Design and Fabrication of Electrospun PLA-Based Silica-Modified Composite Nanofibers with Antibacterial Properties for Perspective Wound Treatment
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RP/CPS/2022/002
Ministry of Education Youth and Sports
IGA/CPS/2023/002
Internal Grant Agency of TBU in Zlin
PubMed
37688125
PubMed Central
PMC10490196
DOI
10.3390/polym15173500
PII: polym15173500
Knihovny.cz E-resources
- Keywords
- electrospinning, nanofibers, silica nanoparticles,
- Publication type
- Journal Article MeSH
The aim of this study was to develop a novel amikacin (AMI) delivery system with prolonged release based on composite electrospun nanofibers of PLA supplemented with AMI-loaded Si nanoparticles of different morphology. The resultant materials were characterized in terms of their physical properties (scanning electron microscopy, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, water contact angle). High-Performance Liquid Chromatography was used to determine the AMI content in the liquid fractions obtained from the release study. The results show that nanofibers of fumed silica exhibited an aggregated, highly porous structure, whereas nanofibers of mesoporous silica had a spherical morphology. Both silica nanoparticles had a significant effect on the hydrophilic properties of PLA nanofiber surfaces. The liquid fractions were investigated to gauge the encapsulation efficiency (EE) and loading efficiency (LE) of AMI, demonstrating 66% EE and 52% LE for nanofibers of fumed silica compared to nanofibers of mesoporous silica nanoparticles (52% EE and 12.7% LE). The antibacterial activity of the AMI-loaded nanofibers was determined by the Kirby-Bauer Method. These results demonstrated that the PLA-based silica nanofibers effectively enhanced the antibacterial properties against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.
See more in PubMed
Jones V., Grey J.E., Harding K.G. Wound dressings. BMJ. 2006;332:777–780. doi: 10.1136/bmj.332.7544.777. PubMed DOI PMC
Dong R., Guo B. Smart wound dressings for wound healing. Nano Today. 2021;41:101290. doi: 10.1016/j.nantod.2021.101290. DOI
Rezvani Ghomi E., Khalili S., Nouri Khorasani S., Esmaeely Neisiany R., Ramakrishna S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019;136:47738. doi: 10.1002/app.47738. DOI
Benko A., Reczyńska-Kolman K., Medina-Cruz D., Cholula-Diaz J.L., O’Connell C., Truong L.B., Martínez L., Kazimierczak P., Przekora A., Wilk S., et al. Chapter 2—Nanomaterials to aid wound healing and infection control. In: Guisbiers G., editor. Advanced Topics in Biomaterials. Elsevier; Amsterdam, The Netherlands: 2023. pp. 19–67.
Yoo H.S., Kim T.G., Park T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009;61:1033–1042. doi: 10.1016/j.addr.2009.07.007. PubMed DOI
Gugulothu D., Barhoum A., Nerella R., Ajmer R., Bechelany M. In: Fabrication of Nanofibers: Electrospinning and Non-Electrospinning Techniques BT—Handbook of Nanofibers. Barhoum A., Bechelany M., Makhlouf A.S.H., editors. Springer International Publishing; Cham, Switzerland: 2019. pp. 45–77.
Alghoraibi I., Alomari S. In: Different Methods for Nanofiber Design and Fabrication BT—Handbook of Nanofibers. Barhoum A., Bechelany M., Makhlouf A., editors. Springer International Publishing; Cham, Switzerland: 2018. pp. 1–46.
Lv H., Song S., Sun S., Ren L., Zhang H. Enhanced properties of poly(lactic acid) with silica nanoparticles. Polym. Adv. Technol. 2016;27:1156–1163. doi: 10.1002/pat.3777. DOI
Kulkarni A., Bambole V.A., Mahanwar P.A. Electrospinning of Polymers, Their Modeling and Applications. Polym. Plast. Technol. Eng. 2010;49:427–441. doi: 10.1080/03602550903414019. DOI
Torres-Martinez E.J., Cornejo Bravo J.M., Serrano Medina A., Pérez González G.L., Villarreal Gómez L.J. A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices. Curr. Drug Deliv. 2018;15:1360–1374. doi: 10.2174/1567201815666180723114326. PubMed DOI PMC
Herrero-Herrero M., Gómez-Tejedor J.A., Vallés-Lluch A. Role of Electrospinning Parameters on Poly(Lactic-co-Glycolic Acid) and Poly(Caprolactone-co-Glycolic acid) Membranes. Polymers. 2021;13:695. doi: 10.3390/polym13050695. PubMed DOI PMC
Yan X., Gevelber M. Investigation of electrospun fiber diameter distribution and process variations. J. Electrostat. 2010;68:458–464. doi: 10.1016/j.elstat.2010.06.009. DOI
Xue J., Wu T., Dai Y., Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC
Stack M., Parikh D., Wang H., Wang L., Xu M., Zou J., Cheng J., Wang H. Electrospun Nanofibers for Drug Delivery. In: Ding B., Wang X.m., Yu J., editors. Micro and Nano Technologies, Electrospinning: Nanofabrication and Applications. William Andrew Publishing; Noorwich, NY, USA: 2019. pp. 735–764.
Shetty K., Bhandari A., Yadav K.S. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system. J. Control. Release Off. J. Control. Release Soc. 2022;350:421–434. doi: 10.1016/j.jconrel.2022.08.035. PubMed DOI
Wang Y., Qiao W., Wang B., Zhang Y., Shao P., Yin T. Electrospun composite nanofibers containing nanoparticles for the programmable release of dual drugs. Polym. J. 2011;43:478–483. doi: 10.1038/pj.2011.11. DOI
Alexeev D., Goedecke N., Snedeker J., Ferguson S. Mechanical evaluation of electrospun poly(ε-caprolactone) single fibers. Mater. Today Commun. 2020;24:101211. doi: 10.1016/j.mtcomm.2020.101211. DOI
Castillo-Henríquez L., Vargas-Zúñiga R., Pacheco-Molina J., Vega-Baudrit J. Electrospun nanofibers: A nanotechnological approach for drug delivery and dissolution optimization in poorly water-soluble drugs. ADMET DMPK. 2020;8:325–353. doi: 10.5599/admet.844. PubMed DOI PMC
Song J., Kim M., Lee H. Recent Advances on Nanofiber Fabrications: Unconventional State-of-the-Art Spinning Techniques. Polymers. 2020;12:1386. doi: 10.3390/polym12061386. PubMed DOI PMC
Selvarajan V., Obuobi S., Ee P.L.R. Silica Nanoparticles-A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020;8:602. doi: 10.3389/fchem.2020.00602. PubMed DOI PMC
Zhong C., He M., Lou K., Gao F. In: Chapter 10—The Application, Neurotoxicity, and Related Mechanism of Silica Nanoparticles. Jiang X., Gao H., editors. Academic Press; Cambridge, MA, USA: 2017. pp. 227–257.
Wang C., Wang J., Zeng L., Qiao Z., Liu X., Liu H., Zhang J., Ding J. Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules. 2019;24:834. doi: 10.3390/molecules24050834. PubMed DOI PMC
Gómez-Pachón E.Y., Vera-Graziano R., Campos R.M. Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning. IOP Conf. Ser. Mater. Sci. Eng. 2014;59:12003. doi: 10.1088/1757-899X/59/1/012003. DOI
Rajeshkumar G., Arvindh Seshadri S., Devnani G.L., Sanjay M.R., Siengchin S., Prakash Maran J., Al-Dhabi N.A., Karuppiah P., Mariadhas V.A., Sivarajasekar N., et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—A comprehensive review. J. Clean. Prod. 2021;310:127483. doi: 10.1016/j.jclepro.2021.127483. DOI
Balla E., Daniilidis V., Karlioti G., Kalamas T., Stefanidou M., Bikiaris N.D., Vlachopoulos A., Koumentakou I., Bikiaris D.N. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers. 2021;13:1822. doi: 10.3390/polym13111822. PubMed DOI PMC
Naser A.Z., Deiab I., Darras B.M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs){,} green alternatives to petroleum-based plastics: A review. RSC Adv. 2021;11:17151–17196. doi: 10.1039/D1RA02390J. PubMed DOI PMC
Liu R., Zhang S., Zhao C., Yang D., Cui T., Liu Y., Min Y. Regulated Surface Morphology of Polyaniline/Polylactic Acid Composite Nanofibers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering. Nanoscale Res. Lett. 2021;16:4. doi: 10.1186/s11671-020-03457-z. PubMed DOI PMC
Imani F., Karimi-Soflou R., Shabani I., Karkhaneh A. PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold. Polymer. 2021;218:123487. doi: 10.1016/j.polymer.2021.123487. DOI
Liu S., Qin S., He M., Zhou D., Qin Q., Wang H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos. Part B Eng. 2020;199:108238. doi: 10.1016/j.compositesb.2020.108238. DOI
Casalini T., Rossi F., Castrovinci A., Perale G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 2019;7:259. doi: 10.3389/fbioe.2019.00259. PubMed DOI PMC
Baran E.H., Erbil H.Y. Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review. Colloids Interfaces. 2019;3:43. doi: 10.3390/colloids3020043. DOI
Tian B., Liu Y. Antibacterial applications and safety issues of silica-based materials: A review. Int. J. Appl. Ceram. Technol. 2021;18:289–301. doi: 10.1111/ijac.13641. DOI
Chou S.-F., Carson D., Woodrow K.A. Current strategies for sustaining drug release from electrospun nanofibers. J. Control. Release. 2015;220:584–591. doi: 10.1016/j.jconrel.2015.09.008. PubMed DOI PMC
Lutzweiler G., Ndreu Halili A., Engin Vrana N. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics. 2020;12:602. doi: 10.3390/pharmaceutics12070602. PubMed DOI PMC
Nayak R., Padhye R., Kyratzis I.L., Truong Y.B., Arnold L. Recent advances in nanofibre fabrication techniques. Text. Res. J. 2011;82:129–147. doi: 10.1177/0040517511424524. DOI
Nelson M.T., Keith J.P., Li B.-B., Stocum D.L., Li J. Electrospun composite polycaprolactone scaffolds for optimized tissue regeneration. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2012;226:111–121. doi: 10.1177/1740349912450828. DOI
Cheng R., Liu L., Xiang Y., Lu Y., Deng L., Zhang H., Santos H.A., Cui W. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials. 2020;232:119706. doi: 10.1016/j.biomaterials.2019.119706. PubMed DOI
Di Credico B., Manzini E., Viganò L., Canevali C., D’Arienzo M., Mostoni S., Nisticò R., Scotti R. Silica nanoparticles self-assembly process in polymer composites: Towards advanced materials. Ceram. Int. 2023;49:26165–26181. doi: 10.1016/j.ceramint.2023.05.125. DOI
Petushkov A., Ndiege N., Salem A.K., Larsen S.C. In: Chapter 7—Toxicity of Silica Nanomaterials: Zeolites, Mesoporous Silica, and Amorphous Silica Nanoparticles. Fishbein J.C., editor. Volume 4. Elsevier; Amsterdam, The Netherlands: 2010. pp. 223–266.
Chen X., Xu C., He H. Electrospinning of silica nanoparticles-entrapped nanofibers for sustained gentamicin release. Biochem. Biophys. Res. Commun. 2019;516:1085–1089. doi: 10.1016/j.bbrc.2019.06.163. PubMed DOI
Kaseem M., Ur Rehman Z., Hossain S., Singh A.K., Dikici B. A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites. Polymers. 2021;13:3036. doi: 10.3390/polym13183036. PubMed DOI PMC
Rosenberg C.R., Fang X., Allison K.R. Potentiating aminoglycoside antibiotics to reduce their toxic side effects. PLoS ONE. 2020;15:e0237948. doi: 10.1371/journal.pone.0237948. PubMed DOI PMC
Sizar O., Rahman S., Sundareshan V. Amikacin. [(accessed on 1 August 2023)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK430908/
Pavelkova A., Kucharczyk P., Stloukal P., Koutny M., Sedlarik V. Novel poly(lactic acid)–poly(ethylene oxide) chain-linked copolymer and its application in nano-encapsulation. Polym. Adv. Technol. 2014;25:595–604. doi: 10.1002/pat.3241. DOI
Nandy S., Kundu D., Naskar M.K. Synthesis of mesoporous Stöber silica nanoparticles: The effect of secondary and tertiary alkanolamines. J. Sol-Gel Sci. Technol. 2014;72:49–55. doi: 10.1007/s10971-014-3420-7. DOI
The European Committee on Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Test Methodology. [(accessed on 1 August 2023)]. Available online: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology.
Alothman Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials. 2012;5:2874–2902. doi: 10.3390/ma5122874. DOI
Haul R.S.J., Gregg K.S.W. Sing: Adsorption, Surface Area and Porosity. 2. Auflage, Academic Press, London 1982. 303 Seiten, Preis: $ 49.50. Berichte Bunsenges. Phys. Chem. 1982;86:957. doi: 10.1002/bbpc.19820861019. DOI
Reddy V.S., Tian Y., Zhang C., Ye Z., Roy K., Chinnappan A., Ramakrishna S., Liu W., Ghosh R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers. 2021;13:3746. doi: 10.3390/polym13213746. PubMed DOI PMC
Zang D.Y., Rio E., Delon G., Langevin D., Wei B., Binks B.P. Influence of the contact angle of silica nanoparticles at the air–water interface on the mechanical properties of the layers composed of these particles. Mol. Phys. 2011;109:1057–1066. doi: 10.1080/00268976.2010.542778. DOI
Chen W., Karde V., Cheng T.N.H., Ramli S.S., Heng J.Y.Y. Surface hydrophobicity: Effect of alkyl chain length and network homogeneity. Front. Chem. Sci. Eng. 2021;15:90–98. doi: 10.1007/s11705-020-2003-0. DOI
Chi H.Y., Chan V., Li C., Hsieh J.H., Lin P.H., Tsai Y.-H., Chen Y. Fabrication of polylactic acid/paclitaxel nano fibers by electrospinning for cancer therapeutics. BMC Chem. 2020;14:63. doi: 10.1186/s13065-020-00711-4. PubMed DOI PMC