Understanding Magnetization Dynamics of a Magnetic Nanoparticle with a Disordered Shell Using Micromagnetic Simulations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
716265
European Research Council - International
CZ.02.1.01/0.0/0.0/16_026/0008382
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32545385
PubMed Central
PMC7353241
DOI
10.3390/nano10061149
PII: nano10061149
Knihovny.cz E-zdroje
- Klíčová slova
- core-shell structure, hysteresis loop, magnetic nanoparticles, magnetization dynamics, micromagnetic simulations, spin disorder,
- Publikační typ
- časopisecké články MeSH
Spin disorder effects influence magnetization dynamics and equilibrium magnetic properties of real nanoparticles (NPs). In this work, we use micromagnetic simulations to try to better understand these effects, in particular, on how the magnetization reversal is projected in the character of the hysteresis loops at different temperatures. In our simulation study, we consider a prototype NP adopting a magnetic core-shell model, with magnetically coherent core and somewhat disordered shell, as it is one of the common spin architectures in real NPs. The size of the core is fixed to 5.5 nm in diameter and the shell thickness ranges from 0.5 nm to 3 nm. As a starting point in the simulations, we used typical experimental values obtained for a cobalt ferrite NP of a comparable size investigated previously. The simulations enabled us to study systematically the macrospin dynamics of the prototype NP and to address the interplay between the magnetic anisotropies of the core and the shell, respectively. We also demonstrate how the computational time step, run time, damping parameter, and thermal field influence the simulation results. In agreement with experimental studies, we observed that the direction and magnitude of the shell anisotropy influences the effective magnetic size of the core in the applied magnetic field. We conclude that micromagnetic simulations, in spite of being designed for much larger scales are a useful toolbox for understanding the magnetization processes within a single domain NP with an ordered spin structure in the core and partially disordered spins in the shell.
Zobrazit více v PubMed
Vangijzegem T., Stanicki D., Laurent S. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opin. Drug Deliv. 2019;16:69–78. doi: 10.1080/17425247.2019.1554647. PubMed DOI
Penn S.G., He L., Natan M.J. Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 2003;7 5:609–615. doi: 10.1016/j.cbpa.2003.08.013. PubMed DOI
Reiss G., Hütten A. Applications beyond data storage. Nat. Mater. 2005;4:725–726. doi: 10.1038/nmat1494. PubMed DOI
Shaterabadi Z., Nabiyouni G., Soleymani M. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Prog. Biophys. Mol. Biol. 2018;133:9–19. doi: 10.1016/j.pbiomolbio.2017.10.001. PubMed DOI
Pankhurst Q.A., Thanh N.T.K., Jones S.K., Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2009;42:224001. doi: 10.1088/0022-3727/42/22/224001. DOI
Cullity B.D., Graham C.D. Introduction to Magnetic Materials. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2008. Domains and the Magnetization Process; pp. 275–333. Chapter 9. DOI
Pacakova B., Kubickova S., Salas G., Mantlikova A.R., Marciello M., Morales M.P., Niznansky D., Vejpravova J. The internal structure of magnetic nanoparticles determines the magnetic response. Nanoscale. 2017;9:5129–5140. doi: 10.1039/C6NR07262C. PubMed DOI
Oberdick S.D., Abdelgawad A., Moya C., Mesbahi-Vasey S., Kepaptsoglou D., Lazarov V.K., Evans R.F.L., Meilak D., Skoropata E., Van Lierop J., et al. Spin canting across core/shell Fe3O4/MnxFe3-xO4 nanoparticles. Sci. Rep. 2018;8:3425. doi: 10.1038/s41598-018-21626-0. PubMed DOI PMC
Krycka K.L., Borchers J.A., Booth R.A., Ijiri Y., Hasz K., Rhyne J.J., Majetich S.A. Origin of Surface Canting within Fe3O4 Nanoparticles. Phys. Rev. Lett. 2014;113:147203. doi: 10.1103/PhysRevLett.113.147203. PubMed DOI
Zákutná D. Ph.D. Thesis. Universität zu Köln; Cologne, Germany: 2019. Orientation Behavior, Size and Surface Effects on the Spin Structure of Magnetic Nanoparticles.
Zákutná D., Nižňanský D., Barnsley L.C., Babcock E., Salhi Z., Feoktystov A., Honecker D., Disch S. Spatially Resolved Disorder Anisotropies in Ferrite Nanoparticles. arXiv. 20191912.04081
Elisabeth T., Philippe P., Pierre J.J., Luis D.J., Marc G.J. Spin Canting in γ-Fe2O3 Nanoparticles. Hyperfine Interact. 1998;112:97–100. doi: 10.1023/A:1011092712136. DOI
Steen M., Erik B., Cathrine F. Spin structures in magnetic nanoparticles. J. Nanomater. 2013;111:720629. doi: 10.1155/2013/720629. DOI
Michael C.J. Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 1971;27:1140–1142. doi: 10.1103/PhysRevLett.27.1140. DOI
Albinali M.E., Zagho M.M., Deng Y., Elzatahry A.A. A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems. Int. J. Nanomed. 2019;14:1707–1723. doi: 10.2147/IJN.S193981. PubMed DOI PMC
Sanna Angotzi M., Musinu A., Mameli V., Ardu A., Cara C., Niznansky D., Xin H.L., Cannas C. Spinel Ferrite Core-Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces. ACS Nano. 2017;11:7889–7900. doi: 10.1021/acsnano.7b02349. PubMed DOI
Hasz K., Ijiri Y., Krycka K.L., Borchers J.A., Booth R.A., Oberdick S., Majetich S.A. Particle moment canting in CoFe2O4 nanoparticles. Phys. Rev. B. 2014;90:180405. doi: 10.1103/PhysRevB.90.180405. DOI
Mikšátko J., Aurélio D., Kovarícek P., Michlová M., Veverka M., Fridrichová M., Matulková I., Žácek M., Kalbác M., Vejpravová J. Thermoreversible magnetic nanochains. Nanoscale. 2019;11:16773–16780. doi: 10.1039/C9NR03531A. PubMed DOI
Peddis D., Cannas C., Musinu A., Ardu A., Orrù F., Fiorani D., Laureti S., Rinaldi D., Muscas G., Concas G., et al. Beyond the Effect of Particle Size: Influence of CoFe2O4 Nanoparticle Arrangements on Magnetic Properties. Chem. Mater. 2013;25:2005–2013. doi: 10.1021/cm303352r. DOI
Vasilakaki M., Ntallis N., Yaacoub N., Muscas G., Peddis D., Trohidou K.N. Optimising the magnetic performance of Co ferrite nanoparticles via organic ligand capping. Nanoscale. 2018;10:21244–21253. doi: 10.1039/C8NR04566F. PubMed DOI
Lee K., Lee S., Ahn B. Understanding High Anisotropic Magnetism by Ultrathin Shell Layer Formation for Magnetically Hard-Soft Core-Shell Nanostructures. Chem. Mater. 2019;31:728–736. doi: 10.1021/acs.chemmater.8b03591. DOI
Lavorato G., Alzamora M., Contreras C., Burlandy G., Litterst F.J., Baggio-Saitovitch E. Internal Structure and Magnetic Properties in Cobalt Ferrite Nanoparticles: Influence of the Synthesis Method. Part. Part. Syst. Charact. 2019;36:1900061. doi: 10.1002/ppsc.201900061. DOI
Bogren S., Fornara A., Ludwig F., del Puerto Morales M., Steinhoff U., Hansen M., Kazakova O., Johansson C. Classification of Magnetic Nanoparticle Systems: Synthesis, Standardization and Analysis Methods in the NanoMag Project. Int. J. Mol. Sci. 2015;16:20308–20325. doi: 10.3390/ijms160920308. PubMed DOI PMC
Wells J., Kazakova O., Posth O., Steinhoff U., Petronis S., Bogart L.K., Southern P., Pankhurst Q., Johansson C. Standardisation of magnetic nanoparticles in liquid suspension. J. Phys. D Appl. Phys. 2017;50:383003. doi: 10.1088/1361-6463/aa7fa5. DOI
Pacakova B., Mantlikova A., Niznansky D., Kubickova S., Vejpravova J. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy. J. Phys. Condens. Matter. 2016;28:206004. doi: 10.1088/0953-8984/28/20/206004. PubMed DOI
Yoon S. Temperature dependence of magnetic anisotropy constant in cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 2012;324:2620–2624. doi: 10.1016/j.jmmm.2012.03.019. DOI
Leliaert J., Mulkers J. Tomorrow’s micromagnetic simulations. J. Appl. Phys. 2019;125:180901. doi: 10.1063/1.5093730. DOI
μMAG Micromagnetic Modeling Activity Group [(accessed on 29 October 2019)]; Available online: https://www.ctcms.nist.gov/rdm/mumag.org.html.
Fidler J., Schrefl T. Micromagnetic modelling—The current state of the art. J. Phys. D Appl. Phys. 2000;33:R135–R156. doi: 10.1088/0022-3727/33/15/201. DOI
Lopez-Diaz L., Aurelio D., Torres L., Martinez E., Hernandez-Lopez M.A., Gomez J., Alejos O., Carpentieri M., Finocchio G., Consolo G. Micromagnetic simulations using Graphics Processing Units. J. Phys. D Appl. Phys. 2012;45:323001. doi: 10.1088/0022-3727/45/32/323001. DOI
Kumar D., Adeyeye A.O. Techniques in micromagnetic simulation and analysis. J. Phys. D Appl. Phys. 2017;50:343001. doi: 10.1088/1361-6463/aa7c04. DOI
Joshi V.K. Spintronics: A contemporary review of emerging electronics devices. Eng. Sci. Technol. Int. J. 2016;19:1503–1513. doi: 10.1016/j.jestch.2016.05.002. DOI
Li F., Lu J., Yang Y., Lu X., Tang R., Sun Z.Z. Micromagnetic simulation of two-body magnetic nanoparticles. J. Phys. Conf. Ser. 2017;827:012004. doi: 10.1088/1742-6596/827/1/012004. DOI
Crespo R., Elbaile L., Carrizo J., García J. Optimizing the sensitivity of a GMR sensor for superparamagnetic nanoparticles detection: Micromagnetic simulation. J. Magn. Magn. Mater. 2018;446:37–43. doi: 10.1016/j.jmmm.2017.08.066. DOI
Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Van Waeyenberge B. The design and verification of MuMax3. AIP Adv. 2014;4:107133. doi: 10.1063/1.4899186. DOI
Bertotti G. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. Elsevier Science; San Diego, CA, USA: 1998. (Academic Press Series in Electromagnetism).
Brown W.F. Thermal Fluctuations of a Single-Domain Particle. J. Appl. Phys. 1963;34:1319–1320. doi: 10.1063/1.1729489. DOI
Muscas G., Cobianchi M., Lascialfari A., Cannas C., Musinu A., Omelyanchik A., Rodionova V., Fiorani D., Mameli V., Peddis D. Magnetic Interactions Versus Magnetic Anisotropy in Spinel Ferrite Nanoparticles. IEEE Magn. Lett. 2019;10:1–5. doi: 10.1109/LMAG.2019.2956908. DOI