Economical-environmental-technical optimal power flow solutions using a novel self-adaptive wild geese algorithm with stochastic wind and solar power

. 2024 Feb 19 ; 14 (1) : 4135. [epub] 20240219

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38374395

Grantová podpora
2210/2024-2025 Univerzita Hradec Králové

Odkazy

PubMed 38374395
PubMed Central PMC10876935
DOI 10.1038/s41598-024-54510-1
PII: 10.1038/s41598-024-54510-1
Knihovny.cz E-zdroje

This study introduces an enhanced self-adaptive wild goose algorithm (SAWGA) for solving economical-environmental-technical optimal power flow (OPF) problems in traditional and modern energy systems. Leveraging adaptive search strategies and robust diversity capabilities, SAWGA distinguishes itself from classical WGA by incorporating four potent optimizers. The algorithm's application to optimize an OPF model on the different IEEE 30-bus and 118-bus electrical networks, featuring conventional thermal power units alongside solar photovoltaic (PV) and wind power (WT) units, addresses the rising uncertainties in operating conditions, particularly with the integration of renewable energy sources (RESs). The inherent complexity of OPF problems in electrical networks, exacerbated by the inclusion of RESs like PV and WT units, poses significant challenges. Traditional optimization algorithms struggle due to the problem's high complexity, susceptibility to local optima, and numerous continuous and discrete decision parameters. The study's simulation results underscore the efficacy of SAWGA in achieving optimal solutions for OPF, notably reducing overall fuel consumption costs in a faster and more efficient convergence. Noteworthy attributes of SAWGA include its remarkable capabilities in optimizing various objective functions, effective management of OPF challenges, and consistent outperformance compared to traditional WGA and other modern algorithms. The method exhibits a robust ability to achieve global or nearly global optimal settings for decision parameters, emphasizing its superiority in total cost reduction and rapid convergence.

Zobrazit více v PubMed

Carpentier J. Contribution to the economic dispatch problem. Bull. La Soc. Fr. Des. Electr. 1962;3:431–447.

Shaikh MS, Raj S, Babu R, Kumar S, Sagrolikar K. A hybrid moth–flame algorithm with particle swarm optimization with application in power transmission and distribution. Decis Anal J. 2023;6:100182. doi: 10.1016/j.dajour.2023.100182. DOI

Ghasemi M, Ghavidel S, Akbari E, Vahed AA. Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos. Energy. 2014;73:340–353. doi: 10.1016/j.energy.2014.06.026. DOI

Ghasemi M, Ghavidel S, Aghaei J, Gitizadeh M, Falah H. Application of chaos-based chaotic invasive weed optimization techniques for environmental OPF problems in the power system. Chaos Solitons Fractals. 2014 doi: 10.1016/j.chaos.2014.10.007. DOI

Farhat M, Kamel S, Atallah AM, Hassan MH, Agwa AM. ESMA-OPF: Enhanced slime mould algorithm for solving optimal power flow problem. Sustainability. 2022;14:2305. doi: 10.3390/su14042305. DOI

Biswas PP, Suganthan PN, Qu BY, Amaratunga GAJ. Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power. Energy. 2018;150:1039–1057. doi: 10.1016/j.energy.2018.03.002. DOI

Shaikh MS, Raj S, Ikram M, Khan W. Parameters estimation of AC transmission line by an improved moth flame optimization method. J. Electr. Syst. Inf. Technol. 2022;9:25. doi: 10.1186/s43067-022-00066-x. DOI

Shaikh MS, Hua C, Jatoi MA, Ansari MM, Qader AA. Application of grey wolf optimisation algorithm in parameter calculation of overhead transmission line system. IET Sci. Meas. Technol. 2021;15:218–231. doi: 10.1049/smt2.12023. DOI

Biswas PP, Suganthan PN, Amaratunga GAJ. Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manag. 2017;148:1194–1207. doi: 10.1016/j.enconman.2017.06.071. DOI

Guvenc U, Duman S, Kahraman HT, Aras S, Kati M. Fitness-Distance Balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources. Appl. Soft. Comput. 2021;108:107421. doi: 10.1016/j.asoc.2021.107421. DOI

Ghasemi M, Ghavidel S, Ghanbarian MM, Gharibzadeh M, Azizi VA. Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy. 2014;78:276–289. doi: 10.1016/j.energy.2014.10.007. DOI

Shaikh MS, Hua C, Hassan M, Raj S, Jatoi MA, Ansari MM. Optimal parameter estimation of overhead transmission line considering different bundle conductors with the uncertainty of load modeling. Optim. Control Appl. Methods. 2022;43:652–666. doi: 10.1002/oca.2772. DOI

Shaikh MS, Hua C, Raj S, Kumar S, Hassan M, Ansari MM, et al. Optimal parameter estimation of 1-phase and 3-phase transmission line for various bundle conductor’s using modified whale optimization algorithm. Int. J. Electr. Power Energy Syst. 2022;138:107893. doi: 10.1016/j.ijepes.2021.107893. DOI

Duman S, Kahraman HT, Kati M. Economical operation of modern power grids incorporating uncertainties of renewable energy sources and load demand using the adaptive fitness-distance balance-based stochastic fractal search algorithm. Eng. Appl. Artif. Intell. 2023;117:105501. doi: 10.1016/j.engappai.2022.105501. DOI

Hmida JB, Chambers T, Lee J. Solving constrained optimal power flow with renewables using hybrid modified imperialist competitive algorithm and sequential quadratic programming. Electr. Power Syst. Res. 2019;177:105989. doi: 10.1016/j.epsr.2019.105989. DOI

Ullah Z, Wang S, Radosavljević J, Lai J. A solution to the optimal power flow problem considering WT and PV generation. IEEE Access. 2019;7:46763–46772. doi: 10.1109/ACCESS.2019.2909561. DOI

Ali ZM, Aleem SHEA, Omar AI, Mahmoud BS. Economical-environmental-technical operation of power networks with high penetration of renewable energy systems using multi-objective coronavirus herd immunity algorithm. Mathematics. 2022;10:1201. doi: 10.3390/math10071201. DOI

Elattar EE. Optimal power flow of a power system incorporating stochastic wind power based on modified moth swarm algorithm. IEEE Access. 2019;7:89581–89593. doi: 10.1109/ACCESS.2019.2927193. DOI

Bouchekara HREH, Chaib AE, Abido MA, El-Sehiemy RA. Optimal power flow using an Improved Colliding Bodies Optimization algorithm. Appl. Soft Comput. 2016;42:119–131. doi: 10.1016/j.asoc.2016.01.041. DOI

Man-Im A, Ongsakul W, Singh JG, Madhu MN. Multi-objective optimal power flow considering wind power cost functions using enhanced PSO with chaotic mutation and stochastic weights. Electr. Eng. 2019;101:699–718. doi: 10.1007/s00202-019-00815-8. DOI

Niknam T, Narimani MR, Aghaei J, Tabatabaei S, Nayeripour M. Modified Honey Bee Mating Optimisation to solve dynamic optimal power flow considering generator constraints. IET Gener. Transm. Distrib. 2011;5:989. doi: 10.1049/iet-gtd.2011.0055. DOI

Salkuti SR. Optimal power flow using multi-objective glowworm swarm optimization algorithm in a wind energy integrated power system. Int. J. Green Energy. 2019;16:1547–1561. doi: 10.1080/15435075.2019.1677234. DOI

Kahraman HT, Akbel M, Duman S. Optimization of optimal power flow problem using multi-objective manta ray foraging optimizer. Appl. Soft Comput. 2022;116:108334. doi: 10.1016/j.asoc.2021.108334. DOI

Kathiravan R, Kumudini Devi RP. Optimal power flow model incorporating wind, solar, and bundled solar-thermal power in the restructured Indian power system. Int. J. Green Energy. 2017;14:934–950. doi: 10.1080/15435075.2017.1339045. DOI

Riaz M, Hanif A, Hussain SJ, Memon MI, Ali MU, Zafar A. An optimization-based strategy for solving optimal power flow problems in a power system integrated with stochastic solar and wind power energy. Appl. Sci. 2021;11:6883. doi: 10.3390/app11156883. DOI

Duman S, Rivera S, Li J, Wu L. Optimal power flow of power systems with controllable wind-photovoltaic energy systems via differential evolutionary particle swarm optimization. Int. Trans. Electr. Energy Syst. 2020;30:e12270. doi: 10.1002/2050-7038.12270. DOI

Chen G, Qian J, Zhang Z, Sun Z. Multi-objective optimal power flow based on hybrid firefly-bat algorithm and constraints-prior object-fuzzy sorting strategy. IEEE Access. 2019;7:139726–139745. doi: 10.1109/ACCESS.2019.2943480. DOI

Duman S, Li J, Wu L, Guvenc U. Optimal power flow with stochastic wind power and FACTS devices: A modified hybrid PSOGSA with chaotic maps approach. Neural Comput. Appl. 2020;32:8463–8492. doi: 10.1007/s00521-019-04338-y. DOI

Alanazi A, Alanazi M, Memon ZA, Mosavi A. Determining optimal power flow solutions using new adaptive Gaussian TLBO method. Appl. Sci. 2022;12:7959. doi: 10.3390/app12167959. DOI

Ghasemi M, Ghavidel S, Gitizadeh M, Akbari E. An improved teaching–learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow. Int. J. Electr. Power Energy Syst. 2015;65:375–384. doi: 10.1016/j.ijepes.2014.10.027. DOI

Chen M-R, Zeng G-Q, Lu K-D. Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources. Renew. Energy. 2019;143:277–294. doi: 10.1016/j.renene.2019.05.024. DOI

Mouassa S, Althobaiti A, Jurado F, Ghoneim SSM. Novel design of slim mould optimizer for the solution of optimal power flow problems incorporating intermittent sources: A case study of algerian electricity grid. IEEE Access. 2022;10:22646–22661. doi: 10.1109/ACCESS.2022.3152557. DOI

Venkateswara Rao B, Nagesh Kumar GV. Optimal power flow by BAT search algorithm for generation reallocation with unified power flow controller. Int. J. Electr. Power Energy Syst. 2015;68:81–88. doi: 10.1016/j.ijepes.2014.12.057. DOI

Ghasemi M, Davoudkhani IF, Akbari E, Rahimnejad A, Ghavidel S, Li L. A novel and effective optimization algorithm for global optimization and its engineering applications: Turbulent Flow of Water-based Optimization (TFWO) Eng. Appl. Artif. Intell. 2020;92:103666. doi: 10.1016/j.engappai.2020.103666. DOI

Sarhan S, El-Sehiemy R, Abaza A, Gafar M. Turbulent flow of water-based optimization for solving multi-objective technical and economic aspects of optimal power flow problems. Mathematics. 2022;10:2106. doi: 10.3390/math10122106. DOI

Zahedibialvaei A, Trojovský P, Hesari-Shermeh M, Matoušová I, Trojovská E, Hubálovský Š. An enhanced turbulent flow of water-based optimization for optimal power flow of power system integrated wind turbine and solar photovoltaic generators. Sci. Rep. 2023;13:14635. doi: 10.1038/s41598-023-41749-3. PubMed DOI PMC

Hassan MH, Elsayed SK, Kamel S, Rahmann C, Taha IBM. Developing chaotic Bonobo optimizer for optimal power flow analysis considering stochastic renewable energy resources. Int. J. Energy Res. 2022;46:11291–11325. doi: 10.1002/er.7928. DOI

Chang Y-C, Lee T-Y, Chen C-L, Jan R-M. Optimal power flow of a wind-thermal generation system. Int. J. Electr. Power Energy Syst. 2014;55:312–320. doi: 10.1016/j.ijepes.2013.09.028. DOI

Kaveh A, Dadras A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017;110:69–84. doi: 10.1016/j.advengsoft.2017.03.014. DOI

Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017;105:30–47. doi: 10.1016/j.advengsoft.2017.01.004. DOI

Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019;97:849–872. doi: 10.1016/j.future.2019.02.028. DOI

Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math Comput Simul. 2022;192:84–110. doi: 10.1016/j.matcom.2021.08.013. DOI

Ghasemi M, Trojovský P, Trojovská E, Zare M. Gaussian bare-bones Levy circulatory system-based optimization for power flow in the presence of renewable units. Eng. Sci. Technol. Int. J. 2023;47:101551.

Zimmerman, R. D., Murillo-Sanchez, C. E., & Gan, D. Matpower. PSERC [Online] Softw. Available http://www.pserc.cornell.edu/matpower/ (1997).

Ghasemi M, Ghavidel S, Rahmani S, Roosta A, Falah H. A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions. Eng. Appl. Artif. Intell. 2014;29:54–69. doi: 10.1016/j.engappai.2013.11.003. DOI

Ghasemi M, Zare M, Zahedi A, Trojovský P, Abualigah L, Trojovská E. Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO) Comput. Methods Appl. Mech. Eng. 2024;419:116582. doi: 10.1016/j.cma.2023.116582. DOI

Ghasemi M, Aghaei J, Akbari E, Ghavidel S, Li L. A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems. Energy. 2016 doi: 10.1016/j.energy.2016.04.002. DOI

Shaikh MS, Ansari MM, Jatoi MA, Arain ZA, Qader AA. Analysis of underground cable fault techniques using MATLAB simulation. Sukkur IBA J. Comput. Math. Sci. 2020;4:1–10.

Ghasemi M, Rahimnejad A, Hemmati R, Akbari E, Gadsden SA. Wild Geese Algorithm: A novel algorithm for large scale optimization based on the natural life and death of wild geese. Array. 2021;11:100074. doi: 10.1016/j.array.2021.100074. DOI

Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006;10:646–657. doi: 10.1109/TEVC.2006.872133. DOI

Mohamed A-AA, Mohamed YS, El-Gaafary AAM, Hemeida AM. Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 2017;142:190–206. doi: 10.1016/j.epsr.2016.09.025. DOI

Zimmerman RD, Murillo-Sanchez CE, Thomas RJ. MATPOWER steady-state oper planning. Anal. Tools Power Syst. Res. Educ. 2011;26:12–19.

Khunkitti S, Premrudeepreechacharn S, Siritaratiwat A. A two-archive Harris Hawk optimization for solving many-objective optimal power flow problems. IEEE Access. 2023;11:134557–134574. doi: 10.1109/ACCESS.2023.3337535. DOI

Khunkitti S, Siritaratiwat A, Premrudeepreechacharn S. A many-objective marine predators algorithm for solving many-objective optimal power flow problem. Appl. Sci. 2022;12:11829. doi: 10.3390/app122211829. DOI

Abou El Ela AA, Abido MA, Spea SR. Optimal power flow using differential evolution algorithm. Electr. Power Syst. Res. 2010;80:878–885. doi: 10.1016/j.epsr.2009.12.018. DOI

Sayah S, Zehar K. Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Convers. Manag. 2008;49:3036–3042. doi: 10.1016/j.enconman.2008.06.014. DOI

Kumari MS, Maheswarapu S. Enhanced Genetic Algorithm based computation technique for multi-objective Optimal Power Flow solution. Int. J. Electr. Power Energy Syst. 2010;32:736–742. doi: 10.1016/j.ijepes.2010.01.010. DOI

Ghasemi M, Zare M, Mohammadi SK, Mirjalili S. Applications of Whale Migration Algorithm in Optimal Power Flow Problems of Power Systems. Elsevier; 2024. pp. 347–364.

Kumar S, Chaturvedi DKK. Optimal power flow solution using fuzzy evolutionary and swarm optimization. Int. J. Electr. Power Energy Syst. 2013;47:416–423. doi: 10.1016/j.ijepes.2012.11.019. DOI

Sivasubramani S, Swarup KS. Multi-objective harmony search algorithm for optimal power flow problem. Int. J. Electr. Power Energy Syst. 2011;33:745–752. doi: 10.1016/j.ijepes.2010.12.031. DOI

Bhattacharya A, Chattopadhyay PK. Application of biogeography-based optimisation to solve different optimal power flow problems. IET Gener Transm Distrib. 2011;5:70. doi: 10.1049/iet-gtd.2010.0237. DOI

Niknam T, Narimani M, Jabbari M, Malekpour AR. A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy. 2011;36:6420–6432. doi: 10.1016/j.energy.2011.09.027. DOI

Narimani MR, Azizipanah-Abarghooee R, Zoghdar-Moghadam-Shahrekohne B, Gholami K. A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type. Energy. 2013;49:119–136. doi: 10.1016/j.energy.2012.09.031. DOI

Meng A, Zeng C, Wang P, Chen D, Zhou T, Zheng X, et al. A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem. Energy. 2021;225:120211. doi: 10.1016/j.energy.2021.120211. DOI

Hassan MH, Kamel S, Selim A, Khurshaid T, Domínguez-García JL. A modified Rao-2 algorithm for optimal power flow incorporating renewable energy sources. Mathematics. 2021;9:1532. doi: 10.3390/math9131532. DOI

El-Fergany AA, Hasanien HM. Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electr. Power Comp. Syst. 2015;43:1548–1559. doi: 10.1080/15325008.2015.1041625. DOI

Bai W, Eke I, Lee KY. An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem. Control Eng. Pract. 2017;61:163–172. doi: 10.1016/j.conengprac.2017.02.010. DOI

Shaheen AM, El-Sehiemy RA, Elattar EE, Abd-Elrazek AS. A modified crow search optimizer for solving non-linear OPF problem with emissions. IEEE Access. 2021;9:43107–43120. doi: 10.1109/ACCESS.2021.3060710. DOI

Nadimi-Shahraki MH, Taghian S, Mirjalili S, Abualigah L, Abd Elaziz M, Oliva D. EWOA-OPF: Effective whale optimization algorithm to solve optimal power flow problem. Electronics. 2021;10:2975. doi: 10.3390/electronics10232975. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...