Apoptosis Related Human Wharton's Jelly-Derived Stem Cells Differentiation into Osteoblasts, Chondrocytes, Adipocytes and Neural-like Cells-Complete Transcriptomic Assays
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
0070/DW/2018/02
Ministry of Science and Higher Education
CZ.02.1.01/0.0/0.0/15_003/0000460
Ministry of Education Youth and Sports
PubMed
37373173
PubMed Central
PMC10297881
DOI
10.3390/ijms241210023
PII: ijms241210023
Knihovny.cz E-zdroje
- Klíčová slova
- MSC, RNAseq, Wharton’s jelly, apoptosis, differentiation, mesenchymal stem cells,
- MeSH
- apoptóza genetika MeSH
- buněčná diferenciace genetika MeSH
- chondrocyty MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky * MeSH
- osteoblasty MeSH
- proteiny nervové tkáně MeSH
- transkriptom MeSH
- tukové buňky MeSH
- Whartonův rosol * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BEX2 protein, human MeSH Prohlížeč
- proteiny nervové tkáně MeSH
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exhibit multilineage differentiation potential, adhere to plastic, and express a specific set of surface markers-CD105, CD73, CD90. Although there are relatively well-established differentiation protocols for WJ-MSCs, the exact molecular mechanisms involved in their in vitro long-term culture and differentiation remain to be elucidated. In this study, the cells were isolated from Wharton's jelly of umbilical cords obtained from healthy full-term deliveries, cultivated in vitro, and differentiated towards osteogenic, chondrogenic, adipogenic and neurogenic lineages. RNA samples were isolated after the differentiation regimen and analyzed using an RNA sequencing (RNAseq) assay, which led to the identification of differentially expressed genes belonging to apoptosis-related ontological groups. ZBTB16 and FOXO1 were upregulated in all differentiated groups as compared to controls, while TGFA was downregulated in all groups. In addition, several possible novel marker genes associated with the differentiation of WJ-MSCs were identified (e.g., SEPTIN4, ITPR1, CNR1, BEX2, CD14, EDNRB). The results of this study provide an insight into the molecular mechanisms involved in the long-term culture in vitro and four-lineage differentiation of WJ-MSCs, which is crucial to utilize WJ-MSCs in regenerative medicine.
Cellivia 3 S A 61 623 Poznan Poland
Department of Histology and Embryology Poznan University of Medical Sciences 60 781 Poznan Poland
Division of Anatomy and Histology University of Zielona Góra 65 046 Zielona Góra Poland
Physiology Graduate Faculty North Carolina State University Raleigh NC 27695 USA
Prestage Department of Poultry Sciences North Carolina State University Raleigh NC 27695 USA
Zobrazit více v PubMed
Jarrige M., Frank E., Herardot E., Martineau S., Darle A., Benabides M., Domingues S., Chose O., Habeler W., Lorant J., et al. The future of regenerative medicine: Cell therapy using pluripotent stem cells and acellular therapies based on extracellular vesicles. Cells. 2021;10:240. doi: 10.3390/cells10020240. PubMed DOI PMC
Doğan A. Advances in Experimental Medicine and Biology. Volume 1079. Springer; Cham, Switzerland: 2018. Embryonic stem cells in development and regenerative medicine; pp. 1–15. PubMed
Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI
Young H.E., Black A.C. Adult Stem Cells. Anat. Rec.-Part A Discov. Mol. Cell. Evol. Biol. 2004;276:75–102. doi: 10.1002/ar.a.10134. PubMed DOI
Pochon C., Notarantonio A.B., Laroye C., Reppel L., Bensoussan D., Bertrand A., Rubio M.T., D’Aveni M. Wharton’s jelly-derived stromal cells and their cell therapy applications in allogeneic haematopoietic stem cell transplantation. J. Cell. Mol. Med. 2022;26:1339–1350. doi: 10.1111/jcmm.17105. PubMed DOI PMC
Arutyunyan I., Elchaninov A., Makarov A., Fatkhudinov T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int. 2016;2016:6901286. doi: 10.1155/2016/6901286. PubMed DOI PMC
Conconi M.T., Liddo R.D., Tommasini M., Calore C., Parnigotto P.P. Phenotype and Differentiation Potential of Stromal Populations Obtained from Various Zones of Human Umbilical Cord: An Overview. Open Tissue Eng. Regen. Med. J. 2011;4:6–20. doi: 10.2174/1875043501104010006. DOI
Can A., Karahuseyinoglu S. Concise Review: Human Umbilical Cord Stroma with Regard to the Source of Fetus-Derived Stem Cells. Stem Cells. 2007;25:2886–2895. doi: 10.1634/stemcells.2007-0417. PubMed DOI
Bongso A., Fong C.Y. The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Rev. Rep. 2013;9:226–240. doi: 10.1007/s12015-012-9418-z. PubMed DOI
Lyons F.G., Mattei T.A. Advances in Experimental Medicine and Biology. Volume 1169. Springer; Cham, Switzerland: 2019. Sources, Identification, and Clinical Implications of Heterogeneity in Human Umbilical Cord Stem Cells; pp. 243–256. PubMed
Sobolewski K., Bańkowski E., Chyczewski L., Jaworski S. Collagen and glycosaminoglycans of wharton’s jelly. Neonatology. 1997;71:11–21. doi: 10.1159/000244392. PubMed DOI
Meyer F.A., Laver-Rudich Z., Tanenbaum R. Evidence for a mechanical coupling of glycoprotein microfibrils with collagen fibrils in Wharton’s jelly. BBA-Gen. Subj. 1983;755:376–387. doi: 10.1016/0304-4165(83)90241-6. PubMed DOI
Takechi K., Kuwabara Y., Mizuno M. Ultrastructural and immunohistochemical studies of Wharton’s jelly umbilical cord cells. Placenta. 1993;14:235–245. doi: 10.1016/S0143-4004(05)80264-4. PubMed DOI
Nanaev A.K., Kohnen G., Milovanov A.P., Domogatsky S.P., Kaufmann P. Stromal differentiation and architecture of the human umbilical cord. Placenta. 1997;18:53–64. doi: 10.1016/S0143-4004(97)90071-0. PubMed DOI
Damsgaard T.M.E., Nielsen B.W., Sørensen F.B., Henriques U., Schiøtz P.O. Estimation of the total number of mast cells in the human umbilical cord: A methodological study. Apmis. 1992;100:845–850. doi: 10.1111/j.1699-0463.1992.tb04009.x. PubMed DOI
Wang X.Y., Lan Y., He W.Y., Zhang L., Yao H.Y., Hou C.M., Tong Y., Liu Y.L., Yang G., Liu X.D., et al. Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood. 2008;111:2436–2443. doi: 10.1182/blood-2007-07-099333. PubMed DOI
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Subramanian A., Fong C.Y., Biswas A., Bongso A. Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS ONE. 2015;10:e0127992. doi: 10.1371/journal.pone.0127992. PubMed DOI PMC
Cabrera-Pérez R., Monguió-Tortajada M., Gámez-Valero A., Rojas-Márquez R., Borràs F.E., Roura S., Vives J. Osteogenic commitment of Wharton’s jelly mesenchymal stromal cells: Mechanisms and implications for bioprocess development and clinical application. Stem Cell Res. Ther. 2019;10:356. doi: 10.1186/s13287-019-1450-3. PubMed DOI PMC
Ansari A.S., Yazid M.D., Sainik N.Q.A.V., Razali R.A., Saim A.B., Idrus R.B.H. Osteogenic induction of Wharton’s jelly-derived mesenchymal stem cell for bone regeneration: A systematic review. Stem Cells Int. 2018;2018:2406462. doi: 10.1155/2018/2406462. PubMed DOI PMC
Amable P.R., Teixeira M.V.T., Carias R.B.V., Granjeiro J.M., Borojevic R. Gene expression and protein secretion during human mesenchymal cell differentiation into adipogenic cells. BMC Cell Biol. 2014;15:46. doi: 10.1186/s12860-014-0046-0. PubMed DOI PMC
Amable P.R., Teixeira M.V.T., Carias R.B.V., Granjeiro J.M., Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res. Ther. 2014;5:53. doi: 10.1186/scrt442. PubMed DOI PMC
Reppel L., Margossian T., Yaghi L., Moreau P., Mercier N., Leger L., Hupont S., Stoltz J.-F., Bensoussan D., Huselstein C. Hypoxic Culture Conditions for Mesenchymal Stromal/Stem Cells from Wharton’s Jelly: A Critical Parameter to Consider in a Therapeutic Context. Curr. Stem Cell Res. Ther. 2014;9:306–318. doi: 10.2174/1574888X09666140213204850. PubMed DOI
Reppel L., Schiavi J., Charif N., Leger L., Yu H., Pinzano A., Henrionnet C., Stoltz J.F., Bensoussan D., Huselstein C. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton’s jelly embedded in alginate hydrogel and without added growth factor: An alternative stem cell source for cartilage tissue engineering. Stem Cell Res. Ther. 2015;6:260. doi: 10.1186/s13287-015-0263-2. PubMed DOI PMC
Mitchell K.E., Weiss M.L., Mitchell B.M., Martin P., Davis D., Morales L., Helwig B., Beerenstrauch M., Abou-Easa K., Hildreth T., et al. Matrix Cells from Wharton’s Jelly Form Neurons and Glia. Stem Cells. 2003;21:50–60. doi: 10.1634/stemcells.21-1-50. PubMed DOI
Fu Y.S., Shih Y.T., Cheng Y.C., Min M.Y. Transformation of human umbilical mesenchymal cells into neurons in vitro. J. Biomed. Sci. 2004;11:652–660. doi: 10.1007/BF02256131. PubMed DOI
Liang J., Wu S., Zhao H., Li S.L., Liu Z.X., Wu J., Zhou L. Human umbilical cord mesenchymal stem cells derived from Wharton’s jelly differentiate into cholinergic-like neurons in vitro. Neurosci. Lett. 2013;532:59–63. doi: 10.1016/j.neulet.2012.11.014. PubMed DOI
Alizadeh R., Bagher Z., Kamrava S.K., Falah M., Ghasemi Hamidabadi H., Eskandarian Boroujeni M., Mohammadi F., Khodaverdi S., Zare-Sadeghi A., Olya A., et al. Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton’s Jelly and olfactory mucosa as sources of MSCs. J. Chem. Neuroanat. 2019;96:126–133. doi: 10.1016/j.jchemneu.2019.01.003. PubMed DOI
Wang H.-S., Hung S.-C., Peng S.-T., Huang C.-C., Wei H.-M., Guo Y.-J., Fu Y.-S., Lai M.-C., Chen C.-C. Mesenchymal Stem Cells in the Wharton’s Jelly of the Human Umbilical Cord. Stem Cells. 2004;22:1330–1337. doi: 10.1634/stemcells.2004-0013. PubMed DOI
Conconi M.T., Burra P., Di Liddo R., Calore C., Turetta M., Bellini S., Bo P., Nussdorfer G.G., Parnigotto P.P. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int. J. Mol. Med. 2006;18:1089–1096. doi: 10.3892/ijmm.18.6.1089. PubMed DOI
Zhang Y.N., Lie P.C., Wei X. Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy. 2009;11:548–558. doi: 10.1080/14653240903051533. PubMed DOI
Bharti D., Shivakumar S.B., Park J.K., Ullah I., Subbarao R.B., Park J.S., Lee S.L., Park B.W., Rho G.J. Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res. 2018;372:51–65. doi: 10.1007/s00441-017-2699-4. PubMed DOI PMC
Prasajak P., Leeanansaksiri W. Developing a new two-step protocol to generate functional hepatocytes from wharton’s jelly-derived mesenchymal stem cells under hypoxic condition. Stem Cells Int. 2013;2013:762196. doi: 10.1155/2013/762196. PubMed DOI PMC
Hu Y., Liang J., Cui H.P., Wang X.M., Rong H., Shao B., Cui H. Wharton’s jelly mesenchymal stem cells differentiate into retinal progenitor cells. Neural Regen. Res. 2013;8:1783–1792. doi: 10.3969/j.issn.1673-5374.2013.19.006. PubMed DOI PMC
Huang P., Lin L.M., Wu X.Y., Tang Q.L., Feng X.Y., Lin G.Y., Lin X., Wang H.W., Huang T.H., Ma L. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J. Cell. Biochem. 2010;109:747–754. doi: 10.1002/jcb.22453. PubMed DOI
Chao K.C., Chao K.F., Fu Y.S., Liu S.H. Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE. 2008;3:e1451. doi: 10.1371/journal.pone.0001451. PubMed DOI PMC
Wu L.F., Wang N.N., Liu Y.S., Wei X. Differentiation of wharton’s jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng.-Part A. 2009;15:2865–2873. doi: 10.1089/ten.tea.2008.0579. PubMed DOI
Wu K.H., Zhou B., Lu S.H., Feng B., Yang S.G., Du W.T., Gu D.S., Han Z.C., Liu Y.L. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J. Cell. Biochem. 2007;100:608–616. doi: 10.1002/jcb.21078. PubMed DOI
Shi Q., Gao J., Jiang Y., Sun B., Lu W., Su M., Xu Y., Yang X., Zhang Y. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells. Stem Cell Res. Ther. 2017;8:246. doi: 10.1186/s13287-017-0700-5. PubMed DOI PMC
Potier E., Ferreira E., Meunier A., Sedel L., Logeart-Avramoglou D., Petite H. Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 2007;13:1325–1331. doi: 10.1089/ten.2006.0325. PubMed DOI
Stelcer E., Komarowska H., Jopek K., Żok A., Iżycki D., Malińska A., Szczepaniak B., Komekbai Z., Karczewski M., Wierzbicki T., et al. Biological response of adrenal carcinoma and melanoma cells to mitotane treatment. Oncol. Lett. 2022;23:120. doi: 10.3892/ol.2022.13240. PubMed DOI PMC
Budna J., Chachuła A., Kaźmierczak D., Rybska M., Ciesiółka S., Bryja A., Kranc W., Borys S., Zok A., Bukowska D., et al. Morphogenesis-related gene-expression profile in porcine oocytes before and after in vitro maturation. Zygote. 2017;25:331–340. doi: 10.1017/S096719941700020X. PubMed DOI
Wang Z., Gerstein M., Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57. doi: 10.1038/nrg2484. PubMed DOI PMC
Golkar-Narenji A., Antosik P., Nolin S., Rucinski M., Jopek K., Zok A., Sobolewski J., Jankowski M., Zdun M., Bukowska D., et al. Gene Ontology Groups and Signaling Pathways Regulating the Process of Avian Satellite Cell Differentiation. Genes. 2022;13:242. doi: 10.3390/genes13020242. PubMed DOI PMC
Jankowski M., Dompe C., Sibiak R., Wąsiatycz G., Mozdziak P., Jaśkowski J.M., Antosik P., Kempisty B., Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells. 2020;9:1783. doi: 10.3390/cells9081783. PubMed DOI PMC
Binder B.Y.K., Genetos D.C., Leach J.K. Lysophosphatidic Acid Protects Human Mesenchymal Stromal Cells from Differentiation-Dependent Vulnerability to Apoptosis. Tissue Eng. Part A. 2014;20:1156. doi: 10.1089/ten.tea.2013.0487. PubMed DOI PMC
Pesarini J.R., de Oliveira E.J.T., Pessatto L.R., Rabacow A.P.M., Camassola M., dos Santos B.P., de Barros M.E., Cantero W.d.B., Antoniolli-Silva A.C.M.B., Oliveira R.J. Calcitriol combined with calcium chloride causes apoptosis in undifferentiated adipose tissue-derived human mesenchymal stem cells, but this effect decreases during adipogenic differentiation. Biomed. Pharmacother. 2018;108:914–924. doi: 10.1016/j.biopha.2018.09.083. PubMed DOI
Lo Furno D., Graziano A.C.E., Caggia S., Perrotta R.E., Tarico M.S., Giuffrida R., Cardile V. Decrease of apoptosis markers during adipogenic differentiation of mesenchymal stem cells from human adipose tissue. Apoptosis. 2013;18:578–588. doi: 10.1007/s10495-013-0830-x. PubMed DOI
Oliver L., Hue E., Séry Q., Lafargue A., Pecqueur C., Paris F., Vallette F.M. Differentiation-related response to DNA breaks in human mesenchymal stem cells. Stem Cells. 2013;31:800–807. doi: 10.1002/stem.1336. PubMed DOI
Ming Liu T., Martina M., Hutmacher D.W., Hoi Po Hui J., Hin Lee E., Lim B., Hoi Hui J.P. Identification of Common Pathways Mediating Differentiation of Bone Marrow- and Adipose Tissue-Derived Human Mesenchymal Stem Cells into Three Mesenchymal Lineages. Stem Cells. 2007;25:750–760. doi: 10.1634/STEMCELLS.2006-0394. PubMed DOI
Onizuka S., Iwata T., Park S.J., Nakai K., Yamato M., Okano T., Izumi Y. ZBTB16 as a Downstream Target Gene of Osterix Regulates Osteoblastogenesis of Human Multipotent Mesenchymal Stromal Cells. J. Cell. Biochem. 2016;117:2423. doi: 10.1002/jcb.25634. PubMed DOI PMC
Marofi F., Vahedi G., Solali S., Alivand M., Salarinasab S., Zadi Heydarabad M., Farshdousti Hagh M. Gene expression of TWIST1 and ZBTB16 is regulated by methylation modifications during the osteoblastic differentiation of mesenchymal stem cells. J. Cell. Physiol. 2019;234:6230–6243. doi: 10.1002/jcp.27352. PubMed DOI
Liu T.M., Guo X.M., Tan H.S., Hui J.H., Lim B., Lee E.H. Zinc-finger protein 145, acting as an upstream regulator of SOX9, improves the differentiation potential of human mesenchymal stem cells for cartilage regeneration and repair. Arthritis Rheum. 2011;63:2711–2720. doi: 10.1002/art.30430. PubMed DOI
Al-Ali M.M., Khan A.A., Fayyad A.M., Abdallah S.H., Khattak M.N.K. Transcriptomic profiling of the telomerase transformed Mesenchymal stromal cells derived adipocytes in response to rosiglitazone. BMC Genom. Data. 2022;23:17. doi: 10.1186/s12863-022-01027-z. PubMed DOI PMC
Ambele M.A., Dessels C., Durandt C., Pepper M.S. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Res. 2016;16:725–734. doi: 10.1016/j.scr.2016.04.011. PubMed DOI
Sobieszczuk D.F., Poliakov A., Xu Q., Wilkinson D.G. A feedback loop mediated by degradation of an inhibitor is required to initiate neuronal differentiation. Genes Dev. 2010;24:206. doi: 10.1101/gad.554510. PubMed DOI PMC
Zhu X., Wang Z., Sun Y.E., Liu Y., Wu Z., Ma B., Cheng L. Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells From Different Donors on Spinal Cord Injury in Mice. Front. Cell. Neurosci. 2021;15:768711. doi: 10.3389/fncel.2021.768711. PubMed DOI PMC
Ludikhuize M.C., Rodríguez Colman M.J. Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Antioxid. Redox Signal. 2021;34:1004–1024. doi: 10.1089/ars.2020.8126. PubMed DOI
Kurakazu I., Akasaki Y., Hayashida M., Tsushima H., Goto N., Sueishi T., Toya M., Kuwahara M., Okazaki K., Duffy T., et al. FOXO1 transcription factor regulates chondrogenic differentiation through transforming growth factor β1 signaling. J. Biol. Chem. 2019;294:17555. doi: 10.1074/jbc.RA119.009409. PubMed DOI PMC
Chen P., Hu B., Xie L.Q., Jiang T.J., Xia Z.Y., Peng H. Scara3 regulates bone marrow mesenchymal stem cell fate switch between osteoblasts and adipocytes by promoting Foxo1. Cell Prolif. 2021;54:e13095. doi: 10.1111/cpr.13095. PubMed DOI PMC
Siqueira M.F., Flowers S., Bhattacharya R., Faibish D., Behl Y., Kotton D.N., Gerstenfeld L., Moran E., Graves D.T. FOXO1 Modulates Osteoblast Differentiation. Bone. 2011;48:1043. doi: 10.1016/j.bone.2011.01.019. PubMed DOI PMC
Teixeira C.C., Liu Y., Thant L.M., Pang J., Palmer G., Alikhani M. Foxo1, a Novel Regulator of Osteoblast Differentiation and Skeletogenesis. J. Biol. Chem. 2010;285:31055. doi: 10.1074/jbc.M109.079962. PubMed DOI PMC
Chen J., Lu Y., Tian M., Huang Q. Molecular mechanisms of FOXO1 in adipocyte differentiation. J. Mol. Endocrinol. 2019;62:R239–R253. doi: 10.1530/JME-18-0178. PubMed DOI
Nakae J., Kitamura T., Kitamura Y., Biggs W.H., Arden K.C., Accili D. The forkhead transcription factor Fox01 regulates adipocyte differentiation. Dev. Cell. 2003;4:119–129. doi: 10.1016/S1534-5807(02)00401-X. PubMed DOI
Domínguez-Castro M., Domínguez-Galicia A., Pérez-Pérez O., Hernández-Pineda J., Mancilla-Herrera I., Bazán-Tejeda M.L., Rodríguez-Cruz L., González-Torres M.C., Montoya-Estrada A., Reyes-Muñoz E., et al. Hyperglycemia affects neuronal differentiation and Nestin, FOXO1, and LMO3 mRNA expression of human Wharton’s jelly mesenchymal stem cells of children from diabetic mothers. Biochem. Biophys. Res. Commun. 2022;637:300–307. doi: 10.1016/j.bbrc.2022.11.029. PubMed DOI
Lotan R., Rotem A., Gonen H., Finberg J.P.M., Kemeny S., Steller H., Ciechanover A., Larisch S. Regulation of the proapoptotic ARTS protein by ubiquitin-mediated degradation. J. Biol. Chem. 2005;280:25802–25810. doi: 10.1074/jbc.M501955200. PubMed DOI
Gottfried Y., Rotem A., Lotan R., Steller H., Larisch S. The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J. 2004;23:1627. doi: 10.1038/sj.emboj.7600155. PubMed DOI PMC
Qi Z., Guo W., Zheng S., Fu C., Ma Y., Pan S., Liu Q., Yang X. Enhancement of neural stem cell survival, proliferation and differentiation by IGF-1 delivery in graphene oxide-incorporated PLGA electrospun nanofibrous mats. RSC Adv. 2019;9:8315. doi: 10.1039/C8RA10103E. PubMed DOI PMC
Zhao L., Feng Y., Chen X., Yuan J., Liu X., Chen Y., Zhao Y., Liu P., Li Y. Effects of IGF-1 on neural differentiation of human umbilical cord derived mesenchymal stem cells. Life Sci. 2016;151:93–101. doi: 10.1016/j.lfs.2016.03.001. PubMed DOI
Zhou Q., Li B., Zhao J., Pan W., Xu J., Chen S. IGF-I induces adipose derived mesenchymal cell chondrogenic differentiation in vitro and enhances chondrogenesis in vivo. Vitr. Cell. Dev. Biol. Anim. 2016;52:356–364. doi: 10.1007/s11626-015-9969-9. PubMed DOI
Feng J., Meng Z. Insulin growth factor-1 promotes the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells through the Wnt/β-catenin pathway. Exp. Ther. Med. 2021;22:891. doi: 10.3892/etm.2021.10323. PubMed DOI PMC
Kinoshita A., Ohyama K., Tanimura S., Matsuda K., Kishino T., Negishi Y., Asahina N., Shiraishi H., Hosoki K., Tomiwa K., et al. Itpr1 regulates the formation of anterior eye segment tissues derived from neural crest cells. Development. 2021;148:dev188755. doi: 10.1242/dev.188755. PubMed DOI
Zhang X., Wang L., Wang Y., He L., Xu D., Yan E., Guo J., Ma C., Zhang P., Yin J. Lack of adipocyte IP3R1 reduces diet-induced obesity and greatly improves whole-body glucose homeostasis. Cell Death Discov. 2023;9:87. doi: 10.1038/s41420-023-01389-y. PubMed DOI PMC
Chen J., Zhang Y., Liu M., Zhou Z., Li Q., Huang T., Yue Y., Tian Y. Effect and Related Mechanism of Platelet-Rich Plasma on the Osteogenic Differentiation of Human Adipose-Derived Stem Cells. BioMed Res. Int. 2022;2022:1256002. doi: 10.1155/2022/1256002. PubMed DOI PMC
Sidibeh C.O., Pereira M.J., Lau Börjesson J., Kamble P.G., Skrtic S., Katsogiannos P., Sundbom M., Svensson M.K., Eriksson J.W. Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance. Endocrine. 2017;55:839. doi: 10.1007/s12020-016-1172-6. PubMed DOI PMC
Katagiri W., Osugi M., Kawai T., Hibi H. Secreted Frizzled-Related Protein Promotes Bone Regeneration by Human Bone Marrow-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 2015;16:23250. doi: 10.3390/ijms161023250. PubMed DOI PMC
Zhong L., Huang X., Rodrigues E.D., Leijten J.C.H., Verrips T., El Khattabi M., Karperien M., Post J.N. Endogenous DKK1 and FRZB Regulate Chondrogenesis and Hypertrophy in Three-Dimensional Cultures of Human Chondrocytes and Human Mesenchymal Stem Cells. Stem Cells Dev. 2016;25:1808. doi: 10.1089/scd.2016.0222. PubMed DOI PMC
Lee J., Lee J., Jung E., Hwang W., Kim Y.S., Park D. Isorhamnetin-induced anti-adipogenesis is mediated by stabilization of beta-catenin protein. Life Sci. 2010;86:416–423. doi: 10.1016/j.lfs.2010.01.012. PubMed DOI
Liu S., Zhang E., Yang M., Lu L. Overexpression of Wnt11 promotes chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in synergism with TGF-β. Mol. Cell. Biochem. 2014;390:123–131. doi: 10.1007/s11010-014-1963-0. PubMed DOI
Naderi A., Liu J., Bennett I.C. BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer. Int. J. Cancer. 2010;126:1596–1610. doi: 10.1002/ijc.24866. PubMed DOI
Zhou X., Meng Q., Xu X., Zhi T., Shi Q., Wang Y., Yu R. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway. Biochem. Biophys. Res. Commun. 2012;427:574–580. doi: 10.1016/j.bbrc.2012.09.100. PubMed DOI
Alvarez E., Zhou W., Witta S.E., Freed C.R. Characterization of the Bex gene family in humans, mice, and rats. Gene. 2005;357:18–28. doi: 10.1016/j.gene.2005.05.012. PubMed DOI
Mashhadikhan M., Kheiri H., Dehghanifard A. DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J. Oral Biosci. 2020;62:349–356. doi: 10.1016/j.job.2020.08.001. PubMed DOI
Jin L., Cao Y., Yu G., Wang J., Lin X., Ge L., Du J., Wang L., Diao S., Lian X., et al. SFRP2 enhances the osteogenic differentiation of apical papilla stem cells by antagonizing the canonical WNT pathway. Cell. Mol. Biol. Lett. 2017;22:14. doi: 10.1186/s11658-017-0044-2. PubMed DOI PMC
Pomduk K., Kheolamai P., U-Pratya Y., Wattanapanitch M., Klincumhom N., Issaragrisil S. Enhanced human mesenchymal stem cell survival under oxidative stress by overexpression of secreted frizzled-related protein 2 gene. Ann. Hematol. 2015;94:319–327. doi: 10.1007/s00277-014-2210-1. PubMed DOI
Huang H., Zhao N., Xu X., Xu Y., Li S., Zhang J., Yang P. Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Prolif. 2011;44:420. doi: 10.1111/j.1365-2184.2011.00769.x. PubMed DOI PMC
Marupanthorn K., Tantrawatpan C., Tantikanlayaporn D., Kheolamai P., Manochantr S. The Effects of TNF-α on Osteogenic Differentiation of Umbilical Cord Derived Mesenchymal Stem Cells. J. Med. Assoc. Thai. 2015;98((Suppl. 3)):S34–S40. PubMed
Heidenreich S., Schmidt M., August C., Cullen P., Rademaekers A., Pauels H. Regulation of human monocyte apoptosis by the CD14 molecule. J. Immunol. 1997;159:3178–3188. doi: 10.4049/jimmunol.159.7.3178. PubMed DOI
Li K., Dan Z., Hu X., Ouzhu M., Ciren Y., Wang Z., Wang J., Yang X., Ze Y. CD14 overexpression upregulates TNF-α-mediated inflammatory responses and suppresses the malignancy of gastric carcinoma cells. Mol. Cell. Biochem. 2013;376:137. doi: 10.1007/s11010-013-1559-0. PubMed DOI PMC
Lee M.-S., Wang J., Yuan H., Jiao H., Tsai T.-L., Squire M.W., Li W.-J. Endothelin-1 differentially directs lineage specification of adipose- and bone marrow–derived mesenchymal stem cells. FASEB J. 2019;33:996. doi: 10.1096/fj.201800614R. PubMed DOI PMC
Rucinski M., Zok A., Guidolin D., de Caro R., Malendowicz L.K. Expression of precerebellins in cultured rat calvaria osteoblast-like cells. Int. J. Mol. Med. 2008;22:553–558. doi: 10.3892/IJMM_00000055. PubMed DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Dennis G., Sherman B.T., Hosack D.A., Yang J., Gao W., Lane H.C., Lempicki R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:R60. doi: 10.1186/gb-2003-4-9-r60. PubMed DOI
Fresno C., Fernández E.A. RDAVIDWebService: A versatile R interface to DAVID. Bioinformatics. 2013;29:2810–2811. doi: 10.1093/bioinformatics/btt487. PubMed DOI
Benjamini Y., Cohen R. Weighted false discovery rate controlling procedures for clinical trials. Biostatistics. 2017;18:91–104. doi: 10.1093/biostatistics/kxw030. PubMed DOI PMC
Gu Z., Eils R., Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI
Goesmann A., Haubrock M., Meyer F., Kalinowski J., Giegerich R. PathFinder: Reconstruction and dynamic visualization of metabolic pathways. Bioinformatics. 2002;18:124–129. doi: 10.1093/bioinformatics/18.1.124. PubMed DOI
Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC
Bader G.D., Hogue C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2. doi: 10.1186/1471-2105-4-2. PubMed DOI PMC