Effects of human depopulation and warming climate on bird populations in Japan
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
17K15057
Japan Society for the Promotion of Science
21K05631
Japan Society for the Promotion of Science
23-07103S
Grantová Agentura České Republiky
2-2302
Environmental Restoration and Conservation Agency
PubMed
37650391
DOI
10.1111/cobi.14175
Knihovny.cz E-zdroje
- Klíčová slova
- Satoyama, TRIM, bird conservation, conservación de aves, forest maturation, habitat heterogeneity, heterogeneidad de hábitat, indicadores multiespecie, madurez forestal, multispecies indicators, population trends, tendencia poblacional,
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- lesy MeSH
- lidé MeSH
- ptáci MeSH
- zachování přírodních zdrojů * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Japonsko MeSH
Quantifying biodiversity trends in economically developed countries, where depopulation, associated secondary succession, and climate warming are ongoing, provides insights for global biodiversity conservation in the 21st century. However, few studies have assessed the impacts of secondary succession and climate warming on species' population trends at a national scale. We estimated the population trends of common breeding bird species in Japan and examined the associations between the overall population trend and species traits with the nationwide bird count data on 47 species collected from 2009 to 2020. The overall population trend varied among species. Four species populations increased moderately, 18 were stable, and 11 declined moderately. Population trends for 13 species were uncertain. The difference in overall trends among the species was associated with their habitat group and temperature niche. Species with relatively low-temperature niches experienced more pronounced declines. Multispecies indicators showed a moderate increase in forest specialists and moderate declines in forest generalists (species that use both forests and open habitats) and open-habitat specialists. Forest generalists and open-habitat specialists also declined more rapidly at sites with more abandoned farmland. All species groups showed an accelerated decline or decelerated increase after 2015. These results suggest that common breeding birds in Japan are facing deteriorating trends as a result of nationwide changes in land use and climate. Future land-use planning and policies should consider the benefits of passive rewilding for forest specialists and active restoration measures (e.g., low-intensive forestry and agriculture) for nonforest specialists to effectively conserve biodiversity in the era of human depopulation and climate warming.
Efectos de la despoblación humana y el calentamiento climático sobre las poblaciones de aves en Japón Resumen La cuantificación de las tendencias poblacionales en los países económicamente desarrollados, en donde la despoblación (asociada a la sucesión secundaria) y el cambio climático son continuos, proporciona información para la conservación mundial de la biodiversidad en el siglo XXI. Sin embargo, pocos estudios han evaluado el impacto de la sucesión secundaria y el calentamiento climático sobre las tendencias poblacionales a escala nacional. Usamos un conteo nacional de aves de 47 especies recolectado entre 2009 y 2020 para estimar las tendencias poblacionales de especies de aves en Japón y examinamos las asociaciones entre la tendencia poblacional general y las características de la especie. La tendencia poblacional general varió entre especies. Las poblaciones de cuatro especies incrementaron con moderación, 18 permanecieron estables y once declinaron con moderación. Las tendencias poblacionales para 13 especies no fueron claras. La diferencia entre las tendencias generales de las especies estuvo asociada con su grupo de hábitat y el nicho térmico. Las especies con un nicho térmico relativamente bajo experimentaron una declinación más pronunciada. Los indicadores multiespecie mostraron un incremento moderado en las especialistas de bosque y una declinación moderada en las generalistas de bosque (especies que usan los bosques y hábitats abiertos) y las especialistas de hábitat abierto. Las generalistas de bosque y las especialistas de hábitat abierto también declinaron con mayor rapidez en los sitios con más suelo agrícola abandonado. Todos los grupos de especies mostraron una declinación acelerada o un incremento desacelerado después de 2015. Estos resultados sugieren que las aves reproductoras comunes en Japón están sufriendo tendencias declinantes como resultado de los cambios en el uso de suelo y el clima a nivel nacional. Las políticas y planeaciones de uso de suelo deben considerar a futuro los beneficios de la recuperación pasiva para las especialistas de bosque y las medidas activas de restauración (como la silvicultura y agricultura de baja intensidad) para las especialistas que no son de bosque y así conservar de manera efectiva la biodiversidad en la era de despoblación humana y calentamiento climático.
Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
Institute of Biological Sciences University of Zielona Góra Zielona Góra Poland
Japan Bird Research Association Tokyo Japan
School of Biological Sciences The University of Queensland Brisbane Queensland Australia
Zobrazit více v PubMed
Amano, T., Székely, T., Koyama, K., Amano, H., & Sutherland, W. J. (2010). A framework for monitoring the status of populations: An example from wader populations in the East Asian–Australasian flyway. Biological Conservation, 143, 2238–2247. https://doi.org/10.1016/j.biocon.2010.06.010
Amano, T., & Yamaura, Y. (2007). Ecological and life‐history traits related to range contractions among breeding birds in Japan. Biological Conservation, 137, 271–282. https://doi.org/10.1016/j.biocon.2007.02.010
Arroyo‐Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F. P. L., Morante‐Filho, J. C., Santos, B. A., Arasa‐Gisbert, R., Arce‐Peña, N., Cervantes‐López, M. J., Cudney‐Valenzuela, S., Galán‐Acedo, C., San‐José, M., Vieira, I. C. G., … Tscharntke, T. (2020). Designing optimal human‐modified landscapes for forest biodiversity conservation. Ecology Letters, 23, 1404–1420. https://doi.org/10.1111/ele.13535
Atkinson, J., Brudvig, L. A., Mallen‐Cooper, M., Nakagawa, S., Moles, A. T., & Bonser, S. P. (2022). Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: A global meta‐analysis. Ecology Letters, 25, 1725–1737. https://doi.org/10.1111/ele.14025
Baek, S., Yoon, H., & Hahm, Y. (2022). Assessment of spatial interactions in farmland abandonment: A case study of Gwangyang City, Jeollanam‐do Province, South Korea. Habitat International, 129, 102670. https://doi.org/10.1016/j.habitatint.2022.102670
Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: Is habitat heterogeneity the key? Trends in Ecology & Evolution, 18, 182–188.
Biodiversity Center of Japan. (2019). Summary report of SATOYAMA survey in the Monitoring Sites 1000 program in FY2013–2017. Available from https://www.nacsj.or.jp/official/wp‐content/uploads/2021/09/moni1000sato2005_2017_re.pdf
Biodiversity Center of Japan. (2022a). Monitoring sites 1000. Available from https://www.biodic.go.jp/moni1000/index.html
Biodiversity Center of Japan. (2022b). Project to promote monitoring of key ecosystem monitoring areas (Terrestrial bird survey). Survey report in FY2021. Available from https://www.biodic.go.jp/moni1000/findings/reports/pdf/2021_terrestrialbird.pdf
Bogaart, P., van der Loo, M., & Pannekoek, J. (2020). rtrim: Trends and indices for monitoring data. R package version 2.1.1. Available from https://CRAN.R‐project.org/package=rtrim
Bowler, D., Richter, R. L., Eskildsen, D., Kamp, J., Moshøj, C. M., Reif, J., Strebel, N., Trautmann, S., & Voříšek, P. (2021). Geographic variation in the population trends of common breeding birds across central Europe. Basic and Applied Ecology, 56, 72–84. https://doi.org/10.1016/j.baae.2021.07.004
Bowler, D. E., Heldbjerg, H., Fox, A. D., de Jong, M., & Böhning‐Gaese, K. (2019). Long‐term declines of European insectivorous bird populations and potential causes. Conservation Biology, 33, 1120–1130. https://doi.org/10.1111/cobi.13307
Broughton, R. K., Bullock, J. M., George, C., Hill, R. A., Hinsley, S. A., Maziarz, M., Melin, M., Mountford, J. O., Sparks, T. H., & Pywell, R. F. (2021). Long‐term woodland restoration on lowland farmland through passive rewilding. PLoS ONE, 16, e0252466. https://doi.org/10.1371/journal.pone.0252466
Burns, F., Eaton, M. A., Burfield, I. J., Klvaňová, A., Šilarová, E., Staneva, A., & Gregory, R. D. (2021). Abundance decline in the avifauna of the European Union reveals cross‐continental similarities in biodiversity change. Ecology and Evolution, 11, 16647–16660. https://doi.org/10.1002/ece3.8282
Castaño‐Villa, G. J., Estevez, J. V., Guevara, G., Bohada‐Murillo, M., & Fontúrbel, F. E. (2019). Differential effects of forestry plantations on bird diversity: A global assessment. Forest Ecology and Management, 440, 202–207. https://doi.org/10.1016/j.foreco.2019.03.025
Ceaușu, S., Hofmann, M., Navarro, L. M., Carver, S., Verburg, P. H., & Pereira, H. M. (2015). Mapping opportunities and challenges for rewilding in Europe. Conservation Biology, 29, 1017–1027. https://doi.org/10.1111/cobi.12533
Chan, S. (2015). Report on the Development of the East Asian Bird Monitoring Scheme. Meeting Documents UNEP/CMS/AEMLWG‐2/Doc.5b, Convention on the Conservation of Migratory Species of Wild Animals. Available from https://www.cms.int/en/document/report‐development‐east‐asian‐bird‐monitoring‐scheme
Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and the Environment, 9, 222–228. https://doi.org/10.1890/080216
Copland, A. S., Crowe, O., Wilson, M. W., & O'Halloran, J. (2012). Habitat associations of Eurasian Skylarks Alauda arvensis breeding on Irish farmland and implications for agri‐environment planning. Bird Study, 59, 155–165. https://doi.org/10.1080/00063657.2011.652593
Cornford, R., Spooner, F., McRae, L., Purvis, A., & Freeman, R. (2023). Ongoing over‐exploitation and delayed responses to environmental change highlight the urgency for action to promote vertebrate recoveries by 2030. Proceedings of the Royal Society B: Biological Sciences, 290, 20230464. https://doi.org/10.1098/rspb.2023.0464
Crawford, C. L., Yin, H., Radeloff, V. C., & Wilcove, D. S. (2022). Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Science Advances, 8, eabm8999. https://doi.org/10.1126/sciadv.abm8999
Cunningham, S. C., Mac Nally, R., Baker, P. J., Cavagnaro, T. R., Beringer, J., Thomson, J. R., & Thompson, R. M. (2015). Balancing the environmental benefits of reforestation in agricultural regions. Perspectives in Plant Ecology, Evolution and Systematics, 17, 301–317. https://doi.org/10.1016/j.ppees.2015.06.001
Daskalova, G. N., Myers‐Smith, I. H., Bjorkman, A. D., Blowes, S. A., Supp, S. R., Magurran, A. E., & Dornelas, M. (2020). Landscape‐scale forest loss as a catalyst of population and biodiversity change. Science, 368, 1341–1347. https://doi.org/10.1126/science.aba1289
Daskalova, G. N., & Kamp, J. (2023). Abandoning land transforms biodiversity. Science, 380, 581–583. https://doi.org/10.1126/science.adf1099
Deguchi, S., Katayama, N., Tomioka, Y., & Miguchi, H. (2020). Ponds support higher bird diversity than rice paddies in a hilly agricultural area in Japan. Biodiversity and Conservation, 29, 3265–3285. https://doi.org/10.1007/s10531‐020‐02023‐4
Díaz, S., Zafra‐Calvo, N., Purvis, A., Verburg, P. H., Obura, D., Leadley, P., Chaplin‐Kramer, R., De Meester, L., Dulloo, E., Martín‐López, B., Shaw, M. R., Visconti, P., Broadgate, W., Bruford, M. W., Burgess, N. D., Cavender‐Bares, J., DeClerck, F., Fernández‐Palacios, J. M., Garibaldi, L. A., & Zanne, A. E. (2020). Set ambitious goals for biodiversity and sustainability. Science, 370, 411–413. https://doi.org/10.1126/science.abe1530
Fahrig, L., Arroyo‐Rodríguez, V., Bennett, J. R., Boucher‐Lalonde, V., Cazetta, E., Currie, D. J., Eigenbrod, F., Ford, A. T., Harrison, S. P., Jaeger, J. A. G., Koper, N., Martin, A. E., Martin, J.‐L., Metzger, J. P., Morrison, P., Rhodes, J. R., Saunders, D. A., Simberloff, D., Smith, A. C., … Watling, J. I. (2019). Is habitat fragmentation bad for biodiversity? Biological Conservation, 230, 179–186. https://doi.org/10.1016/j.biocon.2018.12.026
Fayet, C. M. J., Reilly, K. H., Van Ham, C., & Verburg, P. H. (2022). What is the future of abandoned agricultural lands? A systematic review of alternative trajectories in Europe. Land Use Policy, 112, 105833. https://doi.org/10.1016/j.landusepol.2021.105833
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud‐Bovy, G., Ellison, S., & Monette, G. (2012). Package ‘car’. Vienna: R Foundation for Statistical Computing.
Gordo, O., & Doi, H. (2012). Drivers of population variability in phenological responses to climate change in Japanese birds. Climate Research, 54, 95–112. https://doi.org/10.3354/cr01099
Gregory, R. D., Skorpilova, J., Vorisek, P., & Butler, S. (2019). An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecological Indicators, 103, 676–687. https://doi.org/10.1016/j.ecolind.2019.04.064
Gregory, R. D., Willis, S. G., Jiguet, F., Voříšek, P., Klvaňová, A., van Strien, A., Huntley, B., Collingham, Y. C., Couvet, D., & Green, R. E. (2009). An indicator of the impact of climatic change on European bird populations. PLoS ONE, 4, e4678. https://doi.org/10.1371/journal.pone.0004678
Herrando, S., Anton, M., Sardà‐Palomera, F., Bota, G., Gregory, R. D., & Brotons, L. (2014). Indicators of the impact of land use changes using large‐scale bird surveys: Land abandonment in a Mediterranean region. Ecological Indicators, 45, 235–244. https://doi.org/10.1016/j.ecolind.2014.04.011
Herrando, S., Brotons, L., Anton, M., Páramo, F., Villero, D., Titeux, N., Quesada, J., & Stefanescu, C. (2016). Assessing impacts of land abandonment on Mediterranean biodiversity using indicators based on bird and butterfly monitoring data. Environmental Conservation, 43, 69–78. https://doi.org/10.1017/S0376892915000260
Higuchi, H., & Morishita, E. (1999). Population declines of tropical migratory birds in Japan. Actinia, 12, 51–59.
Hori, K., Saito, O., Hashimoto, S., Matsui, T., Akter, R., & Takeuchi, K. (2021). Projecting population distribution under depopulation conditions in Japan: Scenario analysis for future socio‐ecological systems. Sustainability Science, 16, 295–311. https://doi.org/10.1007/s11625‐020‐00835‐5
Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., Scheibe, S., & Hothorn, M. T. (2016). Package ‘multcomp.’ Simultaneous inference in general parametric models. Project for Statistical Computing.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., … Zhang, X. (2020). Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 13, 5425–5464. https://doi.org/10.5194/gmd‐13‐5425‐2020
Husby, M., Hoset, K. S., & Butler, S. (2021). Non‐random sampling along rural–urban gradients may reduce reliability of multi‐species farmland bird indicators and their trends. Ibis, 163, 579–592. https://doi.org/10.1111/ibi.12896
Inger, R., Gregory, R., Duffy, J. P., Stott, I., Voříšek, P., & Gaston, K. J. (2015). Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecology Letters, 18, 28–36. https://doi.org/10.1111/ele.12387
Isbell, F., Tilman, D., Reich, P. B., & Clark, A. T. (2019). Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nature Ecology & Evolution, 3, 1533–1538.
Jiao, Y., Ding, Y., Zha, Z., & Okuro, T. (2019). Crises of biodiversity and ecosystem services in Satoyama landscape of Japan: A review on the role of management. Sustainability, 11, 454. https://doi.org/10.3390/su11020454
Kadoya, T., & Washitani, I. (2011). The Satoyama Index: A biodiversity indicator for agricultural landscapes. Agriculture, Ecosystems & Environment, 140, 20–26.
Kaji, K., Saitoh, T., Uno, H., Matsuda, H., & Yamamura, K. (2010). Adaptive management of sika deer populations in Hokkaido, Japan: Theory and practice. Population Ecology, 52, 373–387. https://doi.org/10.1007/s10144‐010‐0219‐4
Kamp, J., Oppel, S., Ananin, A. A., Durnev, Y. A., Gashev, S. N., Hölzel, N., Mishchenko, A. L., Pessa, J., Smirenski, S. M., Strelnikov, E. G., Timonen, S., Wolanska, K., & Chan, S. (2015). Global population collapse in a superabundant migratory bird and illegal trapping in China. Conservation Biology, 29, 1684–1694. https://doi.org/10.1111/cobi.12537
Katayama, N., Amano, T., Naoe, S., Yamakita, T., Komatsu, I., Takagawa, S., Sato, N., Ueta, M., & Miyashita, T. (2014). Landscape heterogeneity–biodiversity relationship: Effect of range size. PLoS ONE, 9, e93359. https://doi.org/10.1371/journal.pone.0093359
Katayama, N., Mashiko, M., Koshida, C., & Yamaura, Y. (2021). Effects of rice‐field abandonment rates on bird communities in mixed farmland–woodland landscapes in Japan. Agriculture, Ecosystems & Environment, 319, 107539.
Katayama, N., Osada, Y., Mashiko, M., Baba, Y. G., Tanaka, K., Kusumoto, Y., Okubo, S., Ikeda, H., & Natuhara, Y. (2019). Organic farming and associated management practices benefit multiple wildlife taxa: A large‐scale field study in rice paddy landscapes. Journal of Applied Ecology, 56, 1970–1981. https://doi.org/10.1111/1365‐2664.13446
Katoh, K., Sakai, S., & Takahashi, T. (2009). Factors maintaining species diversity in satoyama, a traditional agricultural landscape of Japan. Biological Conservation, 142, 1930–1936. https://doi.org/10.1016/j.biocon.2009.02.030
Kawamura, K., Yamaura, Y., Senzaki, M., Ueta, M., & Nakamura, F. (2019). Seasonality in spatial distribution: Climate and land use have contrasting effects on the species richness of breeding and wintering birds. Ecology and Evolution, 9, 7549–7561. https://doi.org/10.1002/ece3.5286
Kawamura, K., Yamaura, Y., Soga, M., Spake, R., & Nakamura, F. (2021). Effects of planted tree species on biodiversity of conifer plantations in Japan: A systematic review and meta‐analysis. Journal of Forest Research, 26, 237–246. https://doi.org/10.1080/13416979.2021.1891625
Khadka, B. B., & Lamichhane, S. (2021). Waterfowl population trends in the major rivers of Chitwan national park, Nepal. Waterbirds, 44, 192–199. https://doi.org/10.1675/063.044.0206
Kim, H., Mo, Y., Choi, C.‐Y., McComb, B. C., & Betts, M. G. (2021). Declines in common and migratory breeding landbird species in South Korea over the past two decades. Frontiers in Ecology and Evolution, 9, 627765. https://doi.org/10.3389/fevo.2021.627765
Kitazawa, M., Yamaura, Y., Senzaki, M., Kawamura, K., Hanioka, M., & Nakamura, F. (2019). An evaluation of five agricultural habitat types for openland birds: Abandoned farmland can have comparative values to undisturbed wetland. Ornithological Science, 18, 3–16. https://doi.org/10.2326/osj.18.3
Kormann, U. G., Hadley, A. S., Tscharntke, T., Betts, M. G., Robinson, W. D., & Scherber, C. (2018). Primary rainforest amount at the landscape scale mitigates bird biodiversity loss and biotic homogenization. Journal of Applied Ecology, 55, 1288–1298. https://doi.org/10.1111/1365‐2664.13084
Koshida, C., & Katayama, N. (2018). Meta‐analysis of the effects of rice‐field abandonment on biodiversity in Japan. Conservation Biology, 32, 1392–1402. https://doi.org/10.1111/cobi.13156
Krebs, C. J. (1991). The experimental paradigm and long‐term population studies. Ibis, 133, 3–8. https://doi.org/10.1111/j.1474‐919X.1991.tb07663.x
Leclère, D., Obersteiner, M., Barrett, M., Butchart, S. H. M., Chaudhary, A., De Palma, A., DeClerck, F. A. J., Di Marco, M., Doelman, J. C., Dürauer, M., Freeman, R., Harfoot, M., Hasegawa, T., Hellweg, S., Hilbers, J. P., Hill, S. L. L., Humpenöder, F., Jennings, N., Krisztin, T., … Young, L. (2020). Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 585, 551–556. https://doi.org/10.1038/s41586‐020‐2705‐y
Lehikoinen, A., Brotons, L., Calladine, J., Campedelli, T., Escandell, V., Flousek, J., Grueneberg, C., Haas, F., Harris, S., Herrando, S., Husby, M., Jiguet, F., Kålås, J. A., Lindström, Å., Lorrillière, R., Molina, B., Pladevall, C., Calvi, G., Sattler, T., … Trautmann Lehikoinen, S. (2019). Declining population trends of European mountain birds. Global Change Biology, 25, 577–588. https://doi.org/10.1111/gcb.14522
Li, S., & Li, X. (2017). Global understanding of farmland abandonment: A review and prospects. Journal of Geographical Sciences, 27, 1123–1150. https://doi.org/10.1007/s11442‐017‐1426‐0
Lin, D.‐L., Maron, M., Amano, T., Chang, A.‐Y., & Fuller, R. A. (2023). Using empirical data analysis and expert opinion to identify farmland‐associated bird species from their habitat associations. Ibis, 165, 974–985. https://onlinelibrary.wiley.com/doi/abs/10.1111/ibi.13179
Lin, D.‐L., & Pursner, S. (2020). State of Taiwan's birds. Taiwan: Endemic Species Research Institute.
Lüdecke, D. (2018). ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software, 3, 772. https://doi.org/10.21105/joss.00772
Ministry of Agriculture, Forestry and Fisheries. (2022a). Status of agricultural production infrastructure (Nogyo seibi kiban no seibi joukyou ni tsuite). Available from https://www.maff.go.jp/j/nousin/sekkei/totikai/attach/pdf/index‐44.pdf
Ministry of Agriculture, Forestry and Fisheries. (2022b). Changes in the area of forest damage by major wild birds and animals (shuyo na yasei‐choju ni yoru shinrin higai menseki no suii). Available from https://www.rinya.maff.go.jp/j/hogo/higai/attach/pdf/tyouju‐92.pdf
Nagai, T., Yachi, S., & Inao, K. (2022). Temporal and regional variability of cumulative ecological risks of pesticides in Japanese river waters for 1990–2010. Journal of Pesticide Science, 47, 22–29. https://doi.org/10.1584/jpestics.D21‐054
Nakamura, F., Inahara, S., & Kaneko, M. (2005). A hierarchical approach to ecosystem assessment of restoration planning at regional, catchment and local scales in Japan. Landscape and Ecological Engineering, 1, 43–52. https://doi.org/10.1007/s11355‐005‐0004‐2
Ogawa‐Onishi, Y., & Berry, P. M. (2013). Ecological impacts of climate change in Japan: The importance of integrating local and international publications. Biological Conservation, 157, 361–371. https://doi.org/10.1016/j.biocon.2012.06.024
Ohashi, H., Fukasawa, K., Ariga, T., Matsui, T., & Hijioka, Y. (2019). High‐resolution national land use scenarios under a shrinking population in Japan. Transactions in GIS, 23, 786–804. https://doi.org/10.1111/tgis.12525
Otero, I., Marull, J., Tello, E., Diana, G. L., Pons, M., Coll, F., & Boada, M. (2015). Land abandonment, landscape, and biodiversity: Questioning the restorative character of the forest transition in the Mediterranean. Ecology and Society, 20, 7. https://doi.org/10.5751/ES‐07378‐200207
Pagel, M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology, 48, 612–622. https://doi.org/10.1080/106351599260184
Pannekoek, J., & van Strien, A. (2005). TRIM 3 manual (Trends & indices for monitoring data). Netherlands: Statistics.
Paul, K. I., Cunningham, S. C., England, J. R., Roxburgh, S. H., Preece, N. D., Lewis, T., Brooksbank, K., Crawford, D. F., & Polglase, P. J. (2016). Managing reforestation to sequester carbon, increase biodiversity potential and minimize loss of agricultural land. Land Use Policy, 51, 135–149. https://doi.org/10.1016/j.landusepol.2015.10.027
Perino, A., Pereira, H. M., Felipe‐Lucia, M., Kim, H., Kühl, H. S., Marselle, M. R., Meya, J. N., Meyer, C., Navarro, L. M., van Klink, R., Albert, G., Barratt, C. D., Bruelheide , H., Cao, Y., Chamoin, A., Darbi, M., Dornelas, M., Eisenhauer, N., Essl, F., …, Bonn, A. (2022). Biodiversity post‐2020: Closing the gap between global targets and national‐level implementation. Conservation Letters, 15, e12848. https://doi.org/10.1111/conl.12848
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., & Maintainer, R. (2017). Package ‘nlme.’ Linear and nonlinear mixed effects models, version 3.
Queiroz, C., Beilin, R., Folke, C., & Lindborg, R. (2014). Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Frontiers in Ecology and the Environment, 12, 288–296. https://doi.org/10.1890/120348
Quintas‐Soriano, C., Buerkert, A., & Plieninger, T. (2022). Effects of land abandonment on nature contributions to people and good quality of life components in the Mediterranean region: A review. Land Use Policy, 116, 106053. https://doi.org/10.1016/j.landusepol.2022.106053
Raven, P. H., & Wagner, D. L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences, 118(2). https://doi.org/10.1073/pnas.2002548117
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available from https://www.r‐project.org/
Regos, A., Domínguez, J., Gil‐Tena, A., Brotons, L., Ninyerola, M., & Pons, X. (2016). Rural abandoned landscapes and bird assemblages: Winners and losers in the rewilding of a marginal mountain area (NW Spain). Regional Environmental Change, 16, 199–211. https://doi.org/10.1007/s10113‐014‐0740‐7
Reif, J., Skálová, A. J., Vermouzek, Z., & Voříšek, P. (2022). Long‐term trends in forest bird populations reflect management changes in Central European forests. Ecological Indicators, 141, 109137. https://doi.org/10.1016/j.ecolind.2022.109137
Reif, J., Storch, D., Voříšek, P., Šťastný, K., & Bejček, V. (2008). Bird‐habitat associations predict population trends in central European forest and farmland birds. Biodiversity and Conservation, 17, 3307–3319. https://doi.org/10.1007/s10531‐008‐9430‐4
Rigal, S., Dakos, V., Alonso, H., Auniņš, A., Benkő, Z., Brotons, L., Chodkiewicz, T., Chylarecki, P., de Carli, E., del Moral, J. C., Domşa, C., Escandell, V., Fontaine, B., Foppen, R., Gregory, R., Harris, S., Herrando, S., Husby, M., Ieronymidou, C., … Devictor, V. (2023). Farmland practices are driving bird population decline across Europe. Proceedings of the National Academy of Sciences, 120, e2216573120. https://doi.org/10.1073/pnas.2216573120
Rosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P. A., Stanton, J. C., Panjabi, A., Helft, L., Parr, M., & Marra, P. P. (2019). Decline of the North American avifauna. Science, 366, 120–124. https://doi.org/10.1126/science.aaw1313
Schliep, K. P. (2011). phangorn: Phylogenetic analysis in R. Bioinformatics, 27, 592–593. https://doi.org/10.1093/bioinformatics/btq706
Schuh, B., Dax, T., Andronic, C., Derszniak‐Noirjean, M., Gaupp‐Berghausen, M., Hsiung, C.‐H., Münch, A., Machold, I., Schroll, K., & Brkanovic, S. (2020). The challenge of land abandonment after 2020 and options for mitigating measures. Brussels: Research for AGRI Committee. European Parliament, Policy Department for Structural and Cohesion Policies. Available from https://bit.ly/39ElcFJ
Seki, S.‐I., Fujiki, D., & Sato, S. (2014). Assessing changes in bird communities along gradients of undergrowth deterioration in deer‐browsed hardwood forests of western Japan. Forest Ecology and Management, 320, 6–12. https://doi.org/10.1016/j.foreco.2014.02.015
Senzaki, M., Barber, J. R., Phillips, J. N., Carter, N. H., Cooper, C. B., Ditmer, M. A., Fristrup, K. M., McClure, C. J. W., Mennitt, D. J., Tyrrell, L. P., Vukomanovic, J., Wilson, A. A., & Francis, C. D. (2020). Sensory pollutants alter bird phenology and fitness across a continent. Nature, 587, 605–609. https://doi.org/10.1038/s41586‐020‐2903‐7
Sirami, C., Brotons, L., Burfield, I., Fonderflick, J., & Martin, J.‐L. (2008). Is land abandonment having an impact on biodiversity? A meta‐analytical approach to bird distribution changes in the north‐western Mediterranean. Biological Conservation, 141, 450–459. https://doi.org/10.1016/j.biocon.2007.10.015
Soldaat, L. L., Pannekoek, J., Verweij, R. J. T., van Turnhout, C. A. M., & van Strien, A. J. (2017). A Monte Carlo method to account for sampling error in multi‐species indicators. Ecological Indicators, 81, 340–347. https://doi.org/10.1016/j.ecolind.2017.05.033
Soykan, C. U., Sauer, J., Schuetz, J. G., LeBaron, G. S., Dale, K., & Langham, G. M. (2016). Population trends for North American winter birds based on hierarchical models. Ecosphere, 7, e01351. https://doi.org/10.1002/ecs2.1351
Spake, R., Soga, M., Kawamura, K., Cooke, R. S., Yamaura, Y., & Eigenbrod, F. (2020). Regional variability in landscape effects on forest bird communities. Landscape Ecology, 35, 1055–1071. https://doi.org/10.1007/s10980‐020‐01005‐9
Spake, R., Yanou, S., Yamaura, Y., Kawamura, K., Kitayama, K., & Doncaster, C. P. (2019). Meta‐analysis of management effects on biodiversity in plantation and secondary forests of Japan. Conservation Science and Practice, 1, e14. https://doi.org/10.1111/csp2.14
Stanton, R. L., Morrissey, C. A., & Clark, R. G. (2018). Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agriculture, Ecosystems & Environment, 254, 244–254.
Stephens, P. A., Mason, L. R., Green, R. E., Gregory, R. D., Sauer, J. R., Alison, J., Aunins, A., Brotons, L., Butchart, S. H. M., Campedelli, T., Chodkiewicz, T., Chylarecki, P., Crowe, O., Elts, J., Escandell, V., Foppen, R. P. B., Heldbjerg, H., Herrando, S., Husby, M., … Willis, S. G. (2016). Consistent response of bird populations to climate change on two continents. Science, 352, 84–87. https://doi.org/10.1126/science.aac4858
Sugimoto, N., Fukasawa, K., Asahara, A., Kasada, M., Matsuba, M., & Miyashita, T. (2022). Positive and negative effects of land abandonment on butterfly communities revealed by a hierarchical sampling design across climatic regions. Proceedings of the Royal Society B: Biological Sciences, 289, 20212222. https://doi.org/10.1098/rspb.2021.2222
Takagawa, S., Ueta, M., Amano, T., Okahisa, Y., Kamioki, M., Amamo, T., Takahashi, M., Hayama, S., Hirano, T., Hayama, S., Mikami, O. K., Mori, S., Morimoto, G., & Yamaura, Y. (2011). JAVIAN Database: A species‐level database of life history, ecology and morphology of bird species in Japan. Bird Research, 7, R9–R12.
Tamada, K. (2006). Population change of grassland birds over ten years in Nakashibetsu, eastern Hokkaido. Ornithological Science, 5, 127–131. https://doi.org/10.2326/osj.5.127
Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S., & Packer, C. (2017). Future threats to biodiversity and pathways to their prevention. Nature, 546, 73–81. https://doi.org/10.1038/nature22900
Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C., & Batáry, P. (2021). Beyond organic farming—Harnessing biodiversity‐friendly landscapes. Trends in Ecology & Evolution, 36, 919–930.
Ueta, M. (2014). Monitoring the changes of land bird populations in Japan from 2009 to 2013. Bird Research, 10, F3–F11.
Ueta, M., Yamaura, Y., Osawa, T., & Hayama, S. (2022). Relationship between the breeding distribution of forest birds and annual mean temperature based on two national surveys in Japan. Bird Research, 18, A51–A61.
United Nations. (2022). World population prospects 2022: Summary of results. New York. Available from https://www.un.org/development/desa/pd/content/World‐Population‐Prospects‐2022
Wang, X., Chen, Y., Melville, D. S., Choi, C.‐Y., Tan, K., Liu, J., Li, J., Zhang, S., Cao, L., & Ma, Z. (2022). Impacts of habitat loss on migratory shorebird populations and communities at stopover sites in the Yellow Sea. Biological Conservation, 269, 109547. https://doi.org/10.1016/j.biocon.2022.109547
Wauchope, H. S., Amano, T., Sutherland, W. J., & Johnston, A. (2019). When can we trust population trends? A method for quantifying the effects of sampling interval and duration. Methods in Ecology and Evolution, 10, 2067–2078. https://doi.org/10.1111/2041‐210X.13302
Wotton, S. R., Eaton, M. A., Sheehan, D., Munyekenye, F. B., Burfield, I. J., Butchart, S. H. M., Moleofi, K., Nalwanga‐Wabwire, D., Ndang'ang'a, P. K., Pomeroy, D., Senyatso, K. J., & Gregory, R. D. (2020). Developing biodiversity indicators for African birds. Oryx, 54, 62–73. https://doi.org/10.1017/S0030605317001181
Yamaura, Y., Amano, T., Koizumi, T., Mitsuda, Y., Taki, H., & Okabe, K. (2009). Does land‐use change affect biodiversity dynamics at a macroecological scale? A case study of birds over the past 20 years in Japan. Animal Conservation, 12, 110–119. https://doi.org/10.1111/j.1469‐1795.2008.00227.x
Yong, D. L., Heim, W., Chowdhury, S. U., Choi, C.‐Y., Ktitorov, P., Kulikova, O., Kondratyev, A., Round, P. D., Allen, D., Trainor, C. R., Gibson, L., & Szabo, J. K. (2021). The state of migratory landbirds in the East Asian Flyway: Distributions, threats, and conservation needs. Frontiers in Ecology and Evolution, 9, 613172. https://doi.org/10.3389/fevo.2021.613172
Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3–14. https://doi.org/10.1111/j.2041‐210X.2009.00001.x