Size dependence of the surface spin disorder and surface anisotropy constant in ferrite nanoparticles

. 2023 Aug 24 ; 5 (17) : 4563-4570. [epub] 20230803

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37638154

The magnetic properties of nanoscale magnets are greatly influenced by surface anisotropy. So far, its quantification is based on the examination of the blocking temperature shift within a series of nanoparticles of varying sizes. In this scenario, the surface anisotropy is assumed to be a particle size-independent quantity. However, there is no solid experimental proof to support this simplified picture. On the contrary, our work unravels the size-dependent magnetic morphology and surface anisotropy in highly uniform magnetic nanoparticles using small-angle polarized neutron scattering. We observed that the surface anisotropy constant does not depend on the nanoparticle's size in the range of 3-9 nm. Furthermore, our results demonstrate that the surface spins are less prone to polarization with increasing nanoparticle size. Our study thus proves the size dependence of the surface spin disorder and the surface anisotropy constant in fine nanomagnets. These findings open new routes in materials based on a controlled surface spin disorder, which is essential for future applications of nanomagnets in biomedicine and magnonics.

Zobrazit více v PubMed

Keen D. A. Goodwin A. L. Nature. 2015;521:303–309. doi: 10.1038/nature14453. PubMed DOI

Lak A. Disch S. Bender P. Adv. Sci. 2021;8:2002682. doi: 10.1002/advs.202002682. PubMed DOI PMC

Magnetic Disorder in Nanostructured Materials, ed. N. Domracheva, M. Caporali and E. Rentschler, Elsevier, 2018, ch. 4, pp. 127–163

Tran N. Webster T. J. J. Mater. Chem. 2010;20:8760–8767. doi: 10.1039/C0JM00994F. DOI

Dave S. R. Gao X. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2009;1:583–609. PubMed

Sun X. Huang Y. Nikles D. Int. J. Nanotechnol. 2004;1:328–346. doi: 10.1504/IJNT.2004.004914. DOI

Zhang H.-w. Liu Y. Sun S.-h. Front. Phys. 2010;5:347–356. doi: 10.1007/s11467-010-0104-9. DOI

Dee R. H. Proc. IEEE. 2008;96:1775–1785.

Galloway J. M. Talbot J. E. Critchley K. Miles J. J. Bramble J. P. Adv. Funct. Mater. 2015;25:4590–4600. doi: 10.1002/adfm.201501090. DOI

Reiss G. Hütten A. Nat. Mater. 2005;4:725–726. doi: 10.1038/nmat1494. PubMed DOI

Das P. Colombo M. Prosperi D. Colloids Surf., B. 2019;174:42–55. doi: 10.1016/j.colsurfb.2018.10.051. PubMed DOI

Etemadi H. Plieger P. G. Adv. Ther. 2020;3:2000061. doi: 10.1002/adtp.202000061. DOI

Lu Y. Rivera-Rodriguez A. Tay Z. W. Hensley D. Fung K. B. Colson C. Saayujya C. Huynh Q. Kabuli L. Fellows B. Chandrasekharan P. Rinaldi C. Conolly S. Int. J. Hyperthermia. 2020;37:141–154. doi: 10.1080/02656736.2020.1853252. PubMed DOI

Masud M. K. Na J. Younus M. Hossain M. S. A. Bando Y. Shiddiky M. J. A. Yamauchi Y. Chem. Soc. Rev. 2019;48:5717–5751. doi: 10.1039/C9CS00174C. PubMed DOI

Kang Y. Masud M. K. Guo Y. Zhao Y. Nishat Z. S. Zhao J. Jiang B. Sugahara Y. Pejovic T. Morgan T. Hossain M. S. A. Li H. Salomon C. Asahi T. Yamauchi Y. ACS Nano. 2023;17:3346–3357. doi: 10.1021/acsnano.2c07694. PubMed DOI

McCarthy J. R. Weissleder R. Adv. Drug Delivery Rev. 2008;60:1241–1251. doi: 10.1016/j.addr.2008.03.014. PubMed DOI PMC

Sun C. Lee J. S. Zhang M. Adv. Drug Delivery Rev. 2008;60:1252–1265. doi: 10.1016/j.addr.2008.03.018. PubMed DOI PMC

Liao J.-W., Zhang H.-W. and Lai C.-H., in Magnetic Nanomaterials for Data Storage, John Wiley and Sons, Ltd, 2017, ch. 14, pp. 439–472

Martins P. M. Lima A. C. Ribeiro S. Lanceros-Mendez S. Martins P. ACS Appl. Bio Mater. 2021;4:5839–5870. doi: 10.1021/acsabm.1c00440. PubMed DOI

de Montferrand C. Hu L. Milosevic I. Russier V. Bonnin D. Motte L. Brioude A. Lalatonne Y. Acta Biomater. 2013;9:6150–6157. doi: 10.1016/j.actbio.2012.11.025. PubMed DOI

Song Q. Zhang Z. J. J. Am. Chem. Soc. 2004;126:6164–6168. doi: 10.1021/ja049931r. PubMed DOI

Bao N. Shen L. An W. Padhan P. Heath Turner C. Gupta A. Chem. Mater. 2009;21:3458–3468. doi: 10.1021/cm901033m. DOI

Tobia D. Winkler E. Zysler R. D. Granada M. Troiani H. E. Phys. Rev. B: Condens. Matter Mater. Phys. 2008;78:104412. doi: 10.1103/PhysRevB.78.104412. DOI

López-Ortega A. Lottini E. Fernández C. d. J. Sangregorio C. Chem. Mater. 2015;27:4048–4056. doi: 10.1021/acs.chemmater.5b01034. DOI

Zákutná D. Alemayehu A. Vlček J. Nemkovski K. Grams C. P. Nižňanský D. Honecker D. Disch S. Phys. Rev. B. 2019;100:184427. doi: 10.1103/PhysRevB.100.184427. DOI

Gomide G. Cabreira Gomes R. Gomes Viana M. Cortez Campos A. F. Aquino R. López-Ortega A. Perzynski R. Depeyrot J. J. Phys. Chem. 2022;126:1581–1589.

Sanna Angotzi M. Mameli V. Zákutná D. Kubániová D. Cara C. Cannas C. J. Phys. Chem. C. 2021;125:20626–20638. doi: 10.1021/acs.jpcc.1c06211. DOI

Masud M. K. Kim J. Billah M. M. Wood K. Shiddiky M. J. A. Nguyen N.-T. Parsapur R. K. Kaneti Y. V. Alshehri A. A. Alghamidi Y. G. Alzahrani K. A. Adharvanachari M. Selvam P. Hossain M. S. A. Yamauchi Y. J. Mater. Chem. B. 2019;7:5412–5422. doi: 10.1039/C9TB00989B. PubMed DOI

Abdolrahimi M. Vasilakaki M. Slimani S. Ntallis N. Varvaro G. Laureti S. Meneghini C. Trohidou K. N. Fiorani D. Peddis D. Nanomaterials. 2021;11:1787. doi: 10.3390/nano11071787. PubMed DOI PMC

Roca A. G. Morales M. P. O'Grady K. Serna C. J. Nanotechnology. 2006;17:2783. doi: 10.1088/0957-4484/17/11/010. DOI

Phan M.-H. Alonso J. Khurshid H. Lampen-Kelley P. Chandra S. Stojak Repa K. Nemati Z. Das R. Iglesias O. Srikanth H. Nanomaterials. 2016;6:221. doi: 10.3390/nano6110221. PubMed DOI PMC

Berger L. Labaye Y. Tamine M. Coey J. M. D. Phys. Rev. B: Condens. Matter Mater. Phys. 2008;77:104431. doi: 10.1103/PhysRevB.77.104431. DOI

Wetterskog E. Tai C.-W. Grins J. Bergström L. Salazar-Alvarez G. ACS Nano. 2013;7:7132–7144. doi: 10.1021/nn402487q. PubMed DOI

Nedelkoski Z. Kepaptsoglou D. Lari L. Wen T. Booth R. A. Oberdick S. D. Galindo P. L. Ramasse Q. M. Evans R. F. L. Majetich S. Lazarov V. L. Sci. Rep. 2017;7:45997. doi: 10.1038/srep45997. PubMed DOI PMC

Köhler T. Feoktystov A. Petracic O. Nandakumaran N. Cervellino A. Brückel T. J. Appl. Crystallogr. 2021;54:1719–1729. doi: 10.1107/S1600576721010128. PubMed DOI PMC

Batlle X. Moya C. Escoda-Torroella M. Iglesias Ò. Fraile Rodríguez A. Labarta A. J. Magn. Magn. Mater. 2022;543:168594. doi: 10.1016/j.jmmm.2021.168594. DOI

Kodama R. H. Berkowitz A. E. McNiff E. J. Foner S. J. Appl. Phys. 1997;81:5552–5557. doi: 10.1063/1.364659. DOI

Salazar-Alvarez G. Qin J. Šepelák V. Bergmann I. Vasilakaki M. Trohidou K. N. Ardisson J. D. Macedo W. A. A. Mikhaylova M. Muhammed M. Baró M. D. Nogués J. J. Am. Chem. Soc. 2008;130:13234–13239. doi: 10.1021/ja0768744. PubMed DOI

Mørup S. Brok E. Frandsen C. J. Nanomater. 2013;2013:720629.

Oyarzún S. Tamion A. Tournus F. Dupuis V. Hillenkamp M. Sci. Rep. 2015;5:14749. doi: 10.1038/srep14749. PubMed DOI PMC

Batlle X. Labarta A. J. Phys. D. 2002;35:201. doi: 10.1088/0022-3727/35/6/201. DOI

Bødker F. Mørup S. Linderoth S. Phys. Rev. Lett. 1994;72:282–285. doi: 10.1103/PhysRevLett.72.282. PubMed DOI

Muscas G. Cobianchi M. Lascialfari A. Cannas C. Musinu A. Omelyanchik A. Rodionova V. Fiorani D. Mameli V. Peddis D. IEEE Magn. Lett. 2019;10:1–5.

Pérez N. Guardia P. Roca A. G. Morales M. P. Serna C. J. Iglesias O. Bartolomé F. García L. M. Batlle X. Labarta A. Nanotechnology. 2008;19:475704. doi: 10.1088/0957-4484/19/47/475704. PubMed DOI

Tournus F. Hillion A. Tamion A. Dupuis V. Phys. Rev. B: Condens. Matter Mater. Phys. 2013;87:174404. doi: 10.1103/PhysRevB.87.174404. DOI

Tadić M. Kusigerski V. Marković D. Panjan M. Milošević I. Spasojević V. J. Alloys Compd. 2012;525:28–33. doi: 10.1016/j.jallcom.2012.02.056. DOI

Shendruk T. N. Desautels R. D. Southern B. W. van Lierop J. Nanotechnology. 2007;18:455704. doi: 10.1088/0957-4484/18/45/455704. DOI

Fiorani D. Testa A. Lucari F. D'Orazio F. Romero H. Phys. B: Condens. Matter. 2002;320:122–126. doi: 10.1016/S0921-4526(02)00659-2. DOI

Baldi G. Bonacchi D. Innocenti C. Lorenzi G. Sangregorio C. J. Magn. Magn. Mater. 2007;311:10–16. doi: 10.1016/j.jmmm.2006.11.157. DOI

Disch S. Wetterskog E. Hermann R. P. Wiedenmann A. Vainio U. Salazar-Alvarez G. Bergström L. Brückel T. New J. Phys. 2012;14:013025. doi: 10.1088/1367-2630/14/1/013025. DOI

Krycka K. L. Borchers J. A. Booth R. A. Majetich S. A. Ijiri Y. Hasz K. Rhyne J. J. Phys. Rev. Lett. 2014;113:147203. doi: 10.1103/PhysRevLett.113.147203. PubMed DOI

Hasz K. Ijiri Y. Krycka K. L. Borchers J. A. Booth R. A. Oberdick S. Majetich S. A. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;90:180405. doi: 10.1103/PhysRevB.90.180405. DOI

Günther A. Bick J.-P. Szary P. Honecker D. Dewhurst C. D. Keiderling U. Feoktystov A. V. Tschöpe A. Birringer R. Michels A. J. Appl. Crystallogr. 2014;47:992–998. doi: 10.1107/S1600576714008413. PubMed DOI PMC

Maurer T. Gautrot S. Ott F. Chaboussant G. Zighem F. Cagnon L. Fruchart O. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;89:184423. doi: 10.1103/PhysRevB.89.184423. DOI

Dennis C. L. Krycka K. L. Borchers J. A. Desautels R. D. van Lierop J. Huls N. F. Jackson A. J. Gruettner C. Ivkov R. Adv. Funct. Mater. 2015;25:4300–4311. doi: 10.1002/adfm.201500405. DOI

Grutter A. J. Krycka K. L. Tartakovskaya E. V. Borchers J. A. Reddy K. S. M. Ortega E. Ponce A. Stadler B. J. H. ACS Nano. 2017;11:8311–8319. doi: 10.1021/acsnano.7b03488. PubMed DOI

Oberdick S. D. Abdelgawad A. Moya C. Mesbahi-Vasey S. Kepaptsoglou D. Lazarov V. K. Evans R. F. L. Meilak D. Skoropata E. van Lierop J. Hunt-Isaak I. Pan H. Ijiri Y. Krycka K. L. Borchers J. A. Majetich S. A. Sci. Rep. 2018;8:3425. doi: 10.1038/s41598-018-21626-0. PubMed DOI PMC

Bender P. Honecker D. Fernández Barquín L. Appl. Phys. Lett. 2019;115:132406. doi: 10.1063/1.5121234. DOI

Bersweiler M. Bender P. Vivas L. G. Albino M. Petrecca M. Mühlbauer S. Erokhin S. Berkov D. Sangregorio C. Michels A. Phys. Rev. B. 2019;100:144434. doi: 10.1103/PhysRevB.100.144434. DOI

Ijiri Y. Krycka K. L. Hunt-Isaak I. Pan H. Hsieh J. Borchers J. A. Rhyne J. J. Oberdick S. D. Abdelgawad A. Majetich S. A. Phys. Rev. B. 2019;99:094421. doi: 10.1103/PhysRevB.99.094421. DOI

Honecker D. Bersweiler M. Erokhin S. Berkov D. Chesnel K. Venero D. A. Qdemat A. Disch S. Jochum J. K. Michels A. Bender P. Nanoscale Adv. 2022;4:1026–1059. doi: 10.1039/D1NA00482D. PubMed DOI PMC

Zákutná D. Fischer A. Dresen D. Nižňanský D. Honecker D. Disch S. J. Appl. Crystallogr. 2022;55:1622–1630. doi: 10.1107/S1600576722010287. PubMed DOI PMC

Zákutná D. Rouzbeh N. Nižňanský D. Duchoň J. Qdemat A. Kentzinger E. Honecker D. Disch S. Chem. Mater. 2023;35:2302–2311. doi: 10.1021/acs.chemmater.2c02813. DOI

Zákutná D. Nižňanský D. Barnsley L. C. Babcock E. Salhi Z. Feoktystov A. Honecker D. Disch S. Phys. Rev. X. 2020;10:031019.

Sanna Angotzi M. Musinu A. Mameli V. Ardu A. Cara C. Nižňanský D. Xin H. L. Cannas C. ACS Nano. 2017;11:7889–7900. doi: 10.1021/acsnano.7b02349. PubMed DOI

Repko A. Vejpravová J. Vacková T. Zákutná D. Nižňanský D. J. Magn. Magn. Mater. 2015;390:142–151. doi: 10.1016/j.jmmm.2015.04.090. DOI

Schneider C. A. Rasband W. S. Eliceiri K. W. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Rodríguez-Carvajal J. Phys. B. 1993;192:55. doi: 10.1016/0921-4526(93)90108-I. DOI

Bergmann J. Monecke T. Kleeberg R. J. Appl. Crystallogr. 2001;34:16–19. doi: 10.1107/S002188980001623X. DOI

Dewhurst C. D. Grillo I. Honecker D. Bonnaud M. Jacques M. Amrouni C. Perillo-Marcone A. Manzin G. Cubitt R. J. Appl. Crystallogr. 2016;49:1–14. doi: 10.1107/S1600576715021792. DOI

Vansteenkiste A. Leliaert J. Dvornik M. Helsen M. Garcia-Sanchez F. Van Waeyenberge B. AIP Adv. 2014;4:107133. doi: 10.1063/1.4899186. DOI

Disch S. Wetterskog E. Hermann R. P. Wiedenmann A. Vainio U. Salazar-Alvarez G. Bergström L. Brückel T. New J. Phys. 2012;14:013025. doi: 10.1088/1367-2630/14/1/013025. DOI

Gerina M., Mameli V., Rohaľ D., Steinke N.-J. and Zákutná D., Correlating the Crystalline Structure with Magnetic Morphology of Magnetic Nanoparticles, Institut Laue-Langevin (ILL), 2021

van Rijssel J. Kuipers B. W. Erné B. H. J. Magn. Magn. Mater. 2014;353:110–115. doi: 10.1016/j.jmmm.2013.10.025. DOI

Sousa E. Sousa M. Goya G. Rechenberg H. Lara M. Tourinho F. Depeyrot J. J. Magn. Magn. Mater. 2004;272–276:E1215–E1217. doi: 10.1016/j.jmmm.2003.12.295. DOI

Gazeau F. Bacri J. Gendron F. Perzynski R. Raikher Y. Stepanov V. Dubois E. J. Magn. Magn. Mater. 1998;186:175–187. doi: 10.1016/S0304-8853(98)00080-8. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exploring Anisotropy Contributions in Mn x Co1-x Fe2O4 Ferrite Nanoparticles for Biomedical Applications

. 2024 Dec 13 ; 7 (23) : 27210-27216. [epub] 20241115

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...