• This record comes from PubMed

Design and Fabrication of Electrospun PLA-Based Silica-Modified Composite Nanofibers with Antibacterial Properties for Perspective Wound Treatment

. 2023 Aug 22 ; 15 (17) : . [epub] 20230822

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
RP/CPS/2022/002 Ministry of Education Youth and Sports
IGA/CPS/2023/002 Internal Grant Agency of TBU in Zlin

The aim of this study was to develop a novel amikacin (AMI) delivery system with prolonged release based on composite electrospun nanofibers of PLA supplemented with AMI-loaded Si nanoparticles of different morphology. The resultant materials were characterized in terms of their physical properties (scanning electron microscopy, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, water contact angle). High-Performance Liquid Chromatography was used to determine the AMI content in the liquid fractions obtained from the release study. The results show that nanofibers of fumed silica exhibited an aggregated, highly porous structure, whereas nanofibers of mesoporous silica had a spherical morphology. Both silica nanoparticles had a significant effect on the hydrophilic properties of PLA nanofiber surfaces. The liquid fractions were investigated to gauge the encapsulation efficiency (EE) and loading efficiency (LE) of AMI, demonstrating 66% EE and 52% LE for nanofibers of fumed silica compared to nanofibers of mesoporous silica nanoparticles (52% EE and 12.7% LE). The antibacterial activity of the AMI-loaded nanofibers was determined by the Kirby-Bauer Method. These results demonstrated that the PLA-based silica nanofibers effectively enhanced the antibacterial properties against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.

See more in PubMed

Jones V., Grey J.E., Harding K.G. Wound dressings. BMJ. 2006;332:777–780. doi: 10.1136/bmj.332.7544.777. PubMed DOI PMC

Dong R., Guo B. Smart wound dressings for wound healing. Nano Today. 2021;41:101290. doi: 10.1016/j.nantod.2021.101290. DOI

Rezvani Ghomi E., Khalili S., Nouri Khorasani S., Esmaeely Neisiany R., Ramakrishna S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019;136:47738. doi: 10.1002/app.47738. DOI

Benko A., Reczyńska-Kolman K., Medina-Cruz D., Cholula-Diaz J.L., O’Connell C., Truong L.B., Martínez L., Kazimierczak P., Przekora A., Wilk S., et al. Chapter 2—Nanomaterials to aid wound healing and infection control. In: Guisbiers G., editor. Advanced Topics in Biomaterials. Elsevier; Amsterdam, The Netherlands: 2023. pp. 19–67.

Yoo H.S., Kim T.G., Park T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009;61:1033–1042. doi: 10.1016/j.addr.2009.07.007. PubMed DOI

Gugulothu D., Barhoum A., Nerella R., Ajmer R., Bechelany M. In: Fabrication of Nanofibers: Electrospinning and Non-Electrospinning Techniques BT—Handbook of Nanofibers. Barhoum A., Bechelany M., Makhlouf A.S.H., editors. Springer International Publishing; Cham, Switzerland: 2019. pp. 45–77.

Alghoraibi I., Alomari S. In: Different Methods for Nanofiber Design and Fabrication BT—Handbook of Nanofibers. Barhoum A., Bechelany M., Makhlouf A., editors. Springer International Publishing; Cham, Switzerland: 2018. pp. 1–46.

Lv H., Song S., Sun S., Ren L., Zhang H. Enhanced properties of poly(lactic acid) with silica nanoparticles. Polym. Adv. Technol. 2016;27:1156–1163. doi: 10.1002/pat.3777. DOI

Kulkarni A., Bambole V.A., Mahanwar P.A. Electrospinning of Polymers, Their Modeling and Applications. Polym. Plast. Technol. Eng. 2010;49:427–441. doi: 10.1080/03602550903414019. DOI

Torres-Martinez E.J., Cornejo Bravo J.M., Serrano Medina A., Pérez González G.L., Villarreal Gómez L.J. A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices. Curr. Drug Deliv. 2018;15:1360–1374. doi: 10.2174/1567201815666180723114326. PubMed DOI PMC

Herrero-Herrero M., Gómez-Tejedor J.A., Vallés-Lluch A. Role of Electrospinning Parameters on Poly(Lactic-co-Glycolic Acid) and Poly(Caprolactone-co-Glycolic acid) Membranes. Polymers. 2021;13:695. doi: 10.3390/polym13050695. PubMed DOI PMC

Yan X., Gevelber M. Investigation of electrospun fiber diameter distribution and process variations. J. Electrostat. 2010;68:458–464. doi: 10.1016/j.elstat.2010.06.009. DOI

Xue J., Wu T., Dai Y., Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC

Stack M., Parikh D., Wang H., Wang L., Xu M., Zou J., Cheng J., Wang H. Electrospun Nanofibers for Drug Delivery. In: Ding B., Wang X.m., Yu J., editors. Micro and Nano Technologies, Electrospinning: Nanofabrication and Applications. William Andrew Publishing; Noorwich, NY, USA: 2019. pp. 735–764.

Shetty K., Bhandari A., Yadav K.S. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system. J. Control. Release Off. J. Control. Release Soc. 2022;350:421–434. doi: 10.1016/j.jconrel.2022.08.035. PubMed DOI

Wang Y., Qiao W., Wang B., Zhang Y., Shao P., Yin T. Electrospun composite nanofibers containing nanoparticles for the programmable release of dual drugs. Polym. J. 2011;43:478–483. doi: 10.1038/pj.2011.11. DOI

Alexeev D., Goedecke N., Snedeker J., Ferguson S. Mechanical evaluation of electrospun poly(ε-caprolactone) single fibers. Mater. Today Commun. 2020;24:101211. doi: 10.1016/j.mtcomm.2020.101211. DOI

Castillo-Henríquez L., Vargas-Zúñiga R., Pacheco-Molina J., Vega-Baudrit J. Electrospun nanofibers: A nanotechnological approach for drug delivery and dissolution optimization in poorly water-soluble drugs. ADMET DMPK. 2020;8:325–353. doi: 10.5599/admet.844. PubMed DOI PMC

Song J., Kim M., Lee H. Recent Advances on Nanofiber Fabrications: Unconventional State-of-the-Art Spinning Techniques. Polymers. 2020;12:1386. doi: 10.3390/polym12061386. PubMed DOI PMC

Selvarajan V., Obuobi S., Ee P.L.R. Silica Nanoparticles-A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020;8:602. doi: 10.3389/fchem.2020.00602. PubMed DOI PMC

Zhong C., He M., Lou K., Gao F. In: Chapter 10—The Application, Neurotoxicity, and Related Mechanism of Silica Nanoparticles. Jiang X., Gao H., editors. Academic Press; Cambridge, MA, USA: 2017. pp. 227–257.

Wang C., Wang J., Zeng L., Qiao Z., Liu X., Liu H., Zhang J., Ding J. Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules. 2019;24:834. doi: 10.3390/molecules24050834. PubMed DOI PMC

Gómez-Pachón E.Y., Vera-Graziano R., Campos R.M. Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning. IOP Conf. Ser. Mater. Sci. Eng. 2014;59:12003. doi: 10.1088/1757-899X/59/1/012003. DOI

Rajeshkumar G., Arvindh Seshadri S., Devnani G.L., Sanjay M.R., Siengchin S., Prakash Maran J., Al-Dhabi N.A., Karuppiah P., Mariadhas V.A., Sivarajasekar N., et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—A comprehensive review. J. Clean. Prod. 2021;310:127483. doi: 10.1016/j.jclepro.2021.127483. DOI

Balla E., Daniilidis V., Karlioti G., Kalamas T., Stefanidou M., Bikiaris N.D., Vlachopoulos A., Koumentakou I., Bikiaris D.N. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers. 2021;13:1822. doi: 10.3390/polym13111822. PubMed DOI PMC

Naser A.Z., Deiab I., Darras B.M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs){,} green alternatives to petroleum-based plastics: A review. RSC Adv. 2021;11:17151–17196. doi: 10.1039/D1RA02390J. PubMed DOI PMC

Liu R., Zhang S., Zhao C., Yang D., Cui T., Liu Y., Min Y. Regulated Surface Morphology of Polyaniline/Polylactic Acid Composite Nanofibers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering. Nanoscale Res. Lett. 2021;16:4. doi: 10.1186/s11671-020-03457-z. PubMed DOI PMC

Imani F., Karimi-Soflou R., Shabani I., Karkhaneh A. PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold. Polymer. 2021;218:123487. doi: 10.1016/j.polymer.2021.123487. DOI

Liu S., Qin S., He M., Zhou D., Qin Q., Wang H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos. Part B Eng. 2020;199:108238. doi: 10.1016/j.compositesb.2020.108238. DOI

Casalini T., Rossi F., Castrovinci A., Perale G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 2019;7:259. doi: 10.3389/fbioe.2019.00259. PubMed DOI PMC

Baran E.H., Erbil H.Y. Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review. Colloids Interfaces. 2019;3:43. doi: 10.3390/colloids3020043. DOI

Tian B., Liu Y. Antibacterial applications and safety issues of silica-based materials: A review. Int. J. Appl. Ceram. Technol. 2021;18:289–301. doi: 10.1111/ijac.13641. DOI

Chou S.-F., Carson D., Woodrow K.A. Current strategies for sustaining drug release from electrospun nanofibers. J. Control. Release. 2015;220:584–591. doi: 10.1016/j.jconrel.2015.09.008. PubMed DOI PMC

Lutzweiler G., Ndreu Halili A., Engin Vrana N. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics. 2020;12:602. doi: 10.3390/pharmaceutics12070602. PubMed DOI PMC

Nayak R., Padhye R., Kyratzis I.L., Truong Y.B., Arnold L. Recent advances in nanofibre fabrication techniques. Text. Res. J. 2011;82:129–147. doi: 10.1177/0040517511424524. DOI

Nelson M.T., Keith J.P., Li B.-B., Stocum D.L., Li J. Electrospun composite polycaprolactone scaffolds for optimized tissue regeneration. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2012;226:111–121. doi: 10.1177/1740349912450828. DOI

Cheng R., Liu L., Xiang Y., Lu Y., Deng L., Zhang H., Santos H.A., Cui W. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials. 2020;232:119706. doi: 10.1016/j.biomaterials.2019.119706. PubMed DOI

Di Credico B., Manzini E., Viganò L., Canevali C., D’Arienzo M., Mostoni S., Nisticò R., Scotti R. Silica nanoparticles self-assembly process in polymer composites: Towards advanced materials. Ceram. Int. 2023;49:26165–26181. doi: 10.1016/j.ceramint.2023.05.125. DOI

Petushkov A., Ndiege N., Salem A.K., Larsen S.C. In: Chapter 7—Toxicity of Silica Nanomaterials: Zeolites, Mesoporous Silica, and Amorphous Silica Nanoparticles. Fishbein J.C., editor. Volume 4. Elsevier; Amsterdam, The Netherlands: 2010. pp. 223–266.

Chen X., Xu C., He H. Electrospinning of silica nanoparticles-entrapped nanofibers for sustained gentamicin release. Biochem. Biophys. Res. Commun. 2019;516:1085–1089. doi: 10.1016/j.bbrc.2019.06.163. PubMed DOI

Kaseem M., Ur Rehman Z., Hossain S., Singh A.K., Dikici B. A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites. Polymers. 2021;13:3036. doi: 10.3390/polym13183036. PubMed DOI PMC

Rosenberg C.R., Fang X., Allison K.R. Potentiating aminoglycoside antibiotics to reduce their toxic side effects. PLoS ONE. 2020;15:e0237948. doi: 10.1371/journal.pone.0237948. PubMed DOI PMC

Sizar O., Rahman S., Sundareshan V. Amikacin. [(accessed on 1 August 2023)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK430908/

Pavelkova A., Kucharczyk P., Stloukal P., Koutny M., Sedlarik V. Novel poly(lactic acid)–poly(ethylene oxide) chain-linked copolymer and its application in nano-encapsulation. Polym. Adv. Technol. 2014;25:595–604. doi: 10.1002/pat.3241. DOI

Nandy S., Kundu D., Naskar M.K. Synthesis of mesoporous Stöber silica nanoparticles: The effect of secondary and tertiary alkanolamines. J. Sol-Gel Sci. Technol. 2014;72:49–55. doi: 10.1007/s10971-014-3420-7. DOI

The European Committee on Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Test Methodology. [(accessed on 1 August 2023)]. Available online: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology.

Alothman Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials. 2012;5:2874–2902. doi: 10.3390/ma5122874. DOI

Haul R.S.J., Gregg K.S.W. Sing: Adsorption, Surface Area and Porosity. 2. Auflage, Academic Press, London 1982. 303 Seiten, Preis: $ 49.50. Berichte Bunsenges. Phys. Chem. 1982;86:957. doi: 10.1002/bbpc.19820861019. DOI

Reddy V.S., Tian Y., Zhang C., Ye Z., Roy K., Chinnappan A., Ramakrishna S., Liu W., Ghosh R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers. 2021;13:3746. doi: 10.3390/polym13213746. PubMed DOI PMC

Zang D.Y., Rio E., Delon G., Langevin D., Wei B., Binks B.P. Influence of the contact angle of silica nanoparticles at the air–water interface on the mechanical properties of the layers composed of these particles. Mol. Phys. 2011;109:1057–1066. doi: 10.1080/00268976.2010.542778. DOI

Chen W., Karde V., Cheng T.N.H., Ramli S.S., Heng J.Y.Y. Surface hydrophobicity: Effect of alkyl chain length and network homogeneity. Front. Chem. Sci. Eng. 2021;15:90–98. doi: 10.1007/s11705-020-2003-0. DOI

Chi H.Y., Chan V., Li C., Hsieh J.H., Lin P.H., Tsai Y.-H., Chen Y. Fabrication of polylactic acid/paclitaxel nano fibers by electrospinning for cancer therapeutics. BMC Chem. 2020;14:63. doi: 10.1186/s13065-020-00711-4. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...