Thermal Traits of MNPs under High-Frequency Magnetic Fields: Disentangling the Effect of Size and Coating
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_013/0001821
Ministry of Education, Youth and Sports of the Czech Republic
716265
European Research Council - International
LM2018096
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33808938
PubMed Central
PMC8003606
DOI
10.3390/nano11030797
PII: nano11030797
Knihovny.cz E-resources
- Keywords
- effective magnetic anisotropy, magnetic fluid hyperthermia, magnetic nanoparticles, specific power absorption, squid magnetometry, surface coating,
- Publication type
- Journal Article MeSH
We investigated the heating abilities of magnetic nanoparticles (MNPs) in a high-frequency magnetic field (MF) as a function of surface coating and size. The cobalt ferrite MNPs were obtained by a hydrothermal method in a water-oleic acid-ethanol system, yielding MNPs with mean diameter of about 5 nm, functionalized with the oleic acid. By applying another cycle of hydrothermal synthesis, we obtained MNPs with about one nm larger diameter. In the next step, the oleic acid was exchanged for 11-maleimidoundecanoic acid or 11-(furfurylureido)undecanoic acid. For the heating experiments, all samples were dispersed in the same solvent (dichloroethane) in the same concentration and the heating performance was studied in a broad interval of MF frequencies (346-782 kHz). The obtained results enabled us to disentangle the impact of the hydrodynamic, structural, and magnetic parameters on the overall heating capabilities. We also demonstrated that the specific power absorption does not show a monotonous trend within the series in the investigated interval of temperatures, pointing to temperature-dependent competition of the Brownian and Néel contributions in heat release.
See more in PubMed
Gloag L., Mehdipour M., Chen D., Tilley R.D., Gooding J.J. Advances in the Application of Magnetic Nanoparticles for Sensing. Adv. Mater. 2019;31:1904385. doi: 10.1002/adma.201904385. PubMed DOI
Jamal M., Hasan M., Mathewson A., Razeeb K.M. Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate. Biosens. Bioelectron. 2013;40:213–218. doi: 10.1016/j.bios.2012.07.024. PubMed DOI
Sun B., Horvat J., Kim H.S., Kim W.S., Ahn J., Wang G. Synthesis of Mesoporous α-Fe2O3 Nanostructures for Highly Sensitive Gas Sensors and High Capacity Anode Materials in Lithium Ion Batteries. J. Phys. Chem. C. 2010;114:18753–18761. doi: 10.1021/jp102286e. DOI
Arruebo M., Fernández-Pacheco R., Ibarra M.R., Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2:22–32. doi: 10.1016/S1748-0132(07)70084-1. DOI
Gao W., Wang J. Synthetic micro/nanomotors in drug delivery. Nanoscale. 2014;6:10486–10494. doi: 10.1039/C4NR03124E. PubMed DOI
McCarthy J.R., Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Inorganic Nanoparticles in Drug Delivery. Adv. Drug Deliv. Rev. 2008;60:1241–1251. doi: 10.1016/j.addr.2008.03.014. PubMed DOI PMC
Obaidat I., Issa B., Haik Y. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Nanomaterials. 2015;5:63–89. doi: 10.3390/nano5010063. PubMed DOI PMC
Mamiya H., Jeyadevan B. Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields. Sci. Rep. 2011;1:157. doi: 10.1038/srep00157. PubMed DOI PMC
Alonso J., Khurshid H., Sankar V., Nemati Z., Phan M.H., Garayo E., García J.A., Srikanth H. FeCo nanowires with enhanced heating powers and controllable dimensions for magnetic hyperthermia. J. Appl. Phys. 2015;117:17D113. doi: 10.1063/1.4908300. DOI
Usov N.A., Nesmeyanov M.S., Tarasov V.P. Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia. Sci. Rep. 2018;8:1224. doi: 10.1038/s41598-017-18162-8. PubMed DOI PMC
Ng E.Y.K., Kumar S.D. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: A review. BioMed. Eng. OnLine. 2017;16:36. doi: 10.1186/s12938-017-0327-x. PubMed DOI PMC
Deatsch A.E., Evans B.A. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 2014;354:163–172. doi: 10.1016/j.jmmm.2013.11.006. DOI
Etemadi H., Plieger P.G. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Adv. Ther. 2020;3:2000061. doi: 10.1002/adtp.202000061. DOI
Tong S., Zhu H., Bao G. Magnetic iron oxide nanoparticles for disease detection and therapy. Mater. Today. 2019;31:86–99. doi: 10.1016/j.mattod.2019.06.003. PubMed DOI PMC
Conde-Leboran I., Baldomir D., Martinez-Boubeta C., Chubykalo-Fesenko O., del Puerto Morales M., Salas G., Cabrera D., Camarero J., Teran F.J., Serantes D. A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles. J. Phys. Chem. C. 2015;119:15698–15706. doi: 10.1021/acs.jpcc.5b02555. DOI
Mehdaoui B., Meffre A., Carrey J., Lachaize S., Lacroix L.M., Gougeon M., Chaudret B., Respaud M. Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study. Adv. Funct. Mater. 2011;21:4573–4581. doi: 10.1002/adfm.201101243. DOI
Abenojar E.C., Wickramasinghe S., Bas-Concepcion J., Samia A.C.S. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Special Issue for Nano Materials. Prog. Nat. Sci. Mater. Int. 2016;26:440–448. doi: 10.1016/j.pnsc.2016.09.004. DOI
Kafrouni L., Savadogo O. Recent progress on magnetic nanoparticles for magnetic hyperthermia. Prog. Biomater. 2016;5:147–160. doi: 10.1007/s40204-016-0054-6. PubMed DOI PMC
Mohapatra J., Xing M., Liu J.P. Inductive Thermal Effect of Ferrite Magnetic Nanoparticles. Materials. 2019;12:3208. doi: 10.3390/ma12193208. PubMed DOI PMC
Aurélio D., Vejpravova J. Understanding Magnetization Dynamics of a Magnetic Nanoparticle with a Disordered Shell Using Micromagnetic Simulations. Nanomaterials. 2020;10:1149. doi: 10.3390/nano10061149. PubMed DOI PMC
Pacakova B., Kubickova S., Salas G., Mantlikova A.R., Marciello M., Morales M.P., Niznansky D., Vejpravova J. The internal structure of magnetic nanoparticles determines the magnetic response. Nanoscale. 2017;9:5129–5140. doi: 10.1039/C6NR07262C. PubMed DOI
Serantes D., Simeonidis K., Angelakeris M., Chubykalo-Fesenko O., Marciello M., Morales M.D.P., Baldomir D., Martinez-Boubeta C. Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. J. Phys. Chem. C. 2014;118:5927–5934. doi: 10.1021/jp410717m. DOI
Ranoo S., Lahiri B.B., Muthukumaran T., Philip J. Enhancement in hyperthermia efficiency under in situ orientation of superparamagnetic iron oxide nanoparticles in dispersions. Appl. Phys. Lett. 2019;115:043102. doi: 10.1063/1.5100077. DOI
De la Presa P., Luengo Y., Multigner M., Costo R., Morales M.P., Rivero G., Hernando A. Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles. J. Phys. Chem. C. 2012;116:25602–25610. doi: 10.1021/jp310771p. DOI
Liu X.L., Fan H.M., Yi J.B., Yang Y., Choo E.S.G., Xue J.M., Fan D.D., Ding J. Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J. Mater. Chem. 2012;22:8235–8244. doi: 10.1039/c2jm30472d. DOI
Cobianchi M., Lascialfari A., Kusigerki V., Mrakovic A., Knezevic N., Peddis D., Illes E. Effects of organic coating on hyperthermic efficiencies; Proceedings of the 2017 IEEE International Magnetics Conference (INTERMAG); Dublin, Ireland. 24–28 April 2017; DOI
Mikšátko J., Aurélio D., Kovaříček P., Michlová M., Veverka M., Fridrichová M., Matulková I., Žáček M., Kalbáč M., Vejpravová J. Thermoreversible magnetic nanochains. Nanoscale. 2019;11:16773–16780. doi: 10.1039/C9NR03531A. PubMed DOI
Torati S.R., Reddy V., Yoon S.S., Kim C. Protein immobilization onto electrochemically synthesized CoFe nanowires. Int. J. Nanomed. 2015;10:645–651. PubMed PMC
Ruiz A., Alpízar A., Beola L., Rubio C., Gavilán H., Marciello M., Rodríguez-Ramiro I., Ciordia S., Morris C.J., Morales M.D.P., et al. Understanding the Influence of a Bifunctional Polyethylene Glycol Derivative in Protein Corona Formation around Iron Oxide Nanoparticles. Materials. 2019;12:2218. doi: 10.3390/ma12142218. PubMed DOI PMC
Vandenberghe R., Vanleerberghe R., De Grave E., Robbrecht G. Preparation and magnetic properties of ultra-fine cobalt ferrites. J. Magn. Magn. Mater. 1980;15–18:1117–1118. doi: 10.1016/0304-8853(80)90910-5. DOI
Kim Y.I., Kim D., Lee C.S. Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B Condens. Matter. 2003;337:42–51. doi: 10.1016/S0921-4526(03)00322-3. DOI
Carp O., Patron L., Reller A. Coordination compounds containing urea as precursors for oxides—A new route of obtaining nanosized CoFe2O4. Mater. Chem. Phys. 2007;101:142–147. doi: 10.1016/j.matchemphys.2006.03.002. DOI
Maaz K., Mumtaz A., Hasanain S., Ceylan A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 2007;308:289–295. doi: 10.1016/j.jmmm.2006.06.003. DOI
Haneda K., Morrish A.H. Noncollinear magnetic structure of CoFe2O4 small particles. J. Appl. Phys. 1988;63:4258–4260. doi: 10.1063/1.340197. DOI
Salunkhe A., Khot V., Thorat N., Phadatare M., Sathish C., Dhawale D., Pawar S. Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Appl. Surf. Sci. 2013;264:598–604. doi: 10.1016/j.apsusc.2012.10.073. DOI
Baldi G., Bonacchi D., Franchini M.C., Gentili D., Lorenzi G., Ricci A., Ravagli C. Synthesis and Coating of Cobalt Ferrite Nanoparticles: A First Step toward the Obtainment of New Magnetic Nanocarriers. Langmuir. 2007;23:4026–4028. doi: 10.1021/la063255k. PubMed DOI
Repko A., Nižnanský D., Poltierová-Vejpravová J. A study of oleic acid-based hydrothermal preparation of CoFe2O4 nanoparticles. J. Nanoparticle Res. 2011;13:5021. doi: 10.1007/s11051-011-0483-z. DOI
Sanna Angotzi M., Musinu A., Mameli V., Ardu A., Cara C., Niznansky D., Xin H.L., Cannas C. Spinel Ferrite CoreShell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces. ACS Nano. 2017;11:7889–7900. doi: 10.1021/acsnano.7b02349. PubMed DOI
van Rijssel J., Kuipers B.W., Erné B.H. Non-regularized inversion method from light scattering applied to ferrofluid magnetization curves for magnetic size distribution analysis. J. Magn. Magn. Mater. 2014;353:110–115. doi: 10.1016/j.jmmm.2013.10.025. DOI
nanoScale Biomagnetics Official Webpage. [(accessed on 19 February 2021)]; Available online: https://www.nbnanoscale.com/
Shaterabadi Z., Nabiyouni G., Soleymani M. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Prog. Biophys. Mol. Biol. 2018;133:9–19. doi: 10.1016/j.pbiomolbio.2017.10.001. PubMed DOI
Kallumadil M., Tada M., Nakagawa T., Abe M., Southern P., Pankhurst Q.A. Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 2009;321:1509–1513. doi: 10.1016/j.jmmm.2009.02.075. DOI
Bruvera I.J., Mendoza Zélis P., Pilar Calatayud M., Goya G.F., Sánchez F.H. Determination of the blocking temperature of magnetic nanoparticles: The good, the bad, and the ugly. J. Appl. Phys. 2015;118:184304. doi: 10.1063/1.4935484. DOI
Pacakova B., Mantlikova A., Niznansky D., Kubickova S., Vejpravova J. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy. J. Physics: Condens. Matter. 2016;28:206004. doi: 10.1088/0953-8984/28/20/206004. PubMed DOI
Lanier O.L., Korotych O.I., Monsalve A.G., Wable D., Savliwala S., Grooms N.W.F., Nacea C., Tuitt O.R., Dobson J. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Int. J. Hyperth. 2019;36:686–700. doi: 10.1080/02656736.2019.1628313. PubMed DOI