Differential regulation of apoptosis-related genes during long-term culture and differentiation of canine adipose-derived stem cells - a functional bioinformatical analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39834550
PubMed Central
PMC11743971
DOI
10.3389/fgene.2024.1515778
PII: 1515778
Knihovny.cz E-zdroje
- Klíčová slova
- adipose tissue, apoptosis, gene expression, gene ontology, stem cells, transcriptomics,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Stem cells derived from adipose tissue are gaining popularity in the field of regenerative medicine due to their adaptability and clinical potential. Their rapid growth, ability to differentiate, and easy extraction with minimal complications make adipose-derived stem cells (ADSCs) a promising option for many treatments, particularly those targeting bone-related diseases. This study analyzed gene expression in canine ADSCs subjected to long-term culture and osteogenic differentiation. METHODS: ADSCs were isolated from discarded surgical waste and cultured for 14 days with and without differentiation media to assess osteogenic changes. RNA sequencing (RNA-seq) and bioinformatical analysis were performed to obtain comprehensive transcriptomic data. A total of 17793 genes were detected and GO enrichment analysis was performed on the differentially expressed genes to identify significantly up- and downregulated Biological Process (BP) GO terms across each comparison. RESULTS: The upregulation of apoptosis-regulating genes and genes related to circulatory system development suggest an induction of these processes, while the downregulation of neurogenesis and gliogenesis genes points to reciprocal regulation during osteogenic differentiation of canine ADSCs. DISCUSSION: These findings underscore the potential of ADSCs in bone regeneration and offer valuable insights for advancing tissue engineering, however further studies, including proteomic analyses, are needed to confirm these patterns and their biological significance.
Deparment of Histology and Embryology Poznan University of Medical Sciences Poznan Poland
Department of Computer Science and Statistics Poznan University of Medical Sciences Poznan Poland
Department of Immunology Poznan University of Medical Sciences Poznan Poland
Doctoral School Poznan University of Medical Sciences Poznan Poland
Greater Poland Center of Digital Medicine Poznan University of Medical Sciences Poznan Poland
Institute of Veterinary Medicine Nicolaus Copernicus University Torun Poland
Physiology Graduate Faculty North Carolina State University Raleigh NC United States
Zobrazit více v PubMed
Andrzejewska A., Lukomska B., Janowski M. (2019). Concise review: mesenchymal stem cells: from roots to boost. Stem Cells 37, 855–864. 10.1002/stem.3016 PubMed DOI PMC
Armesilla-Diaz A., Elvira G., Silva A. (2009). P53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Exp. Cell Res. 315, 3598–3610. 10.1016/J.YEXCR.2009.08.004 PubMed DOI
Bajek A., Gurtowska N., Olkowska J., Maj M., Kaźmierski Ł., Bodnar M., et al. (2017). Does the harvesting technique affect the properties of adipose-derived stem cells? the comparative biological characterization. J. Cell Biochem. 118, 1097–1107. 10.1002/jcb.25724 PubMed DOI
Bieback K., Hecker A., Schlechter T., Hofmann I., Brousos N., Redmer T., et al. (2012). Replicative aging and differentiation potential of human adipose tissue-derived mesenchymal stromal cells expanded in pooled human or fetal bovine serum. Cytotherapy 14, 570–583. 10.3109/14653249.2011.652809 PubMed DOI
Bonab M. M., Alimoghaddam K., Talebian F., Ghaffari S. H., Ghavamzadeh A., Nikbin B. (2006). Aging of mesenchymal stem cell in vitro . BMC Cell Biol. 7, 14. 10.1186/1471-2121-7-14 PubMed DOI PMC
Brennan M. A., Renaud A., Guilloton F., Mebarki M., Trichet V., Sensebé L., et al. (2017). Inferior in vivo osteogenesis and superior angiogeneis of human adipose tissue: a comparison with bone marrow‐derived stromal stem cells cultured in xeno‐free conditions. Stem Cells Transl. Med. 6, 2160–2172. 10.1002/SCTM.17-0133 PubMed DOI PMC
Bunnell B. A. (2021). Adipose tissue-derived mesenchymal stem cells. Cells 10, 3433. 10.3390/CELLS10123433 PubMed DOI PMC
Cao Y., Shi R., Yang H., Zhang J., Ge L., Gao R., et al. (2020). Epiregulin promotes osteogenic differentiation and inhibits neurogenic trans-differentiation of adipose-derived mesenchymal stem cells via MAPKs pathway. Cell Biol. Int. 44, 1046–1058. 10.1002/CBIN.11305 PubMed DOI
Cao Y., Sun Z., Liao L., Meng Y., Han Q., Zhao R. C. (2005). Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo . Biochem. Biophys. Res. Commun. 332, 370–379. 10.1016/J.BBRC.2005.04.135 PubMed DOI
Ceccarelli S., Pontecorvi P., Anastasiadou E., Napoli C., Marchese C. (2020). Immunomodulatory effect of adipose-derived stem cells: the cutting edge of clinical application. Front. Cell Dev. Biol. 8, 531513. 10.3389/fcell.2020.00236 PubMed DOI PMC
de Bakker E., Van Ryssen B., De Schauwer C., Meyer E. (2013). Canine mesenchymal stem cells: state of the art, perspectives as therapy for dogs and as a model for man. Vet. Q. 33, 225–233. 10.1080/01652176.2013.873963 PubMed DOI
Durandt C., Dessels C., da Silva C., Murdoch C., Pepper M. S. (2019). The effect of early rounds of ex vivo expansion and cryopreservation on the adipogenic differentiation capacity of adipose-derived stromal/stem cells. Sci. Rep. 9, 15943. 10.1038/s41598-019-52086-9 PubMed DOI PMC
Feisst V., Meidinger S., Locke M. B. (2015). From bench to bedside: use of human adipose-derived stem cells. Stem Cells Cloning 8, 149–162. 10.2147/SCCAA.S64373 PubMed DOI PMC
Foudah D., Redondo J., Caldara C., Carini F., Tredici G., Miloso M. (2013). Human mesenchymal stem cells express neuronal markers after osteogenic and adipogenic differentiation. Cell Mol. Biol. Lett. 18, 163–186. 10.2478/s11658-013-0083-2 PubMed DOI PMC
Francis S. L., Duchi S., Onofrillo C., Di Bella C., Choong P. F. M. (2018). Adipose-derived mesenchymal stem cells in the use of cartilage tissue engineering: the need for a rapid isolation procedure. Stem Cells Int. 2018, 8947548. 10.1155/2018/8947548 PubMed DOI PMC
Fujita T., Azuma Y., Fukuyama R., Hattori Y., Yoshida C., Koida M., et al. (2004). Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-akt signaling. J. Cell Biol. 166, 85–95. 10.1083/JCB.200401138 PubMed DOI PMC
Gao S., Chen B., Zhu Z., Du C., Zou J., Yang Y., et al. (2023). PI3K-Akt signaling regulates BMP2-induced osteogenic differentiation of mesenchymal stem cells (MSCs): a transcriptomic landscape analysis. Stem Cell Res. 66, 103010. 10.1016/J.SCR.2022.103010 PubMed DOI
Gavin K. M., Bessesen D. H. (2020). Sex differences in adipose tissue function. Endocrinol. Metab. Clin. North Am. 49, 215–228. 10.1016/J.ECL.2020.02.008 PubMed DOI PMC
Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5 (5), R80–R16. 10.1186/GB-2004-5-10-R80 PubMed DOI PMC
Gibler P., Gimble J., Hamel K., Rogers E., Henderson M., Wu X., et al. (2021). Human adipose-derived stromal/stem cell culture and analysis methods for adipose tissue modeling in vitro: a systematic review. Cells 10, 1378. 10.3390/CELLS10061378 PubMed DOI PMC
Hernández Borrero L. J., El-Deiry W. S. (2021). Tumor suppressor P53: biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer 1876, 188556. 10.1016/J.BBCAN.2021.188556 PubMed DOI PMC
Hoffman A. M., Dow S. W. (2016). Concise review: stem cell trials using companion animal disease models. Stem Cells 34, 1709–1729. 10.1002/STEM.2377 PubMed DOI
Jääger K., Islam S., Zajac P., Linnarsson S., Neuman T. (2012). RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells. PLoS One 7, e38833. 10.1371/JOURNAL.PONE.0038833 PubMed DOI PMC
Jain A. K., Barton M. C. (2018). P53: emerging roles in stem cells, development and beyond. Dev. Camb. 145, 145. 10.1242/dev.158360 PubMed DOI
Jankowski M., Dompe C., Sibiak R., Wąsiatycz G., Mozdziak P., Jaśkowski J. M., et al. (2020). In vitro cultures of adipose-derived stem cells: an overview of methods, molecular analyses, and clinical applications. Cells 9, 1783. 10.3390/cells9081783 PubMed DOI PMC
Jankowski M., Kaczmarek M., Wąsiatycz G., Dompe C., Mozdziak P., Jaśkowski J. M., et al. (2021). Expression profile of new marker genes involved in differentiation of canine adipose-derived stem cells into osteoblasts. Int. J. Mol. Sci. 22, 6663. 10.3390/IJMS22136663 PubMed DOI PMC
Jankowski M., Kaczmarek M., Wąsiatycz G., Konwerska A., Dompe C., Bukowska D., et al. (2022). Expression profile of new gene markers involved in differentiation of canine adipose-derived stem cells into chondrocytes. Genes (Basel) 13, 1664. 10.3390/GENES13091664 PubMed DOI PMC
Kanczler J. M., Oreffo R. O. C. (2008). Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell Mater 15, 100–114. 10.22203/ECM.V015A08 PubMed DOI
Lee H.-J., Park B.-J., Jeon R.-H., Jang S.-J., Son Y.-B., Lee S.-L., et al. (2019). Alteration of apoptosis during differentiation in human dental pulp-derived mesenchymal stem cell. J. Animal Reproduction Biotechnol. 34, 2–9. 10.12750/JARB.34.1.2 DOI
Liu J., Yao Y., Huang J., Sun H., Pu Y., Tian M., et al. (2022). Comprehensive analysis of LncRNA-MiRNA-MRNA networks during osteogenic differentiation of bone marrow mesenchymal stem cells. BMC Genomics 23, 425. 10.1186/S12864-022-08646-X PubMed DOI PMC
Locke M., Feisst V., Dunbar P. R. (2011). Concise review: human adipose-derived stem cells: separating promise from clinical need. Stem Cells 29, 404–411. 10.1002/STEM.593 PubMed DOI
Lo Furno D., Graziano A. C. E., Caggia S., Perrotta R. E., Tarico M. S., Giuffrida R., et al. (2013). Decrease of apoptosis markers during adipogenic differentiation of mesenchymal stem cells from human adipose tissue. Apoptosis 18, 578–588. 10.1007/S10495-013-0830-X PubMed DOI
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550–621. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Mende W., Götzl R., Kubo Y., Pufe T., Ruhl T., Beier J. P. (2021). The role of adipose stem cells in bone regeneration and bone tissue engineering. Cells 10, 975. 10.3390/CELLS10050975 PubMed DOI PMC
Merlo B., Iacono E. (2023). Beyond canine adipose tissue-derived mesenchymal stem/stromal cells transplantation: an update on their secretome characterization and applications. Anim. (Basel) 13, 3571. 10.3390/ANI13223571 PubMed DOI PMC
Neri S., Bourin P., Peyrafitte J. A., Cattini L., Facchini A., Mariani E. (2013). Human adipose stromal cells (ASC) for the regeneration of injured cartilage display genetic stability after in vitro culture expansion. PLoS One 8, e77895. 10.1371/journal.pone.0077895 PubMed DOI PMC
Oliver L., Hue E., Rossignol J., Bougras G., Hulin P., Naveilhan P., et al. (2011). Distinct roles of Bcl-2 and Bcl-Xl in the apoptosis of human bone marrow mesenchymal stem cells during differentiation. PLoS One 6, e19820. 10.1371/JOURNAL.PONE.0019820 PubMed DOI PMC
Oliver L., Hue E., Séry Q., Lafargue A., Pecqueur C., Paris F., et al. (2013). Differentiation-related response to DNA breaks in human mesenchymal stem cells. Stem Cells 31, 800–807. 10.1002/STEM.1336 PubMed DOI
Ong W. K., Chakraborty S., Sugii S. (2021). Adipose tissue: understanding the heterogeneity of stem cells for regenerative medicine. Biomolecules 11, 918. 10.3390/biom11070918 PubMed DOI PMC
Palumbo P., Lombardi F., Siragusa G., Cifone M. G., Cinque B., Giuliani M. (2018). Methods of isolation, characterization and expansion of human adipose-derived stem cells (ASCs): an overview. Int. J. Mol. Sci. 19, 1897. 10.3390/ijms19071897 PubMed DOI PMC
Reya T., Morrison S. J., Clarke M. F., Weissman I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105–111. 10.1038/35102167 PubMed DOI
Robert A. W., Angulski A. B. B., Spangenberg L., Shigunov P., Pereira I. T., Bettes P. S. L., et al. (2018). Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis. Sci. Rep. 8 (8), 4739–4811. 10.1038/s41598-018-22991-6 PubMed DOI PMC
Romero A., Barrachina L., Ranera B., Remacha A. R., Moreno B., de Blas I., et al. (2017). Comparison of autologous bone marrow and adipose tissue derived mesenchymal stem cells, and platelet rich plasma, for treating surgically induced lesions of the equine superficial digital flexor tendon. Veterinary J. 224, 76–84. 10.1016/j.tvjl.2017.04.005 PubMed DOI
Safford K., Rice H. (2005). Stem cell therapy for neurologic disorders: therapeutic potential of adipose-derived stem cells. Curr. Drug Targets 6, 57–62. 10.2174/1389450053345028 PubMed DOI
Shaik S., Martin E. C., Hayes D. J., Gimble J. M., Devireddy R. V. (2019). Transcriptomic profiling of adipose derived stem cells undergoing osteogenesis by RNA-seq. Sci. Rep. 9, 11800. 10.1038/s41598-019-48089-1 PubMed DOI PMC
Stefańska K., Nemcova L., Blatkiewicz M., Pieńkowski W., Ruciński M., Zabel M., et al. (2023). Apoptosis related human wharton’s jelly-derived stem cells differentiation into osteoblasts, chondrocytes, adipocytes and neural-like cells—complete transcriptomic assays. Int. J. Mol. Sci. 24, 10023. 10.3390/ijms241210023 PubMed DOI PMC
Steiner B. M., Berry D. C. (2022). The regulation of adipose tissue health by estrogens. Front. Endocrinol. (Lausanne) 13, 889923. 10.3389/FENDO.2022.889923 PubMed DOI PMC
Tataria M., Quarto N., Longaker M. T., Sylvester K. G. (2006). Absence of the P53 tumor suppressor gene promotes osteogenesis in mesenchymal stem cells. J. Pediatr. Surg. 41, 624–632. 10.1016/J.JPEDSURG.2005.12.001 PubMed DOI
Wagner W., Wein F., Seckinger A., Frankhauser M., Wirkner U., Krause U., et al. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33, 1402–1416. 10.1016/J.EXPHEM.2005.07.003 PubMed DOI
Wan Q. Q., Qin W. P., Ma Y. X., Shen M. J., Li J., Zhang Z. B., et al. (2021). Crosstalk between bone and nerves within bone. Adv. Sci. 8, 2003390. 10.1002/ADVS.202003390 PubMed DOI PMC
Wang Z., Gerstein M., Snyder M. (2009). RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63. 10.1038/NRG2484 PubMed DOI PMC
Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., et al. (2021). ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov. Camb. (Mass.) 2, 100141. 10.1016/J.XINN.2021.100141 PubMed DOI PMC
Xu L., Liu Y., Sun Y., Wang B., Xiong Y., Lin W., et al. (2017). Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Res. Ther. 8, 275. 10.1186/S13287-017-0716-X PubMed DOI PMC
Youle R. J., Strasser A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47–59. 10.1038/NRM2308 PubMed DOI