Friend or foe? Inflammation and the foreign body response to orthopedic biomaterials

. 2024 Aug ; 112 (8) : 1172-1187. [epub] 20230901

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37656958

The use of biomaterials and implants for joint replacement, fracture fixation, spinal stabilization and other orthopedic indications has revolutionized patient care by reliably decreasing pain and improving function. These surgical procedures always invoke an acute inflammatory reaction initially, that in most cases, readily subsides. Occasionally, chronic inflammation around the implant develops and persists; this results in unremitting pain and compromises function. The etiology of chronic inflammation may be specific, such as with infection, or be unknown. The histological hallmarks of chronic inflammation include activated macrophages, fibroblasts, T cell subsets, and other cells of the innate immune system. The presence of cells of the adaptive immune system usually indicates allergic reactions to metallic haptens. A foreign body reaction is composed of activated macrophages, giant cells, fibroblasts, and other cells often distributed in a characteristic histological arrangement; this reaction is usually due to particulate debris and other byproducts from the biomaterials used in the implant. Both chronic inflammation and the foreign body response have adverse biological effects on the integration of the implant with the surrounding tissues. Strategies to mitigate chronic inflammation and the foreign body response will enhance the initial incorporation and longevity of the implant, and thereby, improve long-term pain relief and overall function for the patient. The seminal research performed in the laboratory of Dr. James Anderson and co-workers has provided an inspirational and driving force for our laboratory's work on the interactions and crosstalk among cells of the mesenchymal, immune, and vascular lineages, and orthopedic biomaterials. Dr. Anderson's delineation of the fundamental biologic processes and mechanisms underlying acute and chronic inflammation, the foreign body response, resolution, and eventual functional integration of implants in different organ systems has provided researchers with a strategic approach to the use of biomaterials to improve health in numerous clinical scenarios.

Zobrazit více v PubMed

Punchard NA, Whelan CJ, Adcock I. The Journal of Inflammation. J Inflamm (Lond). 2004;1(1):1.

Gordon S. Elie Metchnikoff: father of natural immunity. Eur J Immunol. 2008;38(12):3257‐3264.

Babensee JE. 2.2.2 – Inflammation, wound healing, the foreign‐body response, and alternative tissue responses. In: Wagner WR, Sakiyama‐Elbert SE, Zhang G, Yaszemski MJ, eds. Biomaterials Science. Fourth ed. Academic Press; 2020:737‐746.

Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro‐resolving superfamily of mediators. J Clin Invest. 2018;128(7):2657‐2669.

McNally AK, Anderson JM. Phenotypic expression in human monocyte‐derived interleukin‐4‐induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103(4):1380‐1390.

Pagán AJ, Ramakrishnan L. The formation and function of granulomas. Annu Rev Immunol. 2018;36:639‐665.

Chang DT, Colton E, Matsuda T, Anderson JM. Lymphocyte adhesion and interactions with biomaterial adherent macrophages and foreign body giant cells. J Biomed Mater Res A. 2009;91(4):1210‐1220.

Kirk JT, McNally AK, Anderson JM. Polymorphonuclear leukocyte inhibition of monocytes/macrophages in the foreign body reaction. J Biomed Mater Res A. 2010;94(3):683‐687.

Gibon E, Cordova LA, Lu L, et al. The biological response to orthopedic implants for joint replacement. II: polyethylene, ceramics, PMMA, and the foreign body reaction. J Biomed Mater Res B Appl Biomater. 2017;105(6):1685‐1691.

Gibon E, Amanatullah DF, Loi F, et al. The biological response to orthopaedic implants for joint replacement: part I: metals. J Biomed Mater Res B Appl Biomater. 2017;105(7):2162‐2173.

Services USDoHaH. Projected Future Growth of Older Population. ACL Administration for Community Living; 2023.

Sloan M, Premkumar A, Sheth NP. Projected volume of primary Total joint Arthroplasty in the U.S., 2014 to 2030. J Bone Joint Surg Am. 2018;100(17):1455‐1460.

Schwartz AM, Farley KX, Guild GN, Bradbury TL. Projections and epidemiology of revision hip and knee Arthroplasty in the United States to 2030. J Arthroplast. 2020;35(6S):S79‐S85.

AAOS. The AJRR Annual Report. 2022.

Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133‐143.

Cho T‐J, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res Off J Am Soc Bone Miner Res. 2002;17(3):513‐520.

Rüedi TP, Murphy WM. AO Principles of Fracture Management. AO Pub; 2007.

General OotS. The Burden of Bone Disease: Office of the Surgeon General. US; 2004.

Chung R, Cool JC, Scherer MA, Foster BK, Xian CJ. Roles of neutrophil‐mediated inflammatory response in the bony repair of injured growth plate cartilage in young rats. J Leukoc Biol. 2006;80(6):1272‐1280.

Bastian O, Pillay J, Alblas J, Leenen L, Koenderman L, Blokhuis T. Systemic inflammation and fracture healing. J Leukoc Biol. 2011;89(5):669‐673.

Schlundt C, El Khassawna T, Serra A, et al. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone. 2015;106:78‐89.

Goodman SB, Gibon E, Gallo J, Takagi M. Macrophage polarization and the Osteoimmunology of Periprosthetic Osteolysis. Curr Osteoporos Rep. 2022;20(1):43‐52.

Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541‐566.

Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue‐resident macrophages. Nat Immunol. 2013;14(10):986‐995.

Hodges NA, Sussman EM, Stegemann JP. Aseptic and septic prosthetic joint loosening: impact of biomaterial wear on immune cell function, inflammation, and infection. Biomaterials. 2021;278:121127.

Konttinen YT, Pajarinen J, Takakubo Y, et al. Macrophage polarization and activation in response to implant debris: influence by "particle disease" and "ion disease". J Long‐Term Eff Med Implants. 2014;24(4):267‐281.

Kyriakides TR, Kim H‐J, Zheng C, Harkins L, Tao W, Deschenes E. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomedical Materials. Vol 17. IOP; 2022:022007.

Wang Y, Fan Y, Liu H. Macrophage polarization in response to biomaterials for vascularization. Ann Biomed Eng. 2021;49(9):1992‐2005.

Valladares RD, Nich C, Zwingenberger S, et al. Toll‐like receptors‐2 and 4 are overexpressed in an experimental model of particle‐induced osteolysis. J Biomed Mater Res A. 2014;102(9):3004‐3011.

Rao AJ, Gibon E, Ma T, Yao Z, Smith RL, Goodman SB. Revision joint replacement, wear particles, and macrophage polarization. Acta Biomater. 2012;8(7):2815‐2823.

Guihard P, Boutet M‐A, Bnd B‐LR, et al. Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol. 2015;185(3):765‐775.

Maresz K, Ponomarev ED, Barteneva N, Tan Y, Mann MK, Dittel BN. IL‐13 induces the expression of the alternative activation marker Ym1 in a subset of testicular macrophages. J Reprod Immunol. 2008;78(2):140‐148.

Nair MG, Du Y, Perrigoue JG, et al. Alternatively activated macrophage‐derived RELM‐{alpha} is a negative regulator of type 2 inflammation in the lung. J Exp Med. 2009;206(4):937‐952.

Gerstenfeld LC, Cho TJ, Kon T, et al. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor‐alpha signaling. Cells Tissues Organs. 2001;169(3):285‐294.

Phillips AM. Overview of the fracture healing cascade. Injury. 2005;36(Suppl 3):S5‐S7.

Ito H. Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod Rheumatol. 2011;21(2):113‐121.

Lu LY, Loi F, Nathan K, et al. Pro‐inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX‐2‐prostaglandin E2 pathway. J Orthop Res. 2017;35(11):2378‐2385.

Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J. TNF‐alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle‐derived stromal cells. Proc Natl Acad Sci U S A. 2011;108(4):1585‐1590.

Gerstenfeld LC, Cho TJ, Kon T, et al. Impaired fracture healing in the absence of TNF‐alpha signaling: the role of TNF‐alpha in endochondral cartilage resorption. J Bone Miner Res Off J Am Soc Bone Miner Res. 2003;18(9):1584‐1592.

Giannoudis PV, MacDonald DA, Matthews SJ, et al. Nonunion of the femoral diaphysis. The influence of reaming and non‐steroidal anti‐inflammatory drugs. J Bone Joint Surg Br. 2000;82(5):655‐658.

Xing Z, Lu C, Hu D, et al. Multiple roles for CCR2 during fracture healing. Dis Model Mech. 2010;3(7–8):451‐458.

Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post‐natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88(5):873‐884.

Kon T, Cho TJ, Aizawa T, et al. Expression of osteoprotegerin, receptor activator of NF‐kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res Off J Am Soc Bone Miner Res. 2001;16(6):1004‐1014.

Loi F, Córdova LA, Zhang R, et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res Ther. 2016;7:15.

Guihard P, Danger Y, Brounais B, et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells (Dayton, Ohio). 2012;30(4):762‐772.

Nicolaidou V, Wong MM, Redpath AN, et al. Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One. 2012;7(7):e39871.

Zhang Y, Böse T, Unger RE, Jansen JA, Kirkpatrick CJ, van den Beucken JJJP. Macrophage type modulates osteogenic differentiation of adipose tissue MSCs. Cell Tissue Res. 2017;369(2):273‐286.

Zhao Q, Liu X, Yu C, Xiao Y. Macrophages and bone marrow‐derived Mesenchymal stem cells work in concert to promote fracture healing: a brief review. DNA Cell Biol. 2022;41(3):276‐284.

Shin RL‐Y, Lee C‐W, Shen OY‐J, Xu H, Lee OK‐S. The crosstalk between Mesenchymal stem cells and macrophages in bone regeneration: a systematic review. Stem Cells Int. 2021;2021:8835156.

Lee E‐J, Jain M, Alimperti S. Bone microvasculature: stimulus for tissue function and regeneration. Tissue Eng Part B Rev. 2021;27(4):313‐329.

Ai‐Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87(2):107‐118.

Carano RAD, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today. 2003;8(21):980‐989.

Medzhitov R. The spectrum of inflammatory responses. Science. 2021;374(6571):1070‐1075.

Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015;160(5):816‐827.

Kasikara C, Doran AC, Cai B, Tabas I. The role of non‐resolving inflammation in atherosclerosis. J Clin Invest. 2018;128(7):2713‐2723.

Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140(6):871‐882.

Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV, Gabrielli A. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol. 2023;19:200‐211.

Nathan C. Nonresolving inflammation redux. Immunity. 2022;55(4):592‐605.

Kurmis AP, Herman A, McIntyre AR, Masri BA, Garbuz DS. Pseudotumors and high‐grade aseptic lymphocyte‐dominated Vasculitis‐associated lesions around Total knee replacements identified at aseptic revision surgery: findings of a large‐scale histologic review. J Arthroplast. 2019;34(10):2434‐2438.

Calliess T, Ettinger M, Hulsmann N, Ostermeier S, Windhagen H. Update on the etiology of revision TKA – evident trends in a retrospective survey of 1449 cases. Knee. 2015;22(3):174‐179.

Gallo J, Vaculova J, Goodman SB, Konttinen YT, Thyssen JP. Contributions of human tissue analysis to understanding the mechanisms of loosening and osteolysis in total hip replacement. Acta Biomater. 2014;10(6):2354‐2366.

Wolf S, Johannessen AC, Ellison P, et al. Inflammatory tissue reactions around aseptically loose cemented hip prostheses: a retrieval study of the Spectron EF stem with reflection all‐poly acetabular cup. J Biomed Mater Res B Appl Biomater. 2022;110(7):1624‐1636.

Perino G, De Martino I, Zhang L, et al. The contribution of the histopathological examination to the diagnosis of adverse local tissue reactions in arthroplasty. EFORT Open Rev. 2021;6(6):399‐419.

Goodman SB, Huie P, Song Y, et al. Cellular profile and cytokine production at prosthetic interfaces. Study of tissues retrieved from revised hip and knee replacements. J Bone Joint Surg Br. 1998;80(3):531‐539.

Goodman SB, Knoblich G, O'Connor M, Song Y, Huie P, Sibley R. Heterogeneity in cellular and cytokine profiles from multiple samples of tissue surrounding revised hip prostheses. J Biomed Mater Res. 1996;31(3):421‐428.

Hopf F, Thomas P, Sesselmann S, et al. CD3+ lymphocytosis in the peri‐implant membrane of 222 loosened joint endoprostheses depends on the tribological pairing. Acta Orthop. 2017;88(6):642‐648.

Wick G, Grundtman C, Mayerl C, et al. The immunology of fibrosis. Annu Rev Immunol. 2013;31:107‐135.

Adler M, Medzhitov R. Emergence of dynamic properties in network hypermotifs. Proc Natl Acad Sci U S A. 2022;119(32):e2204967119.

Pajarinen J, Nabeshima A, Lin TH, et al. (*) murine model of progressive Orthopedic Wear particle‐induced chronic inflammation and Osteolysis. Tissue Eng Part C Methods. 2017;23(12):1003‐1011.

Mann KA, Miller MA, Rossow JK, et al. Progressive loss of implant fixation in a preclinical rat model of cemented knee arthroplasty. J Orthop Res. 2021;39(11):2353‐2362.

Pap G, Machner A, Rinnert T, et al. Development and characteristics of a synovial‐like interface membrane around cemented tibial hemiarthroplasties in a novel rat model of aseptic prosthesis loosening. Arthritis Rheum. 2001;44(4):956‐963.

Krenn V, Morawietz L, Perino G, et al. Revised histopathological consensus classification of joint implant related pathology. Pathol Res Pract. 2014;210(12):779‐786.

Kleeman LT, Goltz D, Seyler TM, et al. Association between Pseudotumor formation and patient factors in metal‐on‐metal Total hip Arthroplasty population. J Arthroplast. 2018;33(7S):S259‐S264.

Weintraub MT, Barrack TN, Burnett RA 3rd, et al. Ultrasound‐guided Iliopsoas Bursal injections for Management of Iliopsoas Bursitis after Total hip Arthroplasty. J Arthroplast. 2022;38:S426‐S430.

Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86‐100.

Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2017;105(3):927‐940.

Vaculova J, Gallo J, Hurnik P, Motyka O, Goodman SB, Dvorackova J. Low intrapatient variability of histomorphological findings in periprosthetic tissues from revised metal/ceramic on polyethylene joint arthroplasties. J Biomed Mater Res B Appl Biomater. 2017;106:2008‐2018.

Miller MA, Hardy WR, Oest ME, Mann KA. Potential for supraphysiologic fluid shear stresses in a rat cemented knee replacement model. J Orthop Res. 2023;41(1):94‐103.

Davidson S, Coles M, Thomas T, et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol. 2021;21(11):704‐717.

Parlani M, Bedell ML, Mikos AG, Friedl P, Dondossola E. Dissecting the recruitment and self‐organization of alphaSMA‐positive fibroblasts in the foreign body response. Sci Adv. 2022;8(51):eadd0014.

Lei P, Dai Z, Zhang YS, et al. Macrophage inhibits the osteogenesis of fibroblasts in ultrahigh molecular weight polyethylene (UHMWPE) wear particle‐induced osteolysis. J Orthop Surg Res. 2019;14(1):80.

Capuani S, Malgir G, Chua CYX, Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med. 2022;7(3):e10300.

Sheu KM, Hoffmann A. Functional hallmarks of healthy macrophage responses: their regulatory basis and disease relevance. Annu Rev Immunol. 2022;40:295‐321.

Saas P, Vetter M, Maraux M, Bonnefoy F, Perruche S. Resolution therapy: harnessing efferocytic macrophages to trigger the resolution of inflammation. Front Immunol. 2022;13:1021413.

Campbell P, Park SH, Ebramzadeh E. Semi‐quantitative histology confirms that the macrophage is the predominant cell type in metal‐on‐metal hip tissues. J Orthop Res. 2022;40(2):387‐395.

Lin S, Wen Z, Li S, et al. LncRNA Neat1 promotes the macrophage inflammatory response and acts as a therapeutic target in titanium particle‐induced osteolysis. Acta Biomater. 2022;142:345‐360.

Pajarinen J, Kouri VP, Jamsen E, et al. The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater. 2013;9(11):9229‐9240.

Nakashima Y, Sun DH, Trindade MC, et al. Induction of macrophage C‐C chemokine expression by titanium alloy and bone cement particles. J Bone Joint Surg Br. 1999;81(1):155‐162.

Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E. Polyethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials. 1998;19(24):2297‐2302.

Ingham E, Green TR, Stone MH, Kowalski R, Watkins N, Fisher J. Production of TNF‐alpha and bone resorbing activity by macrophages in response to different types of bone cement particles. Biomaterials. 2000;21(10):1005‐1013.

Sigmund IK, McNally MA, Luger M, et al. Diagnostic accuracy of neutrophil counts in histopathological tissue analysis in periprosthetic joint infection using the ICM, IDSA, and EBJIS criteria. Bone Joint Res. 2021;10(8):536‐547.

Hobza M, Milde D, Slobodova Z, Gallo J. The number of lymphocytes increases in the periprosthetic tissues with increasing time of implant service in non‐metal‐on‐metal total joint arthroplasties: a role of metallic byproducts? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020;165:416‐427.

Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2022;23:1‐15.

van de Vyver M. Immunology of chronic low‐grade inflammation: relationship with metabolic function. J Endocrinol. 2023;257(1):e220271.

Filep JG, Ariel A. Neutrophil heterogeneity and fate in inflamed tissues: implications for the resolution of inflammation. Am J Physiol Cell Physiol. 2020;319(3):C510‐C532.

Chiurchiu V, Leuti A, Saracini S, et al. Resolution of inflammation is altered in chronic heart failure and entails a dysfunctional responsiveness of T lymphocytes. FASEB J. 2019;33(1):909‐916.

Proto JD, Doran AC, Gusarova G, et al. Regulatory T cells promote macrophage Efferocytosis during inflammation resolution. Immunity. 2018;49(4):666‐677 e6.

Qiu J, Wu B, Goodman SB, Berry GJ, Goronzy JJ, Weyand CM. Metabolic control of autoimmunity and tissue inflammation in rheumatoid arthritis. Front Immunol. 2021;12:652771.

Schnell A, Littman DR, Kuchroo VK. T(H)17 cell heterogeneity and its role in tissue inflammation. Nat Immunol. 2023;24(1):19‐29.

Jordan PM, Werz O. Specialized pro‐resolving mediators: biosynthesis and biological role in bacterial infections. FEBS J. 2022;289(14):4212‐4227.

Halade GV, Lee DH. Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine. 2022;79:103992.

Cagnina RE, Duvall MG, Nijmeh J, Levy BD. Specialized pro‐resolving mediators in respiratory diseases. Curr Opin Clin Nutr Metab Care. 2022;25(2):67‐74.

Spriano S, Yamaguchi S, Baino F, Ferraris S. A critical review of multifunctional titanium surfaces: new frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater. 2018;79:1‐22.

Quinn J, McFadden R, Chan CW, Carson L. Titanium for Orthopedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation. iScience. 2020;23(11):101745.

Lin TH, Tamaki Y, Pajarinen J, et al. Chronic inflammation in biomaterial‐induced periprosthetic osteolysis: NF‐kappaB as a therapeutic target. Acta Biomater. 2014;10(1):1‐10.

Welch NG, Winkler DA, Thissen H. Antifibrotic strategies for medical devices. Adv Drug Deliv Rev. 2020;167:109‐120.

Alhasan H, Terkawi MA, Matsumae G, et al. Inhibitory role of Annexin A1 in pathological bone resorption and therapeutic implications in periprosthetic osteolysis. Nat Commun. 2022;13(1):3919.

Lu YC, Chang TK, Lin TC, et al. The potential role of herbal extract Wedelolactone for treating particle‐induced osteolysis: an in vivo study. J Orthop Surg Res. 2022;17(1):335.

Takagi M. Bone‐implant interface biology – Foreign body reaction and periprosthetic osteolysis in artificial hip joint ‐ (review). J Clin Exp Haematol. 2001;41:81‐87.

Suljevic O, Fischerauer SF, Weinberg AM, Sommer NG. Immunological reaction to magnesium‐based implants for orthopedic applications. What do we know so far? A systematic review on in vivo studies. Mater Today Bio. 2022;15:100315.

Takagi M. Neutral proteinases and their inhibitors in the loosening of total hip prostheses. Acta Orthop Scand Suppl. 1996;271:3‐29.

Yang F, Wu W, Cao L, et al. Pathways of macrophage apoptosis within the interface membrane in aseptic loosening of prostheses. Biomaterials. 2011;32(35):9159‐9167.

Reno F, Sabbatini M, Masse A, Bosetti M, Cannas M. Fibroblast apoptosis and caspase‐8 activation in aseptic loosening. Biomaterials. 2003;24(22):3941‐3946.

Takagi M, Konttinen YT, Santavirta S, et al. Extracellular matrix metalloproteinases around loose total hip prostheses. Acta Orthop Scand. 1994;65(3):281‐286.

Santavirta S, Konttinen YT, Bergroth V, Eskola A, Tallroth K, Lindholm TS. Aggressive granulomatous lesions associated with hip arthroplasty. Immunopathological studies. J Bone Joint Surg Am. 1990;72(2):252‐258.

Solovieva SA, Ceponis A, Konttinen YT, et al. Mast cells in loosening of totally replaced hips. Clin Orthop Relat Res. 1996;322:158‐165.

Goodman SB, Gallo J. Periprosthetic Osteolysis: mechanisms, prevention and treatment. J Clin Med. 2019;8(12):2091.

Takei I, Takagi M, Ida H, et al. High macrophage‐colony stimulating factor levels in synovial fluid of loose artificial hip joints. J Rheumatol. 2000;27(4):894‐899.

Aspenberg P, Anttila A, Konttinen YT, et al. Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits. Biomaterials. 1996;17(8):807‐812.

Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am. 1992;74(6):849‐863.

Manley MT, D'Antonio JA, Capello WN, Edidin AA. Osteolysis: a disease of access to fixation interfaces. Clin Orthop Relat Res. 2002;405:129‐137.

Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, foreign body Giant cells and their response to implantable biomaterials. Materials (Basel). 2015;8(9):5671‐5701.

Takagi M, Santavirta S, Ida H, et al. High‐turnover periprosthetic bone remodeling and immature bone formation around loose cemented total hip joints. J Bone Miner Res. 2001;16(1):79‐88.

Konttinen YT, Takagi M, Mandelin J, et al. Acid attack and cathepsin K in bone resorption around total hip replacement prosthesis. J Bone Miner Res. 2001;16(10):1780‐1786.

Trindade R, Albrektsson T, Galli S, Prgomet Z, Tengvall P, Wennerberg A. Bone immune response to materials, part I: titanium, PEEK and copper in comparison to sham at 10 days in rabbit tibia. J Clin Med. 2018;7(12):526.

Takagi M, Takakubo Y, Pajarinen J, et al. Danger of frustrated sensors: role of toll‐like receptors and NOD‐like receptors in aseptic and septic inflammations around total hip replacements. J Orthop Translat. 2017;10:68‐85.

Jamsen E, Kouri VP, Olkkonen J, et al. Characterization of macrophage polarizing cytokines in the aseptic loosening of total hip replacements. J Orthop Res. 2014;32(9):1241‐1246.

Takakubo Y, Barreto G, Konttinen YT, Oki H, Takagi M. Role of innate immune sensors, TLRs, and NALP3 in rheumatoid arthritis and osteoarthritis. J Long‐Term Eff Med Implants. 2014;24(4):243‐251.

Green TR, Fisher J, Matthews JB, Stone MH, Ingham E. Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res. 2000;53(5):490‐497.

Ingram JH, Stone M, Fisher J, Ingham E. The influence of molecular weight, crosslinking and counterface roughness on TNF‐alpha production by macrophages in response to ultra high molecular weight polyethylene particles. Biomaterials. 2004;25(17):3511‐3522.

Dumbleton JH, Manley MT, Edidin AA. A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplast. 2002;17(5):649‐661.

Willert H‐G, Buchhorn GH, Fayyazi A, et al. Metal‐on‐metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am. 2005;87(1):28‐36.

Hart AJ, Skinner JA, Winship P, et al. Circulating levels of cobalt and chromium from metal‐on‐metal hip replacement are associated with CD8+ T‐cell lymphopenia. J Bone Joint Surg Br. 2009;91(6):835‐842.

Nich C, Takakubo Y, Pajarinen J, et al. Macrophages‐key cells in the response to wear debris from joint replacements. J Biomed Mater Res A. 2013;101(10):3033‐3045.

Maruyama M, Rhee C, Utsunomiya T, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol (Lausanne). 2020;11:386.

Dong J, Wang W, Zhou W, et al. Immunomodulatory biomaterials for implant‐associated infections: from conventional to advanced therapeutic strategies. Biomater Res. 2022;26(1):72.

Panteli M, Vun JSH, Pountos I, Howard A, Jones E, Giannoudis PV. Biological and molecular profile of fracture non‐union tissue: a systematic review and an update on current insights. J Cell Mol Med. 2022;26(3):601‐623.

Pajarinen J, Lin T, Nabeshima A, et al. Interleukin‐4 repairs wear particle induced osteolysis by modulating macrophage polarization and bone turnover. J Biomed Mater Res A. 2021;109(8):1512‐1520.

Kohno Y, Lin T, Pajarinen J, et al. Treating titanium particle‐induced inflammation with genetically modified NF‐κB sensing IL‐4 secreting or preconditioned Mesenchymal stem cells in vitro. ACS Biomater Sci Eng. 2019;5(6):3032‐3038.

Knecht C, Polakof L, Behrens J, Goodman SB. Wear debris in metal‐on‐metal bearings and modular junctions: what have we learned from the last decades? Orthopadie (Heidelb). 2023;52(3):206‐213.

Guangtao F, Zhenkang W, Zhantao D, et al. Icariin alleviates Wear particle‐induced Periprosthetic Osteolysis via Down‐regulation of the Estrogen receptor α‐mediated NF‐κB Signaling pathway in macrophages. Front Pharmacol. 2021;12:746391.

Ort MJ, Geissler S, Rakow A, Schoon J. The allergic bone marrow? The Immuno‐capacity of the human bone marrow in context of metal‐associated hypersensitivity reactions. Front Immunol. 2019;10:2232.

Matar HE, Porter PJ, Porter ML. Metal allergy in primary and revision total knee arthroplasty: a scoping review and evidence‐based practical approach. Bone Jt Open. 2021;2(10):785‐795.

Saul D, Menger MM, Ehnert S, Nüssler AK, Histing T, Laschke MW. Bone healing gone wrong: pathological fracture healing and non‐unions‐overview of basic and clinical aspects and systematic review of risk factors. Bioengineering (Basel). 2023;10(1):85.

Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone. 2016;86:119‐130.

Vater C, Mehnert E, Bretschneider H, et al. Dose‐dependent effects of a novel selective EP(4) prostaglandin receptor agonist on treatment of critical size femoral bone defects in a rat model. Biomedicine. 2021;9(11):1712.

Hayashi K, Fotovati A, Abu Ali S, Nakamura Y, Inagaki M, Naito M. Effect of a prostaglandin EP4 receptor agonist on early fixation of hydroxyapatite/titanium composite‐ and titanium‐coated rough‐surfaced implants in ovariectomized rats. J Biomed Mater Res A. 2010;92(3):1202‐1209.

Shen J, James AW, Zara JN, et al. BMP2‐induced inflammation can be suppressed by the osteoinductive growth factor NELL‐1. Tissue Eng Part A. 2013;19(21–22):2390‐2401.

Komatsu K, Ideno H, Shibata T, Nakashima K, Nifuji A. Platelet‐derived growth factor‐BB regenerates functional periodontal ligament in the tooth replantation. Sci Rep. 2022;12(1):3223.

Lin TH, Gibon E, Loi F, et al. Decreased osteogenesis in mesenchymal stem cells derived from the aged mouse is associated with enhanced NF‐κB activity. J Orthop Res. 2017;35(2):281‐288.

Nathan K, Lu LY, Lin T, et al. Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone Joint Res. 2019;8(10):481‐488.

Vater C, Männel C, Bolte J, Tian X, Goodman SB, Zwingenberger S. Effectiveness of dental pulp‐derived stem cells and bone Marrowderived Mesenchymal stromal cells implanted into a murine critical bone defect. Curr Stem Cell Res Ther. 2022;17(5):480‐491.

Bastidas‐Coral AP, Bakker AD, Zandieh‐Doulabi B, et al. Cytokines TNF‐α, IL‐6, IL‐17F, and IL‐4 differentially affect Osteogenic differentiation of human adipose stem cells. Stem Cells Int. 2016;2016:1318256.

Noronha NC, Mizukami A, Caliári‐Oliveira C, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell‐based therapies. Stem Cell Res Ther. 2019;10(1):131.

Lin W, Xu L, Zwingenberger S, Gibon E, Goodman SB, Li G. Mesenchymal stem cells homing to improve bone healing. J Orthop Translat. 2017;9:19‐27.

Bretschneider H, Quade M, Lode A, et al. Characterization of naturally occurring bioactive factor mixtures for bone regeneration. Int J Mol Sci. 2020;21(4):1412.

Zheng K, Niu W, Lei B, Boccaccini AR. Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater. 2021;133:168‐186.

Bai X, Liu W, Xu L, et al. Sequential macrophage transition facilitates endogenous bone regeneration induced by Zn‐doped porous microcrystalline bioactive glass. J Mater Chem B. 2021;9(12):2885‐2898.

Luo M, Zhao F, Liu L, et al. IFN‐γ/SrBG composite scaffolds promote osteogenesis by sequential regulation of macrophages from M1 to M2. J Mater Chem B. 2021;9(7):1867‐1876.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...