Development of a porcine model of skin and soft-tissue infection caused by Staphylococcus aureus, including methicillin-resistant strains suitable for testing topical antimicrobial agents

. 2025 Mar ; 8 (3) : 544-557. [epub] 20241031

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39482270

Grantová podpora
NU22-05-00475 Supported by the Ministry of Health of the Czech Republic
NV19-05-00214 Supported by the Ministry of Health of the Czech Republic

BACKGROUND: In view of the ever-increasing representation of Staphylococcus spp. strains resistant to various antibiotics, the development of in vivo models for evaluation of novel antimicrobials is of utmost importance. METHODS: In this article, we describe the development of a fully immunocompetent porcine model of extensive skin and soft tissue damage suitable for testing topical antimicrobial agents that matches the real clinical situation. The model was developed in three consecutive stages with protocols for each stage amended based on the results of the previous one. RESULTS: In the final model, 10 excisions of the skin and underlying soft tissue were created in each pig under general anesthesia, with additional incisions to the fascia performed at the base of the defects and immediately inoculated with Staphylococcus aureus suspension. One pig was not inoculated and used as the negative control. Subsequently, the bandages were changed on Days 4, 8, 11, and 15. At these time points, a filter paper imprint technique (FPIT) was made from each wound for semi-quantitative microbiological evaluation. Tissue samples from the base of the wound together with the adjacent intact tissue of three randomly selected defects of each pig were taken for microbiological, histopathological, and molecular-biological examination. The infection with the inoculated S. aureus strains was sufficient during the whole experiment as confirmed by both FPIT and from tissue samples. The dynamics of the inflammatory markers and clinical signs of infection are also described. CONCLUSIONS: A successfully developed porcine model is suitable for in vivo testing of novel short-acting topical antimicrobial agents.

Zobrazit více v PubMed

Ding X, Tang Q, Xu Z, et al. Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice. Burns & Trauma. 2022;10:tkac014. doi:10.1093/burnst/tkac014 PubMed DOI PMC

Lipový B, Brychta P, Řihová H, et al. Prevalence of infectious complications in burn patients requiring intensive care: data from a pan‐European study. Epidemiol Mikrobiol Imunol. 2016;65(1):25‐32. English. PubMed

Warner PM, Coffee TL, Yowler CJ. Outpatient burn management. Surg Clin North Am. 2014;94(4):879‐892. doi:10.1016/j.suc.2014.05.009 PubMed DOI

Eckmann C, Lawson W, Nathwani D, et al. Antibiotic treatment patterns across Europe in patients with complicated skin and soft‐tissue infections due to meticillin‐resistant Staphylococcus aureus: a plea for implementation of early switch and early discharge criteria. Int J Antimicrob Agents. 2014;44(1):56‐64. doi:10.1016/j.ijantimicag.2014.04.007 PubMed DOI

Ceballos S, Aspiroz C, Ruiz‐Ripa L, Azcona‐Gutierrez JM, López‐Cerero L, López‐Calleja AI, Álvarez L, Gomáriz M, Fernández M, Torres C, Ezpeleta C, Martín C, Arribas J, Navarro C, Arias A, Fortuño B, Pereira J, Milagro A, Torres L, Soria‐Blanco LM, Canut A, Cordón ML, Megías G, Calvo J, Rezusta A (2019) Study Group of Clinical LA‐MRSA; Study Group of Clinical LA‐MRSA . Multicenter study of clinical non‐β‐lactam‐antibiotic susceptible MRSA strains: genetic lineages and Panton‐valentine leukocidin (PVL) production. Enferm Infecc Microbiol Clin (Engl ed). 37(8), 509–513. English, Spanish. doi: 10.1016/j.eimc.2019.01.015 PubMed DOI

Mohamed MA, Nasr M, Elkhatib WF, Eltayeb WN, Elshamy AA, El‐Sayyad GS. Nanobiotic formulations as promising advances for combating MRSA resistance: susceptibilities and post‐antibiotic effects of clindamycin, doxycycline, and linezolid. RSC Adv. 2021;11(63):39696‐39706. doi:10.1039/d1ra08639a PubMed DOI PMC

Chang S, Sievert DM, Hageman JC, et al. Vancomycin‐resistant Staphylococcus aureus investigative team. Infection with vancomycin‐resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med. 2003;348(14):1342‐1347. doi:10.1056/NEJMoa025025 PubMed DOI

Marra A. Animal Models for Drug Development for MRSA. Methods Mol Biol. 2020;2069:253‐266. doi:10.1007/978-1-4939-9849-4_17 PubMed DOI

Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen. 2001;9(2):66‐76. doi:10.1046/j.1524-475x.2001.00066.x PubMed DOI

Dahiya P. Burns as a model of SIRS. Front Biosci (Landmark ed). 2009;14(13):4962‐4967. doi:10.2741/3580 PubMed DOI

Davidson JM. Animal models for wound repair. Arch Dermatol Res. 1998;290(Suppl):S1‐S11. doi:10.1007/pl00007448 PubMed DOI

Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2010;2011:969618. doi:10.1155/2011/969618 PubMed DOI PMC

Meyer W, Schwarz R, Neurand K. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr Probl Dermatol. 1978;7:39‐52. doi:10.1159/000401274 PubMed DOI

Vacek L, Kouřilová M, Kobzová Š, Janda L. Antimicrobial effect of endolysins LYSDERM‐S and LYSDERM‐T1 and endolysin‐ubiquitin combination on methicillin‐resistant Staphylococcus aureus . Biologia. 2022;78:601‐608. doi:10.1007/s11756-022-01282-6 DOI

Winstel V, Sanchez‐Carballo P, Holst O, Xia G, Peschel A. Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395. MBio. 2014;5(2):e00869. doi:10.1128/mBio.00869-14 PubMed DOI PMC

Vacek L, Kobzová Š, Čmelík R, Pantůček R, Janda L. Enzybiotics LYSSTAPH‐S and LYSDERM‐S as potential therapeutic agents for chronic MRSA wound infections. Antibiotics (Basel). 2020;9(8):519. doi:10.3390/antibiotics9080519 PubMed DOI PMC

Makovický P, Jeklová E, Lipový B, et al. A scoring system for histological evaluation of skin during Staphylococcus aureus infections. Biologia. 2024;79:917‐925. doi:10.1007/s11756-023-01567-4 DOI

Andersen CL, Jensen JL, Ørntoft TF. Normalization of real‐time quantitative reverse transcription‐PCR data: a model‐based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245‐5250. doi:10.1158/0008-5472.CAN-04-0496 PubMed DOI

Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real‐time PCR experiments. Clin Chem. 2009;55(4):611‐622. doi:10.1373/clinchem.2008.112797 PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta C(T)) method. Methods. 2001;25(4):402‐408. doi:10.1006/meth.2001.1262 PubMed DOI

Malasala S, Ahmad MN, Akunuri R, et al. Synthesis and evaluation of new quinazoline‐benzimidazole hybrids as potent anti‐microbial agents against multidrug resistant Staphylococcus aureus and mycobacterium tuberculosis . Eur J Med Chem. 2021;212:112996. doi:10.1016/j.ejmech.2020.112996 PubMed DOI

Gerald MDG. Block's Disinfection, Sterilization, and Preservation. Sixth ed. Wolters Kluwer Health; 2021. https://search‐ebscohost‐com.ezproxy.muni.cz/login.aspx?direct=true&AuthType=ip,cookie,uid&db=nlebk&AN=3051937&lang=cs&site=eds‐live&scope=site

Gad SC. Peracetic acid. Encyclopedia of Toxicology. Academic Press; 2014:788‐790. doi:10.1016/B978-0-12-386454-3.01197-0 DOI

Bridier A, Briandet R, Thomas V, Dubois‐Brissonnet F. Comparative biocidal activity of peracetic acid, benzalkonium chloride and ortho‐phthalaldehyde on 77 bacterial strains. J Hosp Infect. 2011;78(3):208‐213. doi:10.1016/j.jhin.2011.03.014 PubMed DOI

Subha N, Prabhakar V, Koshy M, Abinaya K, Prabu M, Thangavelu L. Efficacy of peracetic acid in rapid disinfection of Resilon and gutta‐percha cones compared with sodium hypochlorite, chlorhexidine, and povidone‐iodine. J Endod. 2013;39(10):1261‐1264. doi:10.1016/j.joen.2013.06.022 PubMed DOI

Chhetri RK, Sanchez DF, Lindholst S, et al. Disinfection of hospital‐derived antibiotic‐resistant bacteria at source using peracetic acid. Journal of Water Processing Engineering. 2022;45:102507. doi:10.1016/j.jwpe.2021.102507 DOI

Whyte W, Hodgson R, Tinkler J. The importance of airborne bacterial contamination of wounds. J Hosp Infect. 1982;3(2):123‐135. doi:10.1016/0195-6701(82)90004-4 PubMed DOI

Friberg B, Friberg S, Burman LG. Correlation between surface and air counts of particles carrying aerobic bacteria in operating rooms with turbulent ventilation: an experimental study. J Hosp Infect. 1999a;42(1):61‐68. doi:10.1053/jhin.1998.0542 PubMed DOI

Friberg B, Friberg S, Burman LG. Inconsistent correlation between aerobic bacterial surface and air counts in operating rooms with ultra clean laminar air flows: proposal of a new bacteriological standard for surface contamination. J Hosp Infect. 1999b;42(4):287‐293. doi:10.1053/jhin.1998.0598 PubMed DOI

Friberg B, Friberg S, Ostensson R, Burman LG. Surgical area contamination–comparable bacterial counts using disposable head and mask and helmet aspirator system, but dramatic increase upon omission of head‐gear: an experimental study in horizontal laminar air‐flow. J Hosp Infect. 2001;47(2):110‐115. doi:10.1053/jhin.2000.0909 PubMed DOI

Knobben BA, van Horn JR, van der Mei HC, Busscher HJ. Evaluation of measures to decrease intra‐operative bacterial contamination in orthopaedic implant surgery. J Hosp Infect. 2006;62(2):174‐180. doi:10.1016/j.jhin.2005.08.007 PubMed DOI

Gentry LO. Antimicrobial activity, pharmacokinetics, therapeutic indications and adverse reactions of ceftazidime. Pharmacotherapy. 1985;5(5):254‐267. doi:10.1002/j.1875-9114.1985.tb03424.x PubMed DOI

Chen L, DiPietro LA. Toll‐like receptor function in acute wounds. Adv Wound Care. 2017;6(10):344‐355. doi:10.1089/wound.2017.0734 PubMed DOI PMC

Sun L, Liu W, Zhang LJ. The role of toll‐like receptors in skin host defense, psoriasis, and atopic dermatitis. J Immunol Res. 2019;2019:1824624. doi:10.1155/2019/1824624 PubMed DOI PMC

Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826‐837. doi:10.1038/nri2873 PubMed DOI PMC

Gong T, Liu L, Jiang W, Zhou R. DAMP‐sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95‐112. doi:10.1038/s41577-019-0215-7 PubMed DOI

Caley MP, Martins VL, O'Toole EA. Metalloproteinases and wound healing. Adv Wound Care. 2015;4(4):225‐234. doi:10.1089/wound.2014.0581 PubMed DOI PMC

Kandhwal M, Behl T, Singh S, et al. Role of matrix metalloproteinase in wound healing. Am J Transl Res. 2022;14(7):4391‐4405. PubMed PMC

Stetler‐Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase‐independent biological activities. Sci Signal. 2008;1(27):re6. doi:10.1126/scisignal.127re6 PubMed DOI PMC

Ramirez H, Patel SB, Pastar I. The role of TGFβ signaling in wound epithelialization. Adv Wound Care. 2014;3(7):482‐491. doi:10.1089/wound.2013.0466 PubMed DOI PMC

Jordan WE. The experimental induction of superficial cutaneous infection in Guinea pigs. J Invest Dermatol. 1970;55(2):149‐152. doi:10.1111/1523-1747.ep12291783 PubMed DOI

Ghaemi EO, Khorshidi D, Moradi A, et al. The efficacy of ethanolic extract of lemon verbena on the skin infection due to Staphylococcus aureus in an animal model. Pak J Biol Sci. 2007;10(22):4132‐4135. doi:10.3923/pjbs.2007.4132.4135 PubMed DOI

Prabhakara R, Foreman O, De Pascalis R, et al. Epicutaneous model of community‐acquired Staphylococcus aureus skin infections. Infect Immun. 2013;81(4):1306‐1315. doi:10.1128/IAI.01304-12 PubMed DOI PMC

Mohamed MF, Seleem MN. Efficacy of short novel antimicrobial and anti‐inflammatory peptides in a mouse model of methicillin‐resistant Staphylococcus aureus (MRSA) skin infection. Drug Des Devel Ther. 2014;8:1979‐1983. doi:10.2147/DDDT.S72129 PubMed DOI PMC

Malachowa N, Kobayashi SD, Lovaglio J, DeLeo FR. Mouse model of Staphylococcus aureus skin infection. Methods Mol Biol. 2019;1960:139‐147. doi:10.1007/978-1-4939-9167-9_12 PubMed DOI

Mohiti‐Asli M, Risselada M, Jacob M, Pourdeyhimi B, Loboa EG. Creation and evaluation of new porcine model for investigation of treatments of surgical site infection. Tissue Eng Part C Methods. 2017;23(11):795‐803. doi:10.1089/ten.TEC.2017.0024 PubMed DOI PMC

Nielsen OL, Mellergaard M, Frees D, et al. A porcine model of subcutaneous Staphylococcus aureus infection: a pilot study. APMIS. 2022;130(7):359‐370. doi:10.1111/apm.13101 PubMed DOI

Zurawski DV, Black CC, Alamneh YA, et al. A porcine wound model of Acinetobacter baumannii infection. Adv Wound Care (New Rochelle). 2019;8(1):14‐27. doi:10.1089/wound.2018.0786 PubMed DOI PMC

Su Y, Richmond A. Chemokine regulation of neutrophil infiltration of skin wounds. Adv Wound Care (New Rochelle). 2015;4(11):631‐640. doi:10.1089/wound.2014.0559 PubMed DOI PMC

Klein P, Sojka M, Kucera J, et al. A porcine model of skin wound infected with a polybacterial biofilm. Biofouling. 2018;34(2):226‐236. doi:10.1080/08927014.2018.1425684 PubMed DOI

Li J, Topaz M, Xun W, et al. New swine model of infected soft tissue blast injury. The Journal of Trauma and Acute Care Surgery. 2012;73(4):908‐913. doi:10.1097/TA.0b013e318253b592 PubMed DOI

Hirsch T, Spielmann M, Zuhaili B, et al. Enhanced susceptibility to infections in a diabetic wound healing model. BMC Surg. 2008;8:5. doi:10.1186/1471-2482-8-5 PubMed DOI PMC

Raška F, Lipový B, Holoubek J, et al. Promising effect of topical antimicrobial 'biobetters' against methicillin‐resistant Staphylococcus aureus strains. Burns. 2022;48(7):1770‐1772. doi:10.1016/j.burns.2022.08.011 PubMed DOI

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. Primer‐BLAST: a tool to design target‐specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. doi:10.1186/1471-2105-13-134 PubMed DOI PMC

Pavlova B, Volf J, Ondrackova P, et al. SPI‐1‐encoded type III secretion system of salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression. Vet Res. 2011;42(1):16. doi:10.1186/1297-9716-42-16 PubMed DOI PMC

Ondrackova P, Kovaru H, Kovaru F, Leva L, Faldyna M. Adenosine modulates LPS‐induced cytokine production in porcine monocytes. Cytokine. 2013;61(3):953‐961. doi:10.1016/j.cyto.2012.12.026 PubMed DOI

Kyrova K, Stepanova H, Rychlik I, Faldyna M, Volf J. SPI‐1 encoded genes of Salmonella Typhimurium influence differential polarization of porcine alveolar macrophages in vitro . BMC Vet Res. 2012;8:115. doi:10.1186/1746-6148-8-115 PubMed DOI PMC

von der Hardt K, Kandler MA, Fink L, et al. High frequency oscillatory ventilation suppresses inflammatory response in lung tissue and microdissected alveolar macrophages in surfactant depleted piglets. Pediatr Res. 2004;55(2):339‐346. doi:10.1203/01.PDR.0000106802.55721.8A PubMed DOI

Nygard AB, Jørgensen CB, Cirera S, Fredholm M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol. 2007;8:67. doi:10.1186/1471-2199-8-67 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace