Size dependence of the surface spin disorder and surface anisotropy constant in ferrite nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37638154
PubMed Central
PMC10448355
DOI
10.1039/d3na00266g
PII: d3na00266g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The magnetic properties of nanoscale magnets are greatly influenced by surface anisotropy. So far, its quantification is based on the examination of the blocking temperature shift within a series of nanoparticles of varying sizes. In this scenario, the surface anisotropy is assumed to be a particle size-independent quantity. However, there is no solid experimental proof to support this simplified picture. On the contrary, our work unravels the size-dependent magnetic morphology and surface anisotropy in highly uniform magnetic nanoparticles using small-angle polarized neutron scattering. We observed that the surface anisotropy constant does not depend on the nanoparticle's size in the range of 3-9 nm. Furthermore, our results demonstrate that the surface spins are less prone to polarization with increasing nanoparticle size. Our study thus proves the size dependence of the surface spin disorder and the surface anisotropy constant in fine nanomagnets. These findings open new routes in materials based on a controlled surface spin disorder, which is essential for future applications of nanomagnets in biomedicine and magnonics.
Zobrazit více v PubMed
Keen D. A. Goodwin A. L. Nature. 2015;521:303–309. doi: 10.1038/nature14453. PubMed DOI
Lak A. Disch S. Bender P. Adv. Sci. 2021;8:2002682. doi: 10.1002/advs.202002682. PubMed DOI PMC
Magnetic Disorder in Nanostructured Materials, ed. N. Domracheva, M. Caporali and E. Rentschler, Elsevier, 2018, ch. 4, pp. 127–163
Tran N. Webster T. J. J. Mater. Chem. 2010;20:8760–8767. doi: 10.1039/C0JM00994F. DOI
Dave S. R. Gao X. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2009;1:583–609. PubMed
Sun X. Huang Y. Nikles D. Int. J. Nanotechnol. 2004;1:328–346. doi: 10.1504/IJNT.2004.004914. DOI
Zhang H.-w. Liu Y. Sun S.-h. Front. Phys. 2010;5:347–356. doi: 10.1007/s11467-010-0104-9. DOI
Dee R. H. Proc. IEEE. 2008;96:1775–1785.
Galloway J. M. Talbot J. E. Critchley K. Miles J. J. Bramble J. P. Adv. Funct. Mater. 2015;25:4590–4600. doi: 10.1002/adfm.201501090. DOI
Reiss G. Hütten A. Nat. Mater. 2005;4:725–726. doi: 10.1038/nmat1494. PubMed DOI
Das P. Colombo M. Prosperi D. Colloids Surf., B. 2019;174:42–55. doi: 10.1016/j.colsurfb.2018.10.051. PubMed DOI
Etemadi H. Plieger P. G. Adv. Ther. 2020;3:2000061. doi: 10.1002/adtp.202000061. DOI
Lu Y. Rivera-Rodriguez A. Tay Z. W. Hensley D. Fung K. B. Colson C. Saayujya C. Huynh Q. Kabuli L. Fellows B. Chandrasekharan P. Rinaldi C. Conolly S. Int. J. Hyperthermia. 2020;37:141–154. doi: 10.1080/02656736.2020.1853252. PubMed DOI
Masud M. K. Na J. Younus M. Hossain M. S. A. Bando Y. Shiddiky M. J. A. Yamauchi Y. Chem. Soc. Rev. 2019;48:5717–5751. doi: 10.1039/C9CS00174C. PubMed DOI
Kang Y. Masud M. K. Guo Y. Zhao Y. Nishat Z. S. Zhao J. Jiang B. Sugahara Y. Pejovic T. Morgan T. Hossain M. S. A. Li H. Salomon C. Asahi T. Yamauchi Y. ACS Nano. 2023;17:3346–3357. doi: 10.1021/acsnano.2c07694. PubMed DOI
McCarthy J. R. Weissleder R. Adv. Drug Delivery Rev. 2008;60:1241–1251. doi: 10.1016/j.addr.2008.03.014. PubMed DOI PMC
Sun C. Lee J. S. Zhang M. Adv. Drug Delivery Rev. 2008;60:1252–1265. doi: 10.1016/j.addr.2008.03.018. PubMed DOI PMC
Liao J.-W., Zhang H.-W. and Lai C.-H., in Magnetic Nanomaterials for Data Storage, John Wiley and Sons, Ltd, 2017, ch. 14, pp. 439–472
Martins P. M. Lima A. C. Ribeiro S. Lanceros-Mendez S. Martins P. ACS Appl. Bio Mater. 2021;4:5839–5870. doi: 10.1021/acsabm.1c00440. PubMed DOI
de Montferrand C. Hu L. Milosevic I. Russier V. Bonnin D. Motte L. Brioude A. Lalatonne Y. Acta Biomater. 2013;9:6150–6157. doi: 10.1016/j.actbio.2012.11.025. PubMed DOI
Song Q. Zhang Z. J. J. Am. Chem. Soc. 2004;126:6164–6168. doi: 10.1021/ja049931r. PubMed DOI
Bao N. Shen L. An W. Padhan P. Heath Turner C. Gupta A. Chem. Mater. 2009;21:3458–3468. doi: 10.1021/cm901033m. DOI
Tobia D. Winkler E. Zysler R. D. Granada M. Troiani H. E. Phys. Rev. B: Condens. Matter Mater. Phys. 2008;78:104412. doi: 10.1103/PhysRevB.78.104412. DOI
López-Ortega A. Lottini E. Fernández C. d. J. Sangregorio C. Chem. Mater. 2015;27:4048–4056. doi: 10.1021/acs.chemmater.5b01034. DOI
Zákutná D. Alemayehu A. Vlček J. Nemkovski K. Grams C. P. Nižňanský D. Honecker D. Disch S. Phys. Rev. B. 2019;100:184427. doi: 10.1103/PhysRevB.100.184427. DOI
Gomide G. Cabreira Gomes R. Gomes Viana M. Cortez Campos A. F. Aquino R. López-Ortega A. Perzynski R. Depeyrot J. J. Phys. Chem. 2022;126:1581–1589.
Sanna Angotzi M. Mameli V. Zákutná D. Kubániová D. Cara C. Cannas C. J. Phys. Chem. C. 2021;125:20626–20638. doi: 10.1021/acs.jpcc.1c06211. DOI
Masud M. K. Kim J. Billah M. M. Wood K. Shiddiky M. J. A. Nguyen N.-T. Parsapur R. K. Kaneti Y. V. Alshehri A. A. Alghamidi Y. G. Alzahrani K. A. Adharvanachari M. Selvam P. Hossain M. S. A. Yamauchi Y. J. Mater. Chem. B. 2019;7:5412–5422. doi: 10.1039/C9TB00989B. PubMed DOI
Abdolrahimi M. Vasilakaki M. Slimani S. Ntallis N. Varvaro G. Laureti S. Meneghini C. Trohidou K. N. Fiorani D. Peddis D. Nanomaterials. 2021;11:1787. doi: 10.3390/nano11071787. PubMed DOI PMC
Roca A. G. Morales M. P. O'Grady K. Serna C. J. Nanotechnology. 2006;17:2783. doi: 10.1088/0957-4484/17/11/010. DOI
Phan M.-H. Alonso J. Khurshid H. Lampen-Kelley P. Chandra S. Stojak Repa K. Nemati Z. Das R. Iglesias O. Srikanth H. Nanomaterials. 2016;6:221. doi: 10.3390/nano6110221. PubMed DOI PMC
Berger L. Labaye Y. Tamine M. Coey J. M. D. Phys. Rev. B: Condens. Matter Mater. Phys. 2008;77:104431. doi: 10.1103/PhysRevB.77.104431. DOI
Wetterskog E. Tai C.-W. Grins J. Bergström L. Salazar-Alvarez G. ACS Nano. 2013;7:7132–7144. doi: 10.1021/nn402487q. PubMed DOI
Nedelkoski Z. Kepaptsoglou D. Lari L. Wen T. Booth R. A. Oberdick S. D. Galindo P. L. Ramasse Q. M. Evans R. F. L. Majetich S. Lazarov V. L. Sci. Rep. 2017;7:45997. doi: 10.1038/srep45997. PubMed DOI PMC
Köhler T. Feoktystov A. Petracic O. Nandakumaran N. Cervellino A. Brückel T. J. Appl. Crystallogr. 2021;54:1719–1729. doi: 10.1107/S1600576721010128. PubMed DOI PMC
Batlle X. Moya C. Escoda-Torroella M. Iglesias Ò. Fraile Rodríguez A. Labarta A. J. Magn. Magn. Mater. 2022;543:168594. doi: 10.1016/j.jmmm.2021.168594. DOI
Kodama R. H. Berkowitz A. E. McNiff E. J. Foner S. J. Appl. Phys. 1997;81:5552–5557. doi: 10.1063/1.364659. DOI
Salazar-Alvarez G. Qin J. Šepelák V. Bergmann I. Vasilakaki M. Trohidou K. N. Ardisson J. D. Macedo W. A. A. Mikhaylova M. Muhammed M. Baró M. D. Nogués J. J. Am. Chem. Soc. 2008;130:13234–13239. doi: 10.1021/ja0768744. PubMed DOI
Mørup S. Brok E. Frandsen C. J. Nanomater. 2013;2013:720629.
Oyarzún S. Tamion A. Tournus F. Dupuis V. Hillenkamp M. Sci. Rep. 2015;5:14749. doi: 10.1038/srep14749. PubMed DOI PMC
Batlle X. Labarta A. J. Phys. D. 2002;35:201. doi: 10.1088/0022-3727/35/6/201. DOI
Bødker F. Mørup S. Linderoth S. Phys. Rev. Lett. 1994;72:282–285. doi: 10.1103/PhysRevLett.72.282. PubMed DOI
Muscas G. Cobianchi M. Lascialfari A. Cannas C. Musinu A. Omelyanchik A. Rodionova V. Fiorani D. Mameli V. Peddis D. IEEE Magn. Lett. 2019;10:1–5.
Pérez N. Guardia P. Roca A. G. Morales M. P. Serna C. J. Iglesias O. Bartolomé F. García L. M. Batlle X. Labarta A. Nanotechnology. 2008;19:475704. doi: 10.1088/0957-4484/19/47/475704. PubMed DOI
Tournus F. Hillion A. Tamion A. Dupuis V. Phys. Rev. B: Condens. Matter Mater. Phys. 2013;87:174404. doi: 10.1103/PhysRevB.87.174404. DOI
Tadić M. Kusigerski V. Marković D. Panjan M. Milošević I. Spasojević V. J. Alloys Compd. 2012;525:28–33. doi: 10.1016/j.jallcom.2012.02.056. DOI
Shendruk T. N. Desautels R. D. Southern B. W. van Lierop J. Nanotechnology. 2007;18:455704. doi: 10.1088/0957-4484/18/45/455704. DOI
Fiorani D. Testa A. Lucari F. D'Orazio F. Romero H. Phys. B: Condens. Matter. 2002;320:122–126. doi: 10.1016/S0921-4526(02)00659-2. DOI
Baldi G. Bonacchi D. Innocenti C. Lorenzi G. Sangregorio C. J. Magn. Magn. Mater. 2007;311:10–16. doi: 10.1016/j.jmmm.2006.11.157. DOI
Disch S. Wetterskog E. Hermann R. P. Wiedenmann A. Vainio U. Salazar-Alvarez G. Bergström L. Brückel T. New J. Phys. 2012;14:013025. doi: 10.1088/1367-2630/14/1/013025. DOI
Krycka K. L. Borchers J. A. Booth R. A. Majetich S. A. Ijiri Y. Hasz K. Rhyne J. J. Phys. Rev. Lett. 2014;113:147203. doi: 10.1103/PhysRevLett.113.147203. PubMed DOI
Hasz K. Ijiri Y. Krycka K. L. Borchers J. A. Booth R. A. Oberdick S. Majetich S. A. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;90:180405. doi: 10.1103/PhysRevB.90.180405. DOI
Günther A. Bick J.-P. Szary P. Honecker D. Dewhurst C. D. Keiderling U. Feoktystov A. V. Tschöpe A. Birringer R. Michels A. J. Appl. Crystallogr. 2014;47:992–998. doi: 10.1107/S1600576714008413. PubMed DOI PMC
Maurer T. Gautrot S. Ott F. Chaboussant G. Zighem F. Cagnon L. Fruchart O. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;89:184423. doi: 10.1103/PhysRevB.89.184423. DOI
Dennis C. L. Krycka K. L. Borchers J. A. Desautels R. D. van Lierop J. Huls N. F. Jackson A. J. Gruettner C. Ivkov R. Adv. Funct. Mater. 2015;25:4300–4311. doi: 10.1002/adfm.201500405. DOI
Grutter A. J. Krycka K. L. Tartakovskaya E. V. Borchers J. A. Reddy K. S. M. Ortega E. Ponce A. Stadler B. J. H. ACS Nano. 2017;11:8311–8319. doi: 10.1021/acsnano.7b03488. PubMed DOI
Oberdick S. D. Abdelgawad A. Moya C. Mesbahi-Vasey S. Kepaptsoglou D. Lazarov V. K. Evans R. F. L. Meilak D. Skoropata E. van Lierop J. Hunt-Isaak I. Pan H. Ijiri Y. Krycka K. L. Borchers J. A. Majetich S. A. Sci. Rep. 2018;8:3425. doi: 10.1038/s41598-018-21626-0. PubMed DOI PMC
Bender P. Honecker D. Fernández Barquín L. Appl. Phys. Lett. 2019;115:132406. doi: 10.1063/1.5121234. DOI
Bersweiler M. Bender P. Vivas L. G. Albino M. Petrecca M. Mühlbauer S. Erokhin S. Berkov D. Sangregorio C. Michels A. Phys. Rev. B. 2019;100:144434. doi: 10.1103/PhysRevB.100.144434. DOI
Ijiri Y. Krycka K. L. Hunt-Isaak I. Pan H. Hsieh J. Borchers J. A. Rhyne J. J. Oberdick S. D. Abdelgawad A. Majetich S. A. Phys. Rev. B. 2019;99:094421. doi: 10.1103/PhysRevB.99.094421. DOI
Honecker D. Bersweiler M. Erokhin S. Berkov D. Chesnel K. Venero D. A. Qdemat A. Disch S. Jochum J. K. Michels A. Bender P. Nanoscale Adv. 2022;4:1026–1059. doi: 10.1039/D1NA00482D. PubMed DOI PMC
Zákutná D. Fischer A. Dresen D. Nižňanský D. Honecker D. Disch S. J. Appl. Crystallogr. 2022;55:1622–1630. doi: 10.1107/S1600576722010287. PubMed DOI PMC
Zákutná D. Rouzbeh N. Nižňanský D. Duchoň J. Qdemat A. Kentzinger E. Honecker D. Disch S. Chem. Mater. 2023;35:2302–2311. doi: 10.1021/acs.chemmater.2c02813. DOI
Zákutná D. Nižňanský D. Barnsley L. C. Babcock E. Salhi Z. Feoktystov A. Honecker D. Disch S. Phys. Rev. X. 2020;10:031019.
Sanna Angotzi M. Musinu A. Mameli V. Ardu A. Cara C. Nižňanský D. Xin H. L. Cannas C. ACS Nano. 2017;11:7889–7900. doi: 10.1021/acsnano.7b02349. PubMed DOI
Repko A. Vejpravová J. Vacková T. Zákutná D. Nižňanský D. J. Magn. Magn. Mater. 2015;390:142–151. doi: 10.1016/j.jmmm.2015.04.090. DOI
Schneider C. A. Rasband W. S. Eliceiri K. W. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Rodríguez-Carvajal J. Phys. B. 1993;192:55. doi: 10.1016/0921-4526(93)90108-I. DOI
Bergmann J. Monecke T. Kleeberg R. J. Appl. Crystallogr. 2001;34:16–19. doi: 10.1107/S002188980001623X. DOI
Dewhurst C. D. Grillo I. Honecker D. Bonnaud M. Jacques M. Amrouni C. Perillo-Marcone A. Manzin G. Cubitt R. J. Appl. Crystallogr. 2016;49:1–14. doi: 10.1107/S1600576715021792. DOI
Vansteenkiste A. Leliaert J. Dvornik M. Helsen M. Garcia-Sanchez F. Van Waeyenberge B. AIP Adv. 2014;4:107133. doi: 10.1063/1.4899186. DOI
Disch S. Wetterskog E. Hermann R. P. Wiedenmann A. Vainio U. Salazar-Alvarez G. Bergström L. Brückel T. New J. Phys. 2012;14:013025. doi: 10.1088/1367-2630/14/1/013025. DOI
Gerina M., Mameli V., Rohaľ D., Steinke N.-J. and Zákutná D., Correlating the Crystalline Structure with Magnetic Morphology of Magnetic Nanoparticles, Institut Laue-Langevin (ILL), 2021
van Rijssel J. Kuipers B. W. Erné B. H. J. Magn. Magn. Mater. 2014;353:110–115. doi: 10.1016/j.jmmm.2013.10.025. DOI
Sousa E. Sousa M. Goya G. Rechenberg H. Lara M. Tourinho F. Depeyrot J. J. Magn. Magn. Mater. 2004;272–276:E1215–E1217. doi: 10.1016/j.jmmm.2003.12.295. DOI
Gazeau F. Bacri J. Gendron F. Perzynski R. Raikher Y. Stepanov V. Dubois E. J. Magn. Magn. Mater. 1998;186:175–187. doi: 10.1016/S0304-8853(98)00080-8. DOI