Enhanced Dual-Selection Krill Herd Strategy for Optimizing Network Lifetime and Stability in Wireless Sensor Networks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.10.03.01/00/22_003/0000048
European Union under the REFRESH - Research Ex-cellence For REgion Sustainability and High-tech Industries via the Operational Programme Just Transition
CZ.02.1.01/0.0/0.0/16_019/0000867
European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems within the Operational Programme Research, Development, and Education
PubMed
37687941
PubMed Central
PMC10490580
DOI
10.3390/s23177485
PII: s23177485
Knihovny.cz E-zdroje
- Klíčová slova
- dual mechanism, exploitation, exploration, krill herd, latency, stability,
- Publikační typ
- časopisecké články MeSH
Wireless sensor networks (WSNs) enable communication among sensor nodes and require efficient energy management for optimal operation under various conditions. Key challenges include maximizing network lifetime, coverage area, and effective data aggregation and planning. A longer network lifetime contributes to improved data transfer durability, sensor conservation, and scalability. In this paper, an enhanced dual-selection krill herd (KH) optimization clustering scheme for resource-efficient WSNs with minimal overhead is introduced. The proposed approach increases overall energy utilization and reduces inter-node communication, addressing energy conservation challenges in node deployment and clustering for WSNs as optimization problems. A dynamic layering mechanism is employed to prevent repetitive selection of the same cluster head nodes, ensuring effective dual selection. Our algorithm is designed to identify the optimal solution through enhanced exploitation and exploration processes, leveraging a modified krill-based clustering method. Comparative analysis with benchmark approaches demonstrates that the proposed model enhances network lifetime by 23.21%, increases stable energy by 19.84%, and reduces network latency by 22.88%, offering a more efficient and reliable solution for WSN energy management.
Department of Biosciences Saveetha School of Engineering Saveetha Nagar Thandalam 602105 India
Department of Computer Science and Engineering MLR Institute of Technology Hyderabad 500043 India
Department of R and D Bond Marine Consultancy London EC1V 2NX UK
School of Computing Graphic Era Hill University Dehradun 248002 India
Zobrazit více v PubMed
Jia D., Zhu H., Zou S., Hu P. Dynamic Cluster Head Selection Method for Wireless Sensor Network. IEEE Sens. J. 2016;16:2746–2754. doi: 10.1109/JSEN.2015.2512322. DOI
Li B., Zhang M., Rong Y., Han Z. Transceiver Optimization for Wireless Powered Time-Division Duplex MU-MIMO Systems: Non-Robust and Robust Designs. IEEE Trans. Wirel. Commun. 2022;21:4594–4607. doi: 10.1109/TWC.2021.3131595. DOI
Karaboga D., Okdem S., Ozturk C. Cluster based wireless sensor network routing using artificial bee colony algorithm. Wirel. Netw. 2012;18:847–860. doi: 10.1007/s11276-012-0438-z. DOI
Cao K., Wang B., Ding H., Lv L., Tian J., Hu H., Gong F. Achieving Reliable and Secure Communications in Wireless-Powered NOMA Systems. IEEE Trans. Veh. Technol. 2021;70:1978–1983. doi: 10.1109/TVT.2021.3053093. DOI
Pal V., Singh G., Yadav R.P. Cluster Head Selection Optimization Based on Genetic Algorithm to Pro-long Lifetime of Wireless Sensor Networks. Procedia Comput. Sci. 2015;57:1417–1423. doi: 10.1016/j.procs.2015.07.461. DOI
Cao B., Zhao J., Gu Y., Fan S., Yang P. Security-aware industrial wireless sensor network deployment optimization. IEEE Trans. Industr. Inform. 2020;16:5309–5316. doi: 10.1109/TII.2019.2961340. DOI
Pal V., Singh G., Yadav R.P. SCHS: Smart Cluster Head Selection Scheme for Clustering Algorithms in Wireless Sensor Networks. Wirel. Sens. Netw. 2012;4:273–280. doi: 10.4236/wsn.2012.411039. DOI
Ding G., Anselmi N., Xu W., Li P., Rocca P. Interval-bounded optimal power pattern synthesis of array antenna excitations robust to mutual coupling. IEEE Antennas Wirel. Propag. Lett. 2023:1–5. doi: 10.1109/LAWP.2023.3291428. DOI
Singh B., Lobiyal D.K. A novel energy-aware cluster head selection based on particle swarm optimization for wireless sensor networks. Hum. -Centric Comput. Inf. Sci. 2012;2:13. doi: 10.1186/2192-1962-2-13. DOI
Pan S., Lin M., Xu M., Zhu S., Bian L.-A., Li G. A Low-Profile Programmable Beam Scanning Holographic Array Antenna Without Phase Shifters. IEEE Internet Things J. 2022;9:8838–8851. doi: 10.1109/JIOT.2021.3116158. DOI
Pyage R.K., Chandrakanth H.G. EDCH: A Novel Clustering Algorithm for Wireless Sensor Networks. Eur. J. Eng. Res. Sci. 2019;4:45–51. doi: 10.24018/ejers.2019.4.3.1171. DOI
Ma X., Dong Z., Quan W., Dong Y., Tan Y. Real-time assessment of asphalt pavement moduli and traffic loads using monitoring data from Built-in Sensors: Optimal sensor placement and identification algorithm. Mech. Syst. Signal Process. 2023;187:109930. doi: 10.1016/j.ymssp.2022.109930. DOI
Asokan R., Preethi P. Deep Learning Applications and Intelligent Decision Making in Engineering. IGI Global; Hershey, PA, USA: 2021. Deep learning with conceptual view in meta data for content categorization; pp. 176–191.
Zhang J., Liu Y., Li Z., Lu Y. Forecast-Assisted Service Function Chain Dynamic Deployment for SDN/NFV-Enabled Cloud Management Systems. IEEE Syst. J. 2023:1–12. doi: 10.1109/JSYST.2023.3263865. DOI
John J., Rodrigues P. MOTCO: Multi-objective Taylor Crow Optimization Algorithm for Cluster Head Selection in Energy Aware Wireless Sensor Network. Mob. Netw. Appl. 2019;24:1509–1525. doi: 10.1007/s11036-019-01271-1. DOI
Zhang J., Peng S., Gao Y., Zhang Z., Hong Q. APMSA: Adversarial perturbation against model stealing attacks. IEEE Trans. Inf. Forensics Secur. 2023;18:1667–1679. doi: 10.1109/TIFS.2023.3246766. DOI
Gui J., Zhou K., Xiong N. A cluster-based dual-adaptive topology control approach in wireless sensor networks. Sensors. 2016;16:1576. doi: 10.3390/s16101576. PubMed DOI PMC
Cheng B., Wang M., Zhao S., Zhai Z., Zhu D., Chen J. Situation-Aware Dynamic Service Coordination in an IoT Environment. IEEE ACM Trans. Netw. 2017;25:2082–2095. doi: 10.1109/TNET.2017.2705239. DOI
Shankar T., Shanmugavel S., Rajesh A. Hybrid HSA and PSO algorithm for energy efficient cluster head selection in wireless sensor networks. Swarm Evol. Comput. 2016;30:1–10. doi: 10.1016/j.swevo.2016.03.003. DOI
Cheng L., Yin F., Theodoridis S., Chatzis S., Chang T.-H. Rethinking Bayesian Learning for Data Analysis: The art of prior and inference in sparsity-aware modeling. IEEE Signal Process. Mag. 2022;39:18–52. doi: 10.1109/MSP.2022.3198201. DOI
Wang G.-G., Gandomi A.H., Alavi A.H., Deb S. A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Comput. Appl. 2015;27:989–1006. doi: 10.1007/s00521-015-1914-z. DOI
Tan J., Jin H., Hu H., Hu R., Zhang H., Zhang H. WF-MTD: Evolutionary decision method for moving target defense based on wright-fisher process. IEEE Trans. Dependable Secure Comput. 2022:1–14. doi: 10.1109/TDSC.2022.3232537. DOI
Rao P.C.S., Jana P.K., Banka H. A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wirel. Netw. 2016;23:2005–2020. doi: 10.1007/s11276-016-1270-7. DOI
Shankar R., Ganesh N., Čep R., Narayanan R.C., Pal S., Kalita K. Hybridized Particle Swarm—Gravitational Search Algorithm for Process Optimization. Processes. 2022;10:616. doi: 10.3390/pr10030616. DOI
Ganesh N., Shankar R., Čep R., Chakraborty S., Kalita K. Efficient feature selection using weighted super-position attraction optimization algorithm. Appl. Sci. 2023;13:3223. doi: 10.3390/app13053223. DOI
Ganesh N., Shankar R., Kalita K., Jangir P., Oliva D., Pérez-Cisneros M. A Novel Decomposition-Based Multi-Objective Symbiotic Organism Search Optimization Algorithm. Mathematics. 2023;11:1898. doi: 10.3390/math11081898. DOI
Narayanan R.C., Ganesh N., Čep R., Jangir P., Chohan J.S., Kalita K. A Novel Many-Objective Sine–Cosine Algorithm (MaOSCA) for Engineering Applications. Mathematics. 2023;11:2301. doi: 10.3390/math11102301. DOI
Joshi M., Kalita K., Jangir P., Ahmadianfar I., Chakraborty S. A Conceptual Comparison of Dragonfly Algorithm Variants for CEC-2021 Global Optimization Problems. Arab. J. Sci. Eng. 2023;48:1563–1593. doi: 10.1007/s13369-022-06880-9. DOI
Dai Z., Ma Z., Zhang X., Chen J., Ershadnia R., Luan X., Soltanian M.R. An integrated experimental design framework for optimizing solute transport monitoring locations in heterogeneous sedimentary media. J. Hydrol. 2022;614:128541. doi: 10.1016/j.jhydrol.2022.128541. DOI
Haq M.Z.U., Khan M.Z., Rehman H.U., Mehmood G., Binmahfoudh A., Krichen M., Alroobaea R. An Adaptive Topology Management Scheme to Maintain Network Connectivity in Wireless Sensor Networks. Sensors. 2022;22:2855. doi: 10.3390/s22082855. PubMed DOI PMC
Cao B., Zhao J., Lv Z., Yang P. Diversified Personalized Recommendation Optimization Based on Mobile Data. IEEE Trans. Intell. Transp. Syst. 2021;22:2133–2139. doi: 10.1109/TITS.2020.3040909. DOI
Cao B., Zhao J., Yang P., Gu Y., Muhammad K., Rodrigues J.J., de Albuquerque V.H.C. Multiobjective 3-D topology optimization of next-generation wireless data center network. IEEE Trans. Industr. Inform. 2020;16:3597–3605. doi: 10.1109/TII.2019.2952565. DOI
Li B., Tan Y., Wu A.-G., Duan G.-R. A Distributionally Robust Optimization Based Method for Stochastic Model Predictive Control. IEEE Trans. Autom. Control. 2022;67:5762–5776. doi: 10.1109/TAC.2021.3124750. DOI
Zhang X., Wang Z., Lu Z. Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm. Appl. Energy. 2022;306:118018. doi: 10.1016/j.apenergy.2021.118018. DOI
Lu S., Liu M., Yin L., Yin Z., Liu X., Zheng W. The multi-modal fusion in visual question answering: A review of attention mechanisms. PeerJ Comput. Sci. 2023;9:e1400. doi: 10.7717/peerj-cs.1400. PubMed DOI PMC
Liu X., Zhou G., Kong M., Yin Z., Li X., Yin L., Zheng W. Developing Multi-Labelled Corpus of Twitter Short Texts: A Semi-Automatic Method. Systems. 2023;11:390. doi: 10.3390/systems11080390. DOI
Song Y., Xin R., Chen P., Zhang R., Chen J., Zhao Z. Identifying performance anomalies in fluctuating cloud environments: A robust correlative-GNN-based explainable approach. Futur. Gener. Comput. Syst. 2023;145:77–86. doi: 10.1016/j.future.2023.03.020. DOI
Hu J., Wu Y., Li T., Ghosh B.K. Consensus Control of General Linear Multiagent Systems With Antagonistic Interactions and Communication Noises. IEEE Trans. Autom. Control. 2019;64:2122–2127. doi: 10.1109/TAC.2018.2872197. DOI
Preethi P., Asokan R., Thillaiarasu N., Saravanan T. An effective digit recognition model using enhanced convolutional neural network based chaotic grey wolf optimization. J. Intell. Fuzzy Syst. 2021;41:3727–3737. doi: 10.3233/JIFS-211242. DOI
Sirdeshpande N., Udupi V. Fractional lion optimization for cluster head-based routing protocol in wire-less sensor network. J. Frankl. Inst. 2017;354:4457–4480. doi: 10.1016/j.jfranklin.2017.04.005. DOI
Cai X., Sun Y., Cui Z., Zhang W., Chen J. Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks. KSII Trans. Internet Inf. Syst. 2019;13:34–46.
Dattatraya K.N., Rao K.R. Hybrid based cluster head selection for maximizing network lifetime and energy efficiency in WSN. J. King Saud Univ.-Comput. Inf. Sci. 2019;1:67–75. doi: 10.1016/j.jksuci.2019.04.003. DOI
Janakiraman S. A Hybrid Ant Colony and Artificial Bee Colony Optimization Algorithm-based Cluster Head Selection for IoT. Procedia Comput. Sci. 2018;143:360–366. doi: 10.1016/j.procs.2018.10.407. DOI
Rambabu B., Reddy A.V., Janakiraman S. Hybrid Artificial Bee Colony and Monarchy Butterfly Optimization Algorithm (HABC-MBOA)-based cluster head selection for WSNs. J. King Saud Univ.-Comput. Inf. Sci. 2019;1:22–31. doi: 10.1016/j.jksuci.2019.12.006. DOI
Preethi P., Asokan R. An Attempt to Design Improved and Fool Proof Safe Distribution of Personal Healthcare Records for Cloud Computing. Mob. Netw. Appl. 2019;24:1755–1762. doi: 10.1007/s11036-019-01379-4. DOI