Production of laccase enzyme from Curvularia lunata MY3: purification and characterization
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37691075
PubMed Central
PMC10876717
DOI
10.1007/s12223-023-01088-2
PII: 10.1007/s12223-023-01088-2
Knihovny.cz E-zdroje
- Klíčová slova
- Characterization, Curvularia lunata, Laccase, Purification,
- MeSH
- antiinfekční látky * MeSH
- azosloučeniny * MeSH
- benzothiazoly * MeSH
- Curvularia * MeSH
- koncentrace vodíkových iontů MeSH
- kyseliny sulfonové * MeSH
- lakasa * metabolismus MeSH
- stabilita enzymů MeSH
- substrátová specifita MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid MeSH Prohlížeč
- antiinfekční látky * MeSH
- azosloučeniny * MeSH
- benzothiazoly * MeSH
- kyseliny sulfonové * MeSH
- lakasa * MeSH
- mordant yellow 3 MeSH Prohlížeč
Laccase-producing fungus (MY3) was successfully isolated from soil samples collected from Mansoura Governorate, Egypt. This fungal isolate has shown a high laccase production level over other isolated fungi. The identity of this isolate was determined by the molecular technique 18SrRNA as Curvularia lunata MY3. The enzyme purification was performed using ammonium sulfate precipitation followed by Sephacryl S-200 and DEAE-Sepharose column chromatography. The denatured enzyme using SDS-PAGE had a molar mass of 65 kDa. The purified laccase had an optimum temperature at 40 °C for enzyme activity with 57.3 kJ/mol activation energy for 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) oxidation. The enzyme had an optimum pH of 5.0, and it has shown a high stability at the acidic range (4.5 to 5.5). Mn2+ and Mg2+ ions enhanced the enzyme activity, while most of the enzyme activity was inhibited by Hg2+. Some compounds such as 2-mercaptoethanol, L-cysteine, and sodium azide at a concentration of 10 mmol/L had shown a high suppression effect on the enzyme activity. The enzyme strongly oxidized ABTS and syringaldazine and moderately oxidized DMP and guaiacol. The antimicrobial activity of the purified enzyme towards three pathogenic strains (Escherichia coli ATCC-25922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC-10231) was evaluated for the potential use as an antimicrobial therapeutic enzyme.
Microbial Chemistry Department National Research Center 33 El Bohouthst P O 12622 Dokki Giza Egypt
Molecular Biology Department National Research Center 33 El Bohouthst P O 12622 Dokki Giza Egypt
Zobrazit více v PubMed
Abdel-Aziz MS, Hezma AM. Spectroscopic and antibacterial evaluation of hydroxapatite polyvinyl alcohol biocomposite doped with microbial-synthesized nanogold for biomedical applications. Polym-Plast Technol Eng. 2013;52:1503–1509. doi: 10.1080/03602559.2013.820754. DOI
Adamafio NA, Sarpong NS, Mensah CA, Obodai M. Extracellular laccase from Pleurotus ostreatus strain EM-1: thermal stability and response to metal ions. Asian J Biochem. 2012;7:143–150. doi: 10.3923/ajb.2012.143.150. DOI
Ademakinwa AN, Agboola FK. Biochemical characterization and kinetic studies on a purified yellow laccase from newly isolated Aureobasidium pullulans NAC8 obtained from soil containing decayed plant matter. J Genetic Engineer Biotechnol. 2016;14:143–151. doi: 10.1016/j.jgeb.2016.05.004. PubMed DOI PMC
Annuar MS, Murthy SS, Vikineswary S. Laccase production from oil palm industry solid waste: statistical optimization of selected process parameters. Engineer Life Sci. 2010;10:40–48. doi: 10.1002/elsc.200900044. DOI
Anyanwutaku I, Petroski R, Rosazza J. Oxidative coupling of aureolic acids and hydroquinone catalyzed by copper oxidases. Implications for the molecular mechanism of action of aureolic acids. Bioorg Med Chem. 1994;2:543–551. doi: 10.1016/0968-0896(94)80025-1. PubMed DOI
Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol. 2003;69:1953–1958. doi: 10.1128/AEM.69.4.1953-1958.2003. PubMed DOI PMC
Aslam MS, Aishy A, Samra ZQ, Gull I, Athar MA. Identification, purification and characterization of a novel extracellular laccase from Cladosporium cladosporioides. Biotechnol Equip. 2012;26:3345–3350. doi: 10.5504/BBEQ.2012.0107. DOI
Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol Rev. 2006;30:215–242. doi: 10.1111/j.1574-4976.2005.00010.x. PubMed DOI
Banerjee UC, Vohra RM. Production of laccase by Curvularia sp. Folia Microbiol (praha) 1991;36:343–346. doi: 10.1007/BF02814506. PubMed DOI
Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M. Lignin oxidation by laccase isozymes from T. versicolor and role of the mediator ABTS in kraft lignin depolymerization. Appl Environ Microbiol. 1998;61:1876–1880. doi: 10.1128/aem.61.5.1876-1880.1995. PubMed DOI PMC
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Brazkova M, Mercati A, Hristova I, Lante A, Krastano A. Isolation, purification and characterization of laccase from the white-rot fungus Trametes versicolor. Sci Work Uni Food Technol. 2017;63:155–162.
Brijwani K, Rigdon A, Vadlani PV. Fungal laccases: production, function, and applications in food processing. Enzyme Res. 2010 doi: 10.4061/2010/149748. PubMed DOI PMC
Castaño JD, Cruz C, Torres E. Optimization of the production, purification and characterization of a laccase from the native fungus Xylaria sp. Biocatal Agric Biotechnol. 2015;4:710–716. doi: 10.1016/j.bcab.2015.09.012. DOI
Cavallazzi JRP, Kasuya CM, Soares MA. Screening of inducers for laccase production by Lentinula edodes in liquid medium. Brazilian J Microbiol. 2005;36:383–387. doi: 10.1590/S1517-83822005000400015. DOI
Christie SD, Shanmugam S. Analysis of fungal cultures isolated from Anamalai hills for laccase enzyme production effect on dye decolorization, antimicrobial activity. Int J Plant Animal Environ Sci. 2012;2:143–148.
Claus H. Laccases: structure, reaction, distribution. Micron. 2004;35:93–96. doi: 10.1016/j.micron.2003.10.029. PubMed DOI
Desai SS, Nityanand C. Microbial laccases and their applications: a review. Asian J Biotechnol. 2011;3:98–124. doi: 10.3923/ajbkr.2011.98.124. DOI
Elshafei AM, Hassan MM, Haroun BM, Elsayed MA, Othman AM. Optimization of laccase production from Penicillium martensii NRC 345. Adv Life Sci. 2012;2:31–37. doi: 10.5923/j.als.20120201.05. DOI
Fortina MG, Acquti A, Rossi P, Manachini PL, Gennaro CD. Production of laccase by Botrytis cinerea and fermentation studies with strain F226. J Indust Microbiol. 1996;17:69–72. doi: 10.1007/BF01570044. DOI
Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol. 1955;1:138–146. doi: 10.1016/0076-6879(55)01020-3. DOI
Hamed AA, Abdel-Aziz MS, Fadel M, Ghali MF (2018) Antimicrobial, antidermatophytic, and cytotoxic activities from Streptomyces sp. MER4 isolated from Egyptian local environment. Bull Nat Res Cent. 10.1186/s42269-018-0022-5
Hu DD, Zhang RY, Zhang GQ, Wang HX, Ng TB. A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybecylindracea. Phytomedicine. 2011;18:374–379. doi: 10.1016/j.phymed.2010.07.004. PubMed DOI
Ibrahim NA, Gouda M, Elshafei AM, Abdel-Fatah OM. Antimicrobial activity of cotton fabrics containing immobilized enzymes. J Appl Polymer Sci. 2007;104:1754–1761. doi: 10.1002/app.25821. DOI
Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M. Engineering and applications of fungal laccases for organic synthesis. Microbia Cell Factories. 2008;7:32. doi: 10.1186/1475-2859-7-32. PubMed DOI PMC
Kunamneni A, Plou FJ, Ballesteros A, Alcalde M. Laccases and their applications: a patent review. Recent Pat Biotechnol. 2008;2:10–24. doi: 10.2174/187220808783330965. PubMed DOI
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (london) 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Mansur M, Arias ME, Copa-Patiño JL, Flärdh M, González AE. The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities. Mycologia. 2003;95:1013–1020. doi: 10.1080/15572536.2004.11833017. PubMed DOI
Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A, Finazzi-Agro A. Refined crystal structure of ascorbate oxidase at 1.9Å resolution. J Mol Biol. 1992;224:179–205. doi: 10.1016/0022-2836(92)90583-6. PubMed DOI
More SS, Renuka PS, Pruthvi K, Swetha M, Malini S, Veena SM (2011) Isolation, purification, and characterization of fungal laccase from Pleurotus sp. Enzyme Res Article ID 248735. 10.4061/2011/248735 PubMed PMC
Moshtaghioun SM, Haghbeen K, Sahebghadam AL, Legge RL, Khoshneviszadeh R, Farhadi S. Direct spectrophotometric assay of laccase using diazo derivatives of guaiacol. Anal Chem. 2011;83:4200–4205. doi: 10.1021/ac200501w. PubMed DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Mtibaà R, Barriuso J, Eugenio L, Aranda E, Belbahri L, Nasri M, Martínez MJ, Mechichi T. Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. Int J Biol Macromol. 2018;120:1744–1751. doi: 10.1016/j.ijbiomac.2018.09.175. PubMed DOI
Nishizawa Y, Nakabayashi K, Shinagawa E. Purification and characterization of laccase from white rot fungus Trametes sanguinea M85–2. J Ferment Bioengineer. 1995;80:91–93. doi: 10.1016/0922-338X(95)98183-L. DOI
Nyanhongo G, Gomes J, Gübitz G, Zvauya R, Read J, Steiner W. Production of laccase by a newly isolated strain of Trametes modesta. Bioresourc Technol. 2002;84:259–263. doi: 10.1016/S0960-8524(02)00044-5. PubMed DOI
Olajuyigbe FM, Fatokun CO. Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05. Int J Biol Macromol. 2017;94:535–543. doi: 10.1016/j.ijbiomac.2016.10.037. PubMed DOI
Othman AM, Elshafei AM, Hassan MM, Haroun BM, Elsayed MA, Farrag AA. Purification, biochemical characterization and applications of Pleurotus ostreatus ARC280 laccase. British Microbiol Res J. 2014;4:1418–1439. doi: 10.9734/BMRJ/2014/11218. DOI
Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia GA. A novel white laccase from Pleurotus ostreatus. J Biol Chem. 1997;272:31301–31307. doi: 10.1074/jbc.272.50.31301. PubMed DOI
Patel H, Gupte S, Gahlou M, Gupte A (2014) Purification and characterization of an extracellular laccase from solid-state culture of Pleurotus ostreatus HP-1. 3 Biotech 4:77–84. 10.1007/s13205-013-0129-1 PubMed PMC
Ramírez-Cavazos L, Junghanns C, Nair R, Cárdenas-Chávez D, Hernández-Luna C, Agathos S, Parra R. Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design. J Zhejiang Univ Sci B. 2014;15:343–352. doi: 10.1631/jzus.B1300246. PubMed DOI PMC
Sadhasivam S, Savitha S, Swaminathan K, Lin FH. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochem. 2008;43:736–742. doi: 10.1016/j.procbio.2008.02.017. DOI
Safary A, Moniri R, Hamzeh-Mivehroud M, Dastmalchi S. A strategy for soluble overexpression and biochemical characterization of halo-thermotolerant Bacillus laccase in modified E. coli. J Biotechnol. 2016;10:56–63. doi: 10.1016/j.jbiotec.2016.04.006. PubMed DOI
Senthivelan T, Kanagaraj J, Panda RC, Narayani T. Screening and production of a potential extracellular fungal laccase from Penicillium chrysogenum: media optimization by response surface methodology (RSM) and central composite rotatable design (CCRD) Biotech Rep. 2019;23:e00344. doi: 10.1016/j.btre.2019.e00344. PubMed DOI PMC
Thurston CF. The structure and function of fungal laccases. Microbiology. 1994;140:19–26. doi: 10.1099/13500872-140-1-19. DOI
Tinoco R, Pickard MA, Vazquez-Duhalt R. Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Lett Appl Microbiol. 2001;32:331–335. doi: 10.1046/j.1472-765X.2001.00913.x. PubMed DOI
Unuofin JO, Moubasher HA, Nwodo UU (2019) Production of polyextremotolerant laccase by Achromobacter xylosoxidans HWN16 and Citrobacter freundii LLJ16. Biotechnol Rep 23:e0037. 10.1016/j.btre.2019.e00337 PubMed PMC
Vantamuri AB, Kaliwal BB (2016) Purification and characterization of laccase from Marasmius species BBKAV79 and effective decolorization of selected textile dyes. 3 Biotech 6:189–199. 10.1007/s13205-016-0504-9 PubMed PMC
Vázquez MA, Cabrera EC, Aceves MA, Mallol JL. Cellulolytic and ligninolytic potential of new strains of fungi for the conversion of fibrous substrates. Biotechnol Res Innovat. 2019;3:177–186. doi: 10.1016/j.biori.2018.11.001. DOI
Yan J, Chen Y, Niu J, Chen D, Chagan I. Laccase produced by a thermotolerant strain of Trametes trogii. Braz J Microbiol. 2014;46:59–65. doi: 10.1590/S1517-838246120130895. PubMed DOI PMC
Yin L, Ye J, Kuang S, Guan Y. Induction, purification, and characterization of a thermo and pH stable laccase from Abortiporus biennis J2 and its application on the clarification of litchi juice. Biosci Biotechnol Biochem. 2017;81:1033–1040. doi: 10.1080/09168451.2017.1279850. PubMed DOI
Zheng F, An Q, Meng G, Wu X, Dai Y, Si J, Cui B. A novel laccase from white rot fungus Trametes orientalis: purification, characterization and application. Int J Biologic Macromol. 2017;102:758–770. doi: 10.1016/j.ijbiomac.2017.04.089. PubMed DOI
Zou YJ, Wang HX, Ng TB, Huang CY, Zhang JX. Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides. J Microbiol. 2012;50:72–78. doi: 10.1007/s12275-012-1372-6. PubMed DOI