells. Development. 2021;148:dev188755. doi: 10.1242/dev.188755. PubMed DOI

Zhang X., Wang L., Wang Y., He L., Xu D., Yan E., Guo J., Ma C., Zhang P., Yin J. Lack of adipocyte IP3R1 reduces diet-induced obesity and greatly improves whole-body glucose homeostasis. Cell Death Discov. 2023;9:87. doi: 10.1038/s41420-023-01389-y. PubMed DOI PMC

Chen J., Zhang Y., Liu M., Zhou Z., Li Q., Huang T., Yue Y., Tian Y. Effect and Related Mechanism of Platelet-Rich Plasma on the Osteogenic Differentiation of Human Adipose-Derived Stem Cells. BioMed Res. Int. 2022;2022:1256002. doi: 10.1155/2022/1256002. PubMed DOI PMC

Sidibeh C.O., Pereira M.J., Lau Börjesson J., Kamble P.G., Skrtic S., Katsogiannos P., Sundbom M., Svensson M.K., Eriksson J.W. Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance. Endocrine. 2017;55:839. doi: 10.1007/s12020-016-1172-6. PubMed DOI PMC

Katagiri W., Osugi M., Kawai T., Hibi H. Secreted Frizzled-Related Protein Promotes Bone Regeneration by Human Bone Marrow-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 2015;16:23250. doi: 10.3390/ijms161023250. PubMed DOI PMC

Zhong L., Huang X., Rodrigues E.D., Leijten J.C.H., Verrips T., El Khattabi M., Karperien M., Post J.N. Endogenous DKK1 and FRZB Regulate Chondrogenesis and Hypertrophy in Three-Dimensional Cultures of Human Chondrocytes and Human Mesenchymal Stem Cells. Stem Cells Dev. 2016;25:1808. doi: 10.1089/scd.2016.0222. PubMed DOI PMC

Lee J., Lee J., Jung E., Hwang W., Kim Y.S., Park D. Isorhamnetin-induced anti-adipogenesis is mediated by stabilization of beta-catenin protein. Life Sci. 2010;86:416–423. doi: 10.1016/j.lfs.2010.01.012. PubMed DOI

Liu S., Zhang E., Yang M., Lu L. Overexpression of Wnt11 promotes chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in synergism with TGF-β. Mol. Cell. Biochem. 2014;390:123–131. doi: 10.1007/s11010-014-1963-0. PubMed DOI

Naderi A., Liu J., Bennett I.C. BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer. Int. J. Cancer. 2010;126:1596–1610. doi: 10.1002/ijc.24866. PubMed DOI

Zhou X., Meng Q., Xu X., Zhi T., Shi Q., Wang Y., Yu R. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway. Biochem. Biophys. Res. Commun. 2012;427:574–580. doi: 10.1016/j.bbrc.2012.09.100. PubMed DOI

Alvarez E., Zhou W., Witta S.E., Freed C.R. Characterization of the Bex gene family in humans, mice, and rats. Gene. 2005;357:18–28. doi: 10.1016/j.gene.2005.05.012. PubMed DOI

Mashhadikhan M., Kheiri H., Dehghanifard A. DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J. Oral Biosci. 2020;62:349–356. doi: 10.1016/j.job.2020.08.001. PubMed DOI

Jin L., Cao Y., Yu G., Wang J., Lin X., Ge L., Du J., Wang L., Diao S., Lian X., et al. SFRP2 enhances the osteogenic differentiation of apical papilla stem cells by antagonizing the canonical WNT pathway. Cell. Mol. Biol. Lett. 2017;22:14. doi: 10.1186/s11658-017-0044-2. PubMed DOI PMC

Pomduk K., Kheolamai P., U-Pratya Y., Wattanapanitch M., Klincumhom N., Issaragrisil S. Enhanced human mesenchymal stem cell survival under oxidative stress by overexpression of secreted frizzled-related protein 2 gene. Ann. Hematol. 2015;94:319–327. doi: 10.1007/s00277-014-2210-1. PubMed DOI

Huang H., Zhao N., Xu X., Xu Y., Li S., Zhang J., Yang P. Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Prolif. 2011;44:420. doi: 10.1111/j.1365-2184.2011.00769.x. PubMed DOI PMC

Marupanthorn K., Tantrawatpan C., Tantikanlayaporn D., Kheolamai P., Manochantr S. The Effects of TNF-α on Osteogenic Differentiation of Umbilical Cord Derived Mesenchymal Stem Cells. J. Med. Assoc. Thai. 2015;98((Suppl. 3)):S34–S40. PubMed

Heidenreich S., Schmidt M., August C., Cullen P., Rademaekers A., Pauels H. Regulation of human monocyte apoptosis by the CD14 molecule. J. Immunol. 1997;159:3178–3188. doi: 10.4049/jimmunol.159.7.3178. PubMed DOI

Li K., Dan Z., Hu X., Ouzhu M., Ciren Y., Wang Z., Wang J., Yang X., Ze Y. CD14 overexpression upregulates TNF-α-mediated inflammatory responses and suppresses the malignancy of gastric carcinoma cells. Mol. Cell. Biochem. 2013;376:137. doi: 10.1007/s11010-013-1559-0. PubMed DOI PMC

Lee M.-S., Wang J., Yuan H., Jiao H., Tsai T.-L., Squire M.W., Li W.-J. Endothelin-1 differentially directs lineage specification of adipose- and bone marrow–derived mesenchymal stem cells. FASEB J. 2019;33:996. doi: 10.1096/fj.201800614R. PubMed DOI PMC

Rucinski M., Zok A., Guidolin D., de Caro R., Malendowicz L.K. Expression of precerebellins in cultured rat calvaria osteoblast-like cells. Int. J. Mol. Med. 2008;22:553–558. doi: 10.3892/IJMM_00000055. PubMed DOI

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Dennis G., Sherman B.T., Hosack D.A., Yang J., Gao W., Lane H.C., Lempicki R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:R60. doi: 10.1186/gb-2003-4-9-r60. PubMed DOI

Fresno C., Fernández E.A. RDAVIDWebService: A versatile R interface to DAVID. Bioinformatics. 2013;29:2810–2811. doi: 10.1093/bioinformatics/btt487. PubMed DOI

Benjamini Y., Cohen R. Weighted false discovery rate controlling procedures for clinical trials. Biostatistics. 2017;18:91–104. doi: 10.1093/biostatistics/kxw030. PubMed DOI PMC

Gu Z., Eils R., Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI

Goesmann A., Haubrock M., Meyer F., Kalinowski J., Giegerich R. PathFinder: Reconstruction and dynamic visualization of metabolic pathways. Bioinformatics. 2002;18:124–129. doi: 10.1093/bioinformatics/18.1.124. PubMed DOI

Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC

Bader G.D., Hogue C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2. doi: 10.1186/1471-2105-4-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...