An enhanced turbulent flow of water-based optimization for optimal power flow of power system integrated wind turbine and solar photovoltaic generators
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2104/2023-2024
Univerzita Hradec Králové
PubMed
37670054
PubMed Central
PMC10480190
DOI
10.1038/s41598-023-41749-3
PII: 10.1038/s41598-023-41749-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This paper uses enhanced turbulent flow in water-based optimization (TFWO), specifically ETFWO, to achieve optimal power flow (OPF) in electrical networks that use both solar photovoltaic (PV) units and wind turbines (WTs). ETFWO is an enhanced TFWO that alters the TFWO structure through the promotion of communication and collaboration. Individuals in the population now interact with each other more often, which makes it possible to search more accurately in the search area while ignoring local optimal solutions. Probabilistic models and real-time data on wind speed and solar irradiance are used to predict the power output of WT and PV producers. The OPF and solution methods are evaluated using the IEEE 30-bus network. By comparing ETFWO to analogical other optimization techniques applied to the same groups of constraints, control variables, and system data, we can gauge the algorithm's robustness and efficiency in solving OPF. It is shown in this paper that the proposed ETFWO algorithm can provide suitable solutions to OPF problems in electrical networks with integrated PV units and WTs in terms of energy generation costs, improved voltage profiles, emissions, and losses, compared to the traditional TFWO and other proposed algorithms in recent studies.
Zobrazit více v PubMed
Sarhan S, El-Sehiemy R, Abaza A, Gafar M. Turbulent flow of water-based optimization for solving multi-objective technical and economic aspects of optimal power flow problems. Mathematics. 2022;10:2106. doi: 10.3390/math10122106. DOI
Kahraman HT, Akbel M, Duman S. Optimization of optimal power flow problem using multi-objective manta ray foraging optimizer. Appl. Soft Comput. 2022;116:108334. doi: 10.1016/j.asoc.2021.108334. DOI
Bouchekara HREH, Chaib AE, Abido MA, El-Sehiemy RA. Optimal power flow using an improved colliding bodies optimization algorithm. Appl. Soft Comput. 2016;42:119–131.
Abd el-sattar S, Kamel S, Ebeed M, Jurado F. An improved version of salp swarm algorithm for solving optimal power flow problem. Soft Comput. 2021;25:4027–4052.
Taher MA, Kamel S, Kamel S, Jurado F, Ebeed M. An improved moth-flame optimization algorithm for solving optimal power flow problem. Int. Trans. Electr. Energy Syst. 2018;29(3):e2743. doi: 10.1002/etep.2743. DOI
Hashem M, Abdel-Salam M, El-Mohandes MT, Nayel M, Ebeed M. Optimal placement and sizing of wind turbine generators and superconducting magnetic energy storages in a distribution system. J. Energy Storage. 2021;38:102497. doi: 10.1016/j.est.2021.102497. DOI
Akbari E, Ghasemi M, Gil M, Rahimnejad A, Gadsden SA. Optimal power flow via teaching-learning-studying-based optimization algorithm. Electr. Power Compon. Syst. 2021;49(6–7):584–601.
Ghasemi M, et al. Application of Coulomb’s and Franklin’s laws algorithm to solve large-scale optimal reactive power dispatch problems. Soft. Comput. 2022;26(24):13899–13923.
Nguyen TT. A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization. Energy. 2019;171:218–240.
Duman S, Li J, Wu L. AC optimal power flow with thermal–wind–solar–tidal systems using the symbiotic organisms search algorithm. IET Renew. Power Gener. 2021;15:278–296.
Biswas PP, Suganthan PN, Amaratunga GAJ. Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manag. 2017;148:1194–1207.
Ghasemi M, Ghavidel S, Gitizadeh M, Akbari E. An improved teaching–learning–based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow. Int. J. Electr. Power Energy Syst. 2015;65:375–384.
Hazra J, Sinha AK. A multi-objective optimal power flow using particle swarm optimization. Eur. Trans. Electr. Power. 2011;21:1028–1045.
Warid W, Hizam H, Mariun N, Abdul-Wahab NI. Optimal power flow using the Jaya algorithm. Energies. 2016;9:678. doi: 10.3390/en9090678. DOI
Herbadji O, Slimani L, Bouktir T. Optimal power flow with four conflicting objective functions using multiobjective ant lion algorithm: A case study of the algerian electrical network. Iran J. Electr. Electron. Eng. 2019;15:94–113.
Narimani MR, Azizipanah-Abarghooee R, Zoghdar-Moghadam-Shahrekohne B, Gholami K. A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type. Energy. 2013;49:119–136.
Shi L, Wang C, Yao L, Ni Y, Bazargan M. Optimal power flow solution incorporating wind power. IEEE Syst. J. 2011;6:233–241.
Elattar EE. Optimal power flow of a power system incorporating stochastic wind power based on modified moth swarm algorithm. IEEE Access. 2019;7:89581–89593.
Daryani N, Hagh MT, Teimourzadeh S. Adaptive group search optimization algorithm for multi-objective optimal power flow problem. Appl. Soft. Comput. 2016;38:1012–1024.
Khan IU, et al. Heuristic algorithm based optimal power flow model incorporating stochastic renewable energy sources. IEEE Access. 2020;8:148622–148643.
Maheshwari A, Sood YR. Solution approach for optimal power flow considering wind turbine and environmental emissions. Wind Eng. 2022;46:480–502.
Li S, Gong W, Wang L, Yan X, Hu C. Optimal power flow by means of improved adaptive differential evolution. Energy. 2020;198:117314. doi: 10.1016/j.energy.2020.117314. DOI
El-Fergany AA, Hasanien HM. Single and multi-objective optimal power flow using grey Wolf optimizer and differential evolution algorithms. Electr. Power Compon. Syst. 2015;43:1548–1559.
Ghasemi M, Ghavidel S, Akbari E, Vahed AA. Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos. Energy. 2014;73:340–353.
Chen G, Qian J, Zhang Z, Sun Z. Multi-objective optimal power flow based on hybrid firefly-bat algorithm and constraints-prior object-fuzzy sorting strategy. IEEE Access. 2019;7:139726–139745.
Islam MZ, et al. A Harris Hawks optimization based single-and multi-objective optimal power flow considering environmental emission. Sustainability. 2020;12:5248. doi: 10.3390/su12135248. DOI
Avvari R, DM VK. A novel hybrid multi-objective evolutionary algorithm for optimal power flow in wind, PV, and PEV systems. J. Oper. Autom. Power Eng. 2023;11(2):130–143.
Kyomugisha R, Muriithi CM, Nyakoe GN. Performance of various voltage stability indices in a stochastic multiobjective optimal power flow using mayfly algorithm. J. Electr. Comput. Eng. 2022;2022:7456333. doi: 10.1155/2022/7456333. DOI
Alghamdi AS. Optimal power flow of hybrid wind/solar/thermal energy integrated power systems considering costs and emissions via a novel and efficient search optimization algorithm. Appl. Sci. 2023;13(8):4760. doi: 10.3390/app13084760. DOI
Mouassa S, Althobaiti A, Jurado F, Ghoneim SSM. Novel design of slim mould optimizer for the solution of optimal power flow problems incorporating intermittent sources: A case study of algerian electricity grid. IEEE Access. 2022;10:22646–22661.
Khorsandi A, Hosseinian SH, Ghazanfari A. Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem. Electr. Power Syst. Res. 2013;95:206–213.
Elattar EE, ElSayed SK. Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement. Energy. 2019;178:598–609.
Saha A, Bhattacharya A, Das P, Chakraborty AK. A novel approach towards uncertainty modeling in multiobjective optimal power flow with renewable integration. Int. Trans. Electr. Energy Syst. 2019;29:e12136. doi: 10.1002/2050-7038.12136. DOI
Suresh G, Prasad D, Gopila M. An efficient approach based power flow management in smart grid system with hybrid renewable energy sources. Renew. Energy Focus. 2021;39:110–122.
Said M, et al. Estimating parameters of photovoltaic models using accurate turbulent flow of water optimizer. Processes. 2021;9:627. doi: 10.3390/pr9040627. DOI
Warid W, Hizam H, Mariun N, Abdul Wahab NI. A novel quasi-oppositional modified Jaya algorithm for multi-objective optimal power flow solution. Appl. Soft Comput. 2018;65:360–373.
Deb S, Houssein EH, Said M, Abdelminaam DS. Performance of turbulent flow of water optimization on economic load dispatch problem. IEEE Access. 2021;9:77882–77893.
Ghasemi M, et al. A novel and effective optimization algorithm for global optimization and its engineering applications: Turbulent Flow of Water-based Optimization (TFWO) Eng. Appl. Artif. Intell. 2020;92:103666. doi: 10.1016/j.engappai.2020.103666. DOI
Abdelminaam DS, Said M, Houssein EH. Turbulent flow of water-based optimization using new objective function for parameter extraction of six photovoltaic models. IEEE Access. 2021;9:35382–35398.
Nasri, S. et al. Maximum power point tracking of photovoltaic renewable energy system using a new method based on turbulent flow of water-based optimization (TFWO) under partial shading conditions. In Fundamentals and Innovations in Solar Energy. Energy Systems in Electrical Engineering, 285–310 (Springer, 2021).
Sallam ME, Attia MA, Abdelaziz AY, Sameh MA, Yakout AH. Optimal sizing of different energy sources in an isolated hybrid microgrid using turbulent flow water-based optimization algorithm. IEEE Access. 2022;10:61922–61936.
Mohamed A-AA, Mohamed YS, El-Gaafary AAM, Hemeida AM. Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 2017;142:190–206.
Sood Y. Evolutionary programming based optimal power flow and its validation for deregulated power system analysis. Int. J. Electr. Power Energy Syst. 2007;29:65–75.
Ghasemi M, Ghavidel S, Ghanbarian MM, Gitizadeh M. Multi-objective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm. Inf. Sci. 2015;294:286–304.
Ghasemi M, Ghavidel S, Rahmani S, Roosta A, Falah H. A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions. Eng. Appl. Artif. Intell. 2014;29:54–69.
Alghamdi AS. A hybrid firefly-JAYA algorithm for the optimal power flow problem considering wind and solar power generations. Appl. Sci. 2022;12:7193. doi: 10.3390/app12147193. DOI
Ongsakul W, Tantimaporn T. Optimal power flow by improved evolutionary programming. Electr. Power Compon. Syst. 2006;34:79–95.
El-Ela AAA, Abido M, Spea R. Optimal power flow using differential evolution algorithm. Electr. Eng. 2009;91(7):878–885.
Khamees AK, Abdelaziz AY, Eskaros MR, El-Shahat A, Attia MA. Optimal power flow solution of wind-integrated power system using novel metaheuristic method. Energies. 2021;14:6117. doi: 10.3390/en14196117. DOI
Kumar AR, Premalatha L. Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization. Int. J. Electr. Power Energy Syst. 2015;73:393–399.
Radosavljević J, Klimenta D, Jevtić M, Arsić N. Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm. Electr. Power Compon. Syst. 2015;43:1958–1970.
Guvenc, U., Bakir, H., Duman, S. & Ozkaya, B. Optimal power flow using manta ray foraging optimization. In Trends in Data Engineering Methods for Intelligent Systems. ICAIAME 2020. Lecture Notes on Data Engineering and Communications Technologies 76, 136–149 (Springer, 2020).
Pulluri H, Naresh R, Sharma V. A solution network based on stud krill herd algorithm for optimal power flow problems. Soft. Comput. 2018;22:159–176.
Abido MA. Optimal power flow using Tabu search algorithm. Electr. Power Compon. Syst. 2002;30:469–483.
Abaci K, Yamacli V. Differential search algorithm for solving multi-objective optimal power flow problem. Int. J. Electr. Power Energy Syst. 2016;79:1–10.
Ullah Z, Wang S, Radosavljević J, Lai J. A solution to the optimal power flow problem considering WT and PV generation. IEEE Access. 2019;7:46763–46772.
Niknam T, Rasoul Narimani M, Jabbari M, Malekpour AR. A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy. 2011;36:6420–6432.
Herbadji, O., Nadhir, K., Slimani, L. & Bouktir, T. Optimal power flow with emission controlled using firefly algorithm. In 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO’13), 1–6 (2013).
Sarjiya, Sakti, F. P. & Hadi, S. P. Optimal power flow based on flower pollination algorithm. In 10th International Conference on Information Technology and Electrical Engineering (ICITEE’18), 329–334 (2018).
Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015;89:228–249.
Roy R, Jadhav HT. Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. 2015;64:562–578.
Jebaraj L, Sakthivel S. A new swarm intelligence optimization approach to solve power flow optimization problem incorporating conflicting and fuel cost based objective functions. e-Prime Adv. Electr. Eng. Electron. Energy. 2022;2:100031. doi: 10.1016/j.prime.2022.100031. DOI
Sayah S, Zehar K. Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Conver. Manag. 2008;49:3036–3042.
Biswas PP, Suganthan PN, Mallipeddi R, Amaratunga GAJ. Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques. Eng. Appl. Artif. Intell. 2018;68:81–100.
Bentouati B, Khelifi A, Shaheen AM, El-Sehiemy RA. An enhanced moth-swarm algorithm for efficient energy management based multi dimensions OPF problem. J. Ambient Intell. Humaniz. Comput. 2021;12:9499–9519.
Ghoneim SSM, Kotb MF, Hasanien HM, Alharthi MM, El-Fergany AA. Cost minimizations and performance enhancements of power systems using spherical prune differential evolution algorithm including modal analysis. Sustainability. 2021;13:8113. doi: 10.3390/su13148113. DOI
El Sehiemy RA, Selim F, Bentouati B, Abido MA. A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems. Energy. 2020;193:116817. doi: 10.1016/j.energy.2019.116817. DOI
Tian D, Shi Z. MPSO: Modified particle swarm optimization and its applications. Swarm Evol. Comput. 2018;41:49–68.
Zhang Y, Gong DW, Ding ZH. A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf. Sci. 2009;192(4):213–227.
Ghasemi M, Ghavidel S, Ghanbarian MM, Gharibzadeh M, Azizi Vahed A. Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy. 2014;78:276–289.
Jeyadevi S, Baskar S, Babulal CK, WilljuiceIruthayarajan M. Solving multi-objective optimal reactive power dispatch using modified NSGA-II. Int. J. Electr. Power Energy Syst. 2011;33:219–228.
Shilaja C, Ravi K. Optimal power flow using hybrid DA-APSO algorithm in renewable energy resources. Energy Procedia. 2017;117:1085–1092.
Gupta S, et al. A hybrid Jaya-Powell’s pattern search algorithm for multi-objective optimal power flow incorporating distributed generation. Energies. 2021;14:2831. doi: 10.3390/en14102831. DOI
Ouafa, H., Linda, S. & Tarek, B. Multi-objective optimal power flow considering the fuel cost, emission, voltage deviation and power losses using Multi-Objective Dragonfly algorithm. In Proceedings of the International Conference on Recent Advances in Electrical Systems, 191–197 (2017).
Zhang J, Wang S, Tang Q, Zhou Y, Zeng T. An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems. Energy. 2019;172:945–957.
Bai W, Eke I, Lee KY. An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem. Control. Eng. Pract. 2017;61:163–172.
Shaheen AM, El-Sehiemy RA, Elattar EE, Abd-Elrazek AS. A modified crow search optimizer for solving non-linear OPF problem with emissions. IEEE Access. 2021;9:43107–43120.
Hassan MH, Kamel S, Selim A, Khurshaid T, Domínguez-García JL. A modified Rao-2 algorithm for optimal power flow incorporating renewable energy sources. Mathematics. 2021;9:1532. doi: 10.3390/math9131532. DOI
Nadimi-Shahraki MH, Taghian S, Mirjalili S, Abualigah L, Abd Elaziz M, Oliva D. EWOA-OPF: Effective whale optimization algorithm to solve optimal power flow problem. Electronics. 2021;10:2975. doi: 10.3390/electronics10232975. DOI
Meng A, Zeng C, Wang P, Chen D, Zhou T, Zheng X, Yin H. A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem. Energy. 2021;225:120211. doi: 10.1016/j.energy.2021.120211. DOI
Ayyarao TS, et al. War strategy optimization algorithm: a new effective metaheuristic algorithm for global optimization. IEEE Access. 2022;10:25073–25105.
Heidari AA, et al. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019;97:849–872.
Karami H, Anaraki MV, Farzin S, Mirjalili S. Flow direction algorithm (FDA): A novel optimization approach for solving optimization problems. Comput. Ind. Eng. 2021;156:107224. doi: 10.1016/j.cie.2021.107224. DOI