Exploring Anisotropy Contributions in Mn x Co1-x Fe2O4 Ferrite Nanoparticles for Biomedical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39697529
PubMed Central
PMC11650618
DOI
10.1021/acsanm.4c05231
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Designing well-defined magnetic nanomaterials is crucial for various applications, and it demands a comprehensive understanding of their magnetic properties at the microscopic level. In this study, we investigate the contributions to the total anisotropy of Mn/Co mixed spinel nanoparticles. By employing neutron measurements sensitive to the spatially resolved surface anisotropy with sub-Å space resolution, we reveal an additional contribution to the anisotropy constant arising from shape anisotropy and interparticle interactions. Our findings shed light on the intricate interplay among chemical composition, microstructure, morphology, and surface effects, providing valuable insights for the design of advanced magnetic nanomaterials for AC biomedical applications, such as cancer treatment by magnetic fluid hyperthermia.
Zobrazit více v PubMed
Muscas G.; Yaacoub N.; Peddis D.. Magnetic Disorder in Nanostructured Materials. In Novel Magnetic Nanostructures; Elsevier, 2018; pp 127–163.
Hochepied J. F.; Pileni M. P. Magnetic properties of mixed cobalt–zinc ferrite nanoparticles. J. Appl. Phys. 2000, 87, 2472–2478. 10.1063/1.372205. DOI
Bender P.; Balceris C.; Ludwig F.; Posth O.; Bogart L. K.; Szczerba W.; Castro A.; Nilsson L.; Costo R.; Gavilán H.; González-Alonso D.; de Pedro I.; Barquín L. F.; Johansson C. Distribution functions of magnetic nanoparticles determined by a numerical inversion method. New J. Phys. 2017, 19, 07301210.1088/1367-2630/aa73b4. DOI
Mørup S.; Brok E.; Frandsen C. Spin Structures in Magnetic Nanoparticles. J. Nanomater. 2013, 2013, 72062910.1155/2013/720629. DOI
Gerina M.; Angotzi M. S.; Mameli V.; Gajdošová V.; Rainer D. N.; Dopita M.; Steinke N.-J.; Aurélio D.; Vejpravová J.; Zákutná D. Size dependence of the surface spin disorder and surface anisotropy constant in ferrite nanoparticles. Nanoscale Adv. 2023, 5, 4563–4570. 10.1039/D3NA00266G. PubMed DOI PMC
Aurélio D.; Vejpravova J. Understanding Magnetization Dynamics of a Magnetic Nanoparticle with a Disordered Shell Using Micromagnetic Simulations. Nanomaterials 2020, 10, 114910.3390/nano10061149. PubMed DOI PMC
Mikšátko J.; Aurélio D.; Kovaříček P.; Michlová M.; Veverka M.; Fridrichová M.; Matulková I.; Žáček M.; Kalbáč M.; Vejpravová J. Thermoreversible magnetic nanochains. Nanoscale 2019, 11, 16773–16780. 10.1039/C9NR03531A. PubMed DOI
Pacakova B.; Kubickova S.; Salas G.; Mantlikova A. R.; Marciello M.; Morales M. P.; Niznansky D.; Vejpravova J. The internal structure of magnetic nanoparticles determines the magnetic response. Nanoscale 2017, 9, 5129–5140. 10.1039/C6NR07262C. PubMed DOI
Oberdick S. D.; Abdelgawad A.; Moya C.; Mesbahi-Vasey S.; Kepaptsoglou D.; Lazarov V. K.; Evans R. F. L.; Meilak D.; Skoropata E.; van Lierop J.; Hunt-Isaak I.; Pan H.; Ijiri Y.; Krycka K. L.; Borchers J. A.; Majetich S. A. Spin canting across core/shell Fe3O4/MnxFe3–xO4 nanoparticles. Sci. Rep. 2018, 8, 342510.1038/s41598-018-21626-0. PubMed DOI PMC
García-Acevedo P.; González-Gómez M. A.; Arnosa-Prieto A.; de Castro-Alves L.; Piñeiro Y.; Rivas J. Role of Dipolar Interactions on the Determination of the Effective Magnetic Anisotropy in Iron Oxide Nanoparticles. Adv. Sci. 2023, 10, 220339710.1002/advs.202203397. PubMed DOI PMC
Salazar-Alvarez G.; Qin J.; Šepelák V.; Bergmann I.; Vasilakaki M.; Trohidou K. N.; Ardisson J. D.; Macedo W. A. A.; Mikhaylova M.; Muhammed M.; Baró M. D.; Nogués J. Cubic versus Spherical Magnetic Nanoparticles: The Role of Surface Anisotropy. J. Am. Chem. Soc. 2008, 130, 13234–13239. 10.1021/ja0768744. PubMed DOI
Li W.; Liang Z.; Lu Z.; Tao X.; Liu K.; Yao H.; Cui Y. Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties. Nano Lett. 2015, 15, 7394–7399. 10.1021/acs.nanolett.5b02818. PubMed DOI
Mohsin A.; Hussain M. H.; Mohsin M. Z.; Zaman W. Q.; Aslam M. S.; Shan A.; Dai Y.; Khan I. M.; Niazi S.; Zhuang Y.; Guo M. Recent Advances of Magnetic Nanomaterials for Bioimaging, Drug Delivery, and Cell Therapy. ACS Appl. Nano Mater. 2022, 5, 10118–10136. 10.1021/acsanm.2c02014. DOI
Zhang Q.; Yang X.; Guan J. Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Appl. Nano Mater. 2019, 2, 4681–4697. 10.1021/acsanm.9b00976. DOI
Pianciola B. N.; Lima E.; Troiani H. E.; Nagamine L. C.; Cohen R.; Zysler R. D. Size and surface effects in the magnetic order of CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 2015, 377, 44–51. 10.1016/j.jmmm.2014.10.054. DOI
Bonanni V.; Basini M.; Peddis D.; Lascialfari A.; Rossi G.; Torelli P. X-ray magnetic circular dichroism discloses surface spins correlation in maghemite hollow nanoparticles. Appl. Phys. Lett. 2018, 112, 02240410.1063/1.5006153. DOI
Negi D. S.; Sharona H.; Bhat U.; Palchoudhury S.; Gupta A.; Datta R. Surface spin canting in Fe3O4 and CoFe2O4 nanoparticles probed by high-resolution electron energy loss spectroscopy. Phys. Rev. B 2017, 95, 17444410.1103/PhysRevB.95.174444. DOI
Pichon B. P.; Gerber O.; Lefevre C.; Florea I.; Fleutot S.; Baaziz W.; Pauly M.; Ohlmann M.; Ulhaq C.; Ersen O.; Pierron-Bohnes V.; Panissod P.; Drillon M.; Begin-Colin S. Microstructural and Magnetic Investigations of Wüstite-Spinel Core-Shell Cubic-Shaped Nanoparticles. Chem. Mater. 2011, 23, 2886–2900. 10.1021/cm2003319. DOI
del Pozo-Bueno D.; Varela M.; Estrader M.; López-Ortega A.; Roca A. G.; Nogués J.; Peiró F.; Estradé S. Direct Evidence of a Graded Magnetic Interface in Bimagnetic Core/Shell Nanoparticles Using Electron Magnetic Circular Dichroism (EMCD). Nano Lett. 2021, 21, 6923–6930. 10.1021/acs.nanolett.1c02089. PubMed DOI
Bender P.; Wetterskog E.; Honecker D.; Fock J.; Frandsen C.; Moerland C.; Bogart L. K.; Posth O.; Szczerba W.; Gavilán H.; Costo R.; Fernández-Díaz M. T.; González-Alonso D.; Fernández Barquín L.; Johansson C. Dipolar-coupled moment correlations in clusters of magnetic nanoparticles. Phys. Rev. B 2018, 98, 22442010.1103/PhysRevB.98.224420. DOI
Bender P.; Günther A.; Honecker D.; Wiedenmann A.; Disch S.; Tschöpe A.; Michels A.; Birringer R. Excitation of Ni nanorod colloids in oscillating magnetic fields: a new approach for nanosensing investigated by TISANE. Nanoscale 2015, 7, 17122–17130. 10.1039/C5NR04243G. PubMed DOI
Gazeau F.; Dubois E.; Bacri J.-C.; Boué F.; Cebers A.; Perzynski R. Anisotropy of the structure factor of magnetic fluids under a field probed by small-angle neutron scattering. Phys. Rev. E 2002, 65, 03140310.1103/PhysRevE.65.031403. PubMed DOI
Zákutná D.; Nižňanský D.; Barnsley L. C.; Babcock E.; Salhi Z.; Feoktystov A.; Honecker D.; Disch S. Field Dependence of Magnetic Disorder in Nanoparticles. Phys. Rev. X 2020, 10, 03101910.1103/PhysRevX.10.031019. DOI
Sanna Angotzi M.; Mameli V.; Zákutná D.; Kubániová D.; Cara C.; Cannas C. Evolution of the Magnetic and Structural Properties with the Chemical Composition in Oleate-Capped MnxCo1–xFe2O4 Nanoparticles. J. Phys. Chem. C 2021, 125, 20626–20638. 10.1021/acs.jpcc.1c06211. DOI
Zákutná D.; Rouzbeh N.; Nižňanský D.; Duchoň J.; Qdemat A.; Kentzinger E.; Honecker D.; Disch S. Magnetic Coupling in Cobalt-Doped Iron Oxide Core–Shell Nanoparticles: Exchange Pinning through Epitaxial Alignment. Chem. Mater. 2023, 35, 2302–2311. 10.1021/acs.chemmater.2c02813. DOI
De Toro J. A.; Vasilakaki M.; Lee S. S.; Andersson M. S.; Normile P. S.; Yaacoub N.; Murray P.; Sánchez E. H.; Muñiz P.; Peddis D.; Mathieu R.; Liu K.; Geshev J.; Trohidou K. N.; Nogués J. Remanence Plots as a Probe of Spin Disorder in Magnetic Nanoparticles. Chem. Mater. 2017, 29, 8258–8268. 10.1021/acs.chemmater.7b02522. DOI
Frandsen C.; Lefmann K.; Lebech B.; Bahl C. R. H.; Brok E.; Ancoña S. N.; Theil Kuhn L.; Keller L.; Kasama T.; Gontard L. C.; Mørup S. Spin reorientation in α-Fe2O3 nanoparticles induced by interparticle exchange interactions in α-Fe2O3/NiO nanocomposites. Phys. Rev. B 2011, 84, 21443510.1103/PhysRevB.84.214435. DOI
Laureti S.; Varvaro G.; Testa A. M.; Fiorani D.; Agostinelli E.; Piccaluga G.; Musinu A.; Ardu A.; Peddis D. Magnetic interactions in silica coated nanoporous assemblies of CoFe2O4 nanoparticles with cubic magnetic anisotropy. Nanotechnology 2010, 21, 31570110.1088/0957-4484/21/31/315701. PubMed DOI
Aslibeiki B.; Kameli P.; Salamati H.; Concas G.; Fernandez M. S.; Talone A.; Muscas G.; Peddis D. Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions. Beilstein J. Nanotechnol. 2019, 10, 856–865. 10.3762/bjnano.10.86. PubMed DOI PMC
Shenker H. Magnetic Anisotropy of Cobalt Ferrite (Co1.01Fe2.00O3.62) and Nickel Cobalt Ferrite (Ni0.72Fe0.20Co0.08Fe2O4). Phys. Rev. 1957, 107, 124610.1103/PhysRev.107.1246. DOI
Hoekstra B.; Brabers V. Magnetocrystalline anisotropy and inversion degree of manganese-ferrous-ferrites. Solid State Commun. 1975, 17, 249–253. 10.1016/0038-1098(75)90286-0. DOI