Normobaric hypoxia shows enhanced FOXO1 signaling in obese mouse gastrocnemius muscle linked to metabolism and muscle structure and neuromuscular innervation
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
201908110278
China Scholarship Council
244995 (BIOCLAIMS Project)
European Union's Seventh Framework Programme FP7 2007-2013
Lumina Quaeruntur LQ200111901
Czech Academy of Sciences
PubMed
37656229
PubMed Central
PMC10567817
DOI
10.1007/s00424-023-02854-4
PII: 10.1007/s00424-023-02854-4
Knihovny.cz E-zdroje
- Klíčová slova
- FOXO, Hypoxia, Metabolism, Mitochondria, Neuromuscular junction, Skeletal muscle,
- Publikační typ
- časopisecké články MeSH
Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic in vivo response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the Musculus gastrocnemius response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O2 normobaric hypoxia or normoxia (20.9% O2) for six hours (n = 12 per group). Whole-body energy metabolism and the transcriptome response of the M. gastrocnemius were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (Trib3). Trib3 positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that β-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O2 normobaric hypoxia impacts M. gastrocnemius via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.
Zobrazit více v PubMed
Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117(4):421–426. doi: 10.1016/s0092-8674(04)00452-0. PubMed DOI
Alayash AI. The impact of COVID-19 infection on oxygen homeostasis: a molecular perspective. Front Physiol. 2021;12:711976. doi: 10.3389/fphys.2021.711976. PubMed DOI PMC
An D, Lessard SJ, et al. Overexpression of TRB3 in muscle alters muscle fiber type and improves exercise capacity in mice. Am J Physiol Regul Integr Comp Physiol. 2014;306(12):R925–R933. doi: 10.1152/ajpregu.00027.2014. PubMed DOI PMC
Bannow LI, Bonaterra GA, et al. Effect of chronic intermittent hypoxia (CIH) on neuromuscular junctions and mitochondria in slow- and fast-twitch skeletal muscles of mice-the role of iNOS. Skeletal Muscle. 2022;12(1):6. doi: 10.1186/s13395-022-00288-7. PubMed DOI PMC
Barclay CJ. Energy demand and supply in human skeletal muscle. J Muscle Res Cell Motil. 2017;38(2):143–155. doi: 10.1007/s10974-017-9467-7. PubMed DOI
Barretto EC, Polan DM, et al. Tolerance to hypoxia is promoted by FOXO regulation of the innate immunity transcription factor NF-κB/Relish in drosophila. Genetics. 2020;215(4):1013–1025. doi: 10.1534/genetics.120.303219. PubMed DOI PMC
Bastie CC, Nahle Z, et al. FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms. J Biol Chem. 2005;280(14):14222–14229. doi: 10.1074/jbc.M413625200. PubMed DOI
Bayen S, Saini S, et al. PRMT1 promotes hyperglycemia in a FoxO1-dependent manner, affecting glucose metabolism, during hypobaric hypoxia exposure, in rat model. Endocrine. 2017;59(1):151–163. doi: 10.1007/s12020-017-1463-6. PubMed DOI
Belotti E, Schaeffer L. Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett. 2020;735:135163. doi: 10.1016/j.neulet.2020.135163. PubMed DOI
Benita Y, Kikuchi H, et al. An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res. 2009;37(14):4587–4602. doi: 10.1093/nar/gkp425. PubMed DOI PMC
Bhardwaj G, Penniman CM, et al. Transcriptomic regulation of muscle mitochondria and calcium signaling by insulin/IGF-1 receptors depends on FoxO transcription factors. Front Physiol. 2021;12:779121. doi: 10.3389/fphys.2021.779121. PubMed DOI PMC
Bois PR, Grosveld GC. FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. Embo J. 2003;22(5):1147–1157. doi: 10.1093/emboj/cdg116. PubMed DOI PMC
Bolland H, Ma TS, et al. Links between the unfolded protein response and the DNA damage response in hypoxia: a systematic review. Biochem Soc Trans. 2021;49(3):1251–1263. doi: 10.1042/bst20200861. PubMed DOI PMC
Brand MD, Orr AL, et al. The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol. 2013;169(02):1–8. doi: 10.1111/bjd.12208. PubMed DOI PMC
Braun B, Mawson JT, et al. Women at altitude: carbohydrate utilization during exercise at 4,300 m. J Appl Physiol. 2000;88(1):246–256. doi: 10.1152/jappl.2000.88.1.246. PubMed DOI
Cao X, Fang X, et al. TRB3 mediates vascular remodeling by activating the MAPK signaling pathway in hypoxic pulmonary hypertension. Respir Res. 2021;22(1):312. doi: 10.1186/s12931-021-01908-4. PubMed DOI PMC
Chaillou T. Skeletal muscle fiber type in hypoxia: adaptation to high-altitude exposure and under conditions of pathological hypoxia. Front Physiol. 2018;9:1450. doi: 10.3389/fphys.2018.01450. PubMed DOI PMC
Chen BX, Yi SK, et al. Transcriptome comparison reveals insights into muscle response to hypoxia in blunt snout bream (Megalobrama amblycephala) Gene. 2017;624:6–13. doi: 10.1016/j.gene.2017.04.023. PubMed DOI
Chicco AJ, Le CH, et al. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: lessons from altitudeOmics. J Biol Chem. 2018;293(18):6659–6671. doi: 10.1074/jbc.RA117.000470. PubMed DOI PMC
Choi JH, Park MJ, et al. Molecular mechanism of hypoxia-mediated hepatic gluconeogenesis by transcriptional regulation. FEBS Lett. 2005;579(13):2795–2801. doi: 10.1016/j.febslet.2005.03.097. PubMed DOI
Cifuentes-Diaz C, Goudou D, et al. M-cadherin distribution in the mouse adult neuromuscular system suggests a role in muscle innervation. Eur J Neurosci. 1996;8(8):1666–1676. doi: 10.1111/j.1460-9568.1996.tb01310.x. PubMed DOI
Cunningham F, Allen JE, et al. Ensembl 2022. Nucleic Acids Res. 2022;50(D1):D988–D995. doi: 10.1093/nar/gkab1049. PubMed DOI PMC
Das M, Lu J, et al. Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1beta-induced arthritis. Curr Mol Med. 2012;12(2):113–125. doi: 10.2174/156652412798889090. PubMed DOI PMC
de Moura EDM, Dos Reis SA, et al. Diet-induced obesity in animal models: points to consider and influence on metabolic markers. Diabetol Metab Syndr. 2021;13(1):32. doi: 10.1186/s13098-021-00647-2. PubMed DOI PMC
Dong XC. FOXO transcription factors in non-alcoholic fatty liver disease. Liver Res. 2017;1(3):168–173. doi: 10.1016/j.livres.2017.11.004. PubMed DOI PMC
Dos Santos M, Backer S, et al. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat Commun. 2020;11(1):5102. doi: 10.1038/s41467-020-18789-8. PubMed DOI PMC
Duivenvoorde LP, van Schothorst EM, et al. Assessment of metabolic flexibility of old and adult mice using three noninvasive, indirect calorimetry-based treatments. J Gerontol A Biol Sci Med Sci. 2015;70(3):282–293. doi: 10.1093/gerona/glu027. PubMed DOI
Duivenvoorde LP, van Schothorst EM, et al. Oxygen restriction as challenge test reveals early high-fat-diet-induced changes in glucose and lipid metabolism. Pflugers Arch. 2015;467(6):1179–1193. doi: 10.1007/s00424-014-1553-8. PubMed DOI
Eijkelenboom A, Burgering BM. FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol. 2013;14(2):83–97. doi: 10.1038/nrm3507. PubMed DOI
Fukuda R, Zhang H, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007;129(1):111–122. doi: 10.1016/j.cell.2007.01.047. PubMed DOI
Furuyama T, Kitayama K, et al. Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J. 2003;375(Pt 2):365–371. doi: 10.1042/BJ20030022. PubMed DOI PMC
Gan Z, Powell FL, et al. Transcriptomic analysis identifies a role of PI3K-Akt signalling in the responses of skeletal muscle to acute hypoxia in vivo. J Physiol. 2017;595(17):5797–5813. doi: 10.1113/JP274556. PubMed DOI PMC
Hara Y, Watanabe N. Changes in expression of genes related to glucose metabolism in liver and skeletal muscle of rats exposed to acute hypoxia. Heliyon. 2020;6(7):e04334. doi: 10.1016/j.heliyon.2020.e04334. PubMed DOI PMC
Heather LC, Cole MA, et al. Metabolic adaptation to chronic hypoxia in cardiac mitochondria. Basic Res Cardiol. 2012;107(3):268. doi: 10.1007/s00395-012-0268-2. PubMed DOI
Hénique C, Mansouri A, et al. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype. FASEB J. 2015;29(6):2473–2483. doi: 10.1096/fj.14-257717. PubMed DOI
Hoek-van den Hil EF, van Schothorst EM, et al. Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice. Genes Nutr. 2014;9(5):418. doi: 10.1007/s12263-014-0418-2. PubMed DOI PMC
Hoevenaars FP, van Schothorst EM, et al. BIOCLAIMS standard diet (BIOsd): a reference diet for nutritional physiology. Genes Nutr. 2012;7(3):399–404. doi: 10.1007/s12263-011-0262-6. PubMed DOI PMC
Hood DA, Gorski J, et al. Oxygen cost of twitch and tetanic isometric contractions of rat skeletal muscle. Am J Physiol. 1986;250(4 Pt 1):E449–E456. doi: 10.1152/ajpendo.1986.250.4.E449. PubMed DOI
Hood DA, Memme JM, et al. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol. 2019;81:19–41. doi: 10.1146/annurev-physiol-020518-114310. PubMed DOI
Horscroft JA, Murray AJ. Skeletal muscle energy metabolism in environmental hypoxia: climbing towards consensus. Extrem Physiol Med. 2014;3(1):19–19. doi: 10.1186/2046-7648-3-19. PubMed DOI PMC
Hribal ML, Nakae J, et al. Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol. 2003;162(4):535–541. doi: 10.1083/jcb.200212107. PubMed DOI PMC
Huang K, Li J, et al. Gene expression profile at the motor endplate of the neuromuscular junction of fast-twitch muscle. Front Mol Neurosci. 2020;13:154. doi: 10.3389/fnmol.2020.00154. PubMed DOI PMC
Hui T, Jing H, et al. Neuromuscular junction-specific genes screening by deep RNA-seq analysis. Cell Biosci. 2021;11(1):81. doi: 10.1186/s13578-021-00590-9. PubMed DOI PMC
Jensen KS, Binderup T, et al. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J. 2011;30(22):4554–4570. doi: 10.1038/emboj.2011.323. PubMed DOI PMC
Jin X, Kuang Y, et al. A positive feedback circuit comprising p21 and HIF-1α aggravates hypoxia-induced radioresistance of glioblastoma by promoting Glut1/LDHA-mediated glycolysis. FASEB J. 2022;36(3):e22229. doi: 10.1096/fj.202101736R. PubMed DOI
Judge SM, Wu CL, et al. Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer. 2014;14:997. doi: 10.1186/1471-2407-14-997. PubMed DOI PMC
Kamei Y, Mizukami J, et al. A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett. 2003;536(1–3):232–236. doi: 10.1016/s0014-5793(03)00062-0. PubMed DOI
Kamei Y, Miura S, et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem. 2004;279(39):41114–41123. doi: 10.1074/jbc.M400674200. PubMed DOI
Kanehisa M, Furumichi M, et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2022 doi: 10.1093/nar/gkac963. PubMed DOI PMC
Kayser B, Verges S. Hypoxia, energy balance, and obesity: an update. Obes Rev. 2021;22(Suppl 2):e13192. doi: 10.1111/obr.13192. PubMed DOI
Kelly PT, Swanney MP, et al. Normobaric hypoxia inhalation test vs. response to airline flight in healthy passengers. Aviat Space Environ Med. 2006;77(11):1143–7. PubMed
Ketterer C, Zeiger U, et al. Identification of the neuromuscular junction transcriptome of extraocular muscle by laser capture microdissection. Invest Ophthalmol Vis Sci. 2010;51(9):4589–4599. doi: 10.1167/iovs.09-4893. PubMed DOI PMC
Kinsella RJ, Kahari A, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011;2011:bar030. doi: 10.1093/database/bar030. PubMed DOI PMC
Kitamura T, Kitamura YI, et al. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J Clin Invest. 2007;117(9):2477–2485. doi: 10.1172/JCI32054. PubMed DOI PMC
Koopmans F, van Nierop P, et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron. 2019;103(2):217–234 e4. doi: 10.1016/j.neuron.2019.05.002. PubMed DOI PMC
Kravtsova VV, Fedorova AA et al (2022) Short-term mild hypoxia modulates Na,K-ATPase to maintain membrane electrogenesis in rat skeletal muscle. Int J Mol Sci 23(19). 10.3390/ijms231911869 PubMed PMC
Kuhnen G, Guedes Russomanno T et al (2022) Genes whose gain or loss of function changes type 1, 2A, 2X, or 2B muscle fibre proportions in mice-a systematic review. Int J Mol Sci 23(21). 10.3390/ijms232112933 PubMed PMC
Kwon M, Eom J, et al. Skeletal muscle tissue trib3 links obesity with insulin resistance by autophagic degradation of AKT2. Cell Physiol Biochem. 2018;48(4):1543–1555. doi: 10.1159/000492264. PubMed DOI
Larsen JJ, Hansen JM, et al. The effect of altitude hypoxia on glucose homeostasis in men. J Physiol. 1997;504(Pt 1):241–9. doi: 10.1111/j.1469-7793.1997.241bf.x. PubMed DOI PMC
Levett DZ, Radford EJ, et al. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J. 2012;26(4):1431–1441. doi: 10.1096/fj.11-197772. PubMed DOI
Li J, Zhao H, et al. A genome-wide analysis of the gene expression and alternative splicing events in a whole-body hypoxic preconditioning mouse model. Neurochem Res. 2021;46(5):1101–1111. doi: 10.1007/s11064-021-03241-0. PubMed DOI
Li P, Lin N, et al. REDD1 knockdown protects H9c2 cells against myocardial ischemia/reperfusion injury through Akt/mTORC1/Nrf2 pathway-ameliorated oxidative stress: an in vitro study. Biochem Biophys Res Commun. 2019;519(1):179–185. doi: 10.1016/j.bbrc.2019.08.095. PubMed DOI
Lindholm ME, Rundqvist H. Skeletal muscle hypoxia-inducible factor-1 and exercise. Exp Physiol. 2016;101(1):28–32. doi: 10.1113/EP085318. PubMed DOI
Liu X, Deng Q, et al. Oxidative stress-induced Gadd45alpha inhibits trophoblast invasion and increases sFlt1/sEng secretions via p38 MAPK involving in the pathology of pre-eclampsia. J Matern Fetal Neonatal Med. 2016;29(23):3776–3785. doi: 10.3109/14767058.2016.1144744. PubMed DOI
Lui MA, Mahalingam S, et al. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice. Am J Physiol Regul Integr Comp Physiol. 2015;308(9):R779–R791. doi: 10.1152/ajpregu.00362.2014. PubMed DOI PMC
Luo MJ, Smeland TE, et al. Delta 3,5, delta 2,4-dienoyl-CoA isomerase from rat liver mitochondria. Purification and characterization of a new enzyme involved in the beta-oxidation of unsaturated fatty acids. J Biol Chem. 1994;269(4):2384–8. doi: 10.1016/S0021-9258(17)41957-0. PubMed DOI
Ma W, Cai Y, et al. HDAC4 knockdown alleviates denervation-induced muscle atrophy by inhibiting myogenin-dependent atrogene activation. Front Cell Neurosci. 2021;15:663384. doi: 10.3389/fncel.2021.663384. PubMed DOI PMC
Macpherson PC, Farshi P, et al. Dach2-Hdac9 signaling regulates reinnervation of muscle endplates. Development. 2015;142(23):4038–4048. doi: 10.1242/dev.125674. PubMed DOI PMC
Manoharan P, Song T, et al. KLF2 in myeloid lineage cells regulates the innate immune response during skeletal muscle injury and regeneration. iScience. 2019;17:334–346. doi: 10.1016/j.isci.2019.07.009. PubMed DOI PMC
Manttari S, Jarvilehto M. Comparative analysis of mouse skeletal muscle fibre type composition and contractile responses to calcium channel blocker. BMC Physiol. 2005;5(1):4. doi: 10.1186/1472-6793-5-4. PubMed DOI PMC
Martinez CA, Kerr B et al (2019) Obstructive sleep apnea activates HIF-1 in a hypoxia dose-dependent manner in HCT116 colorectal carcinoma cells. Int J Mol Sci 20(2). 10.3390/ijms20020445 PubMed PMC
Matsumoto M, Pocai A, et al. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 2007;6(3):208–216. doi: 10.1016/j.cmet.2007.08.006. PubMed DOI
Murray AJ. Energy metabolism and the high-altitude environment. Exp Physiol. 2016;101(1):23–27. doi: 10.1113/ep085317. PubMed DOI
Mylonis I, Simos G et al (2019) Hypoxia-inducible factors and the regulation of lipid metabolism. Cells 8(3). 10.3390/cells8030214 PubMed PMC
Noda S, Murakami A, et al. Clinical implication of denervation in sporadic inclusion body myositis. J Neurol Sci. 2022;439:120317. doi: 10.1016/j.jns.2022.120317. PubMed DOI
Nunes JP, Costa BDV, et al. Different foot positioning during calf training to induce portion-specific gastrocnemius muscle hypertrophy. J Strength Cond Res. 2020;34(8):2347–2351. doi: 10.1519/JSC.0000000000003674. PubMed DOI
Oyabu M, Takigawa K, et al. FOXO1 cooperates with C/EBPdelta and ATF4 to regulate skeletal muscle atrophy transcriptional program during fasting. FASEB J. 2022;36(2):e22152. doi: 10.1096/fj.202101385RR. PubMed DOI
Petrany MJ, Swoboda CO, et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat Commun. 2020;11(1):6374. doi: 10.1038/s41467-020-20063-w. PubMed DOI PMC
Pircher T, Wackerhage H, et al. Hypoxic signaling in skeletal muscle maintenance and regeneration: a systematic review. Front Physiol. 2021;12:684899. doi: 10.3389/fphys.2021.684899. PubMed DOI PMC
Ramírez-Vélez R, Legarra-Gorgoñon G, et al. Reduced muscle strength in patients with long-COVID-19 syndrome is mediated by limb muscle mass. J Appl Physiol. 2023;134(1):50–58. doi: 10.1152/japplphysiol.00599.2022. PubMed DOI PMC
Rath S, Sharma R, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49(D1):D1541–D1547. doi: 10.1093/nar/gkaa1011. PubMed DOI PMC
Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77(3):731–758. doi: 10.1152/physrev.1997.77.3.731. PubMed DOI
Salcher S, Hermann M, et al. C10ORF10/DEPP-mediated ROS accumulation is a critical modulator of FOXO3-induced autophagy. Mol Cancer. 2017;16(1):95. doi: 10.1186/s12943-017-0661-4. PubMed DOI PMC
Sanchez AM, Candau RB, et al. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2014;71(9):1657–1671. doi: 10.1007/s00018-013-1513-z. PubMed DOI PMC
Schito L, Rey S. Cell-autonomous metabolic reprogramming in hypoxia. Trends Cell Biol. 2018;28(2):128–142. doi: 10.1016/j.tcb.2017.10.006. PubMed DOI
Scott GR, Elogio TS, et al. Adaptive modifications of muscle phenotype in high-altitude deer mice are associated with evolved changes in gene regulation. Mol Biol Evol. 2015;32(8):1962–1976. doi: 10.1093/molbev/msv076. PubMed DOI PMC
Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47–71. doi: 10.1146/annurev-pathol-012513-104720. PubMed DOI
Sengupta A, Molkentin JD, et al. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem. 2011;286(9):7468–7478. doi: 10.1074/jbc.M110.179242. PubMed DOI PMC
Shao X, Taha IN, et al. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res. 2020;48(D1):D1136–D1144. doi: 10.1093/nar/gkz849. PubMed DOI PMC
Simpson B, Rich MM, et al. Acetylcholine receptor subunit expression in Huntington's disease mouse muscle. Biochem Biophys Rep. 2021;28:101182. doi: 10.1016/j.bbrep.2021.101182. PubMed DOI PMC
Singh K, Dilworth FJ. Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors. FEBS J. 2013;280(17):3991–4003. doi: 10.1111/febs.12188. PubMed DOI
Slot IG, Schols AM, et al. Hypoxia differentially regulates muscle oxidative fiber type and metabolism in a HIF-1alpha-dependent manner. Cell Signal. 2014;26(9):1837–1845. doi: 10.1016/j.cellsig.2014.04.016. PubMed DOI
Song K, Zhang Y, et al. Increased insulin sensitivity by high-altitude hypoxia in mice with high-fat diet-induced obesity is associated with activated AMPK signaling and subsequently enhanced mitochondrial biogenesis in skeletal muscles. Obes Facts. 2020;13(5):455–472. doi: 10.1159/000508112. PubMed DOI PMC
Stepp MW, Folz RJ, et al. The c10orf10 gene product is a new link between oxidative stress and autophagy. Biochim Biophys Acta. 2014;1843(6):1076–1088. doi: 10.1016/j.bbamcr.2014.02.003. PubMed DOI
Thankam FG, Agrawal DK. Hypoxia-driven secretion of extracellular matrix proteins in the exosomes reflects the asymptomatic pathology of rotator cuff tendinopathies. Can J Physiol Pharmacol. 2021;99(2):224–230. doi: 10.1139/cjpp-2020-0314. PubMed DOI
Titchenell PM, Chu Q, et al. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat Commun. 2015;6:7078. doi: 10.1038/ncomms8078. PubMed DOI PMC
Tsuchida A, Yamauchi T, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 2004;279(29):30817–30822. doi: 10.1074/jbc.M402367200. PubMed DOI
Valle-Tenney R, Rebolledo DL, et al. Role of hypoxia in skeletal muscle fibrosis: Synergism between hypoxia and TGF-beta signaling upregulates CCN2/CTGF expression specifically in muscle fibers. Matrix Biol. 2020;87:48–65. doi: 10.1016/j.matbio.2019.09.003. PubMed DOI
van der Hoek MD, Nieuwenhuizen AG, et al. Intramuscular short-chain acylcarnitines in elderly people are decreased in (pre-)frail females, but not in males. FASEB J. 2020;34(9):11658–11671. doi: 10.1096/fj.202000493R. PubMed DOI
Vilchinskaya N, Altaeva E, et al. Gaining insight into the role of FoxO1 in the progression of disuse-induced skeletal muscle atrophy. Adv Biol Regul. 2022;85:100903. doi: 10.1016/j.jbior.2022.100903. PubMed DOI
Voigt A, Agnew K, et al. Short-term, high fat feeding-induced changes in white adipose tissue gene expression are highly predictive for long-term changes. Mol Nutr Food Res. 2013;57(8):1423–1434. doi: 10.1002/mnfr.201200671. PubMed DOI
Wang P, Holst C, et al. Circulating ACE is a predictor of weight loss maintenance not only in overweight and obese women, but also in men. Int J Obes (Lond) 2012;36(12):1545–1551. doi: 10.1038/ijo.2011.278. PubMed DOI
Wang Y, Wen L, et al. Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes. PLoS One. 2018;13(9):e0203551. doi: 10.1371/journal.pone.0203551. PubMed DOI PMC
Woolcott OO, Ader M, et al. Glucose homeostasis during short-term and prolonged exposure to high altitudes. Endocr Rev. 2015;36(2):149–173. doi: 10.1210/er.2014-1063. PubMed DOI PMC
Xin Z, Ma Z, et al. FOXO1/3: potential suppressors of fibrosis. Ageing Res Rev. 2018;41:42–52. doi: 10.1016/j.arr.2017.11.002. PubMed DOI
Yamagata K, Daitoku H, et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell. 2008;32(2):221–231. doi: 10.1016/j.molcel.2008.09.013. PubMed DOI
Yu G, Wang LG, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Yu G. Gene ontology semantic similarity analysis using GOSemSim. Methods Mol Biol. 2020;2117:207–215. doi: 10.1007/978-1-0716-0301-7_11. PubMed DOI
Zhang K, Li L, et al. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology. 2012;153(2):631–646. doi: 10.1210/en.2011-1527. PubMed DOI PMC
Zhang Z, Zhang L, et al. Increase in HDAC9 suppresses myoblast differentiation via epigenetic regulation of autophagy in hypoxia. Cell Death Dis. 2019;10(8):552. doi: 10.1038/s41419-019-1763-2. PubMed DOI PMC