Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting

. 2023 Sep 20 ; 15 (37) : 44482-44492. [epub] 20230911

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37695941

Development of a robust photocathode using low-cost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions. A protective layer over the substrate to simultaneously provide corrosion resistance and maintain efficient charge transfer across the device is therefore needed. To this end, in the present work, we utilized pulsed laser deposition (PLD) to prepare a high-quality SrTiO3 (STO) layer to passivate the p-Si substrate using a buffer layer of reduced graphene oxide (rGO). Specifically, a very thin (3.9 nm ∼10 unit cells) STO layer epitaxially overgrown on rGO-buffered Si showed the highest onset potential (0.326 V vs RHE) in comparison to the counterparts with thicker and/or nonepitaxial STO. The photovoltage, flat-band potential, and electrochemical impedance spectroscopy measurements revealed that the epitaxial photocathode was more beneficial for charge separation, charge transfer, and targeted redox reaction than the nonepitaxial one. The STO/rGO/Si with a smooth and highly epitaxial STO layer outperforming the directly contacted STO/Si with a textured and polycrystalline STO layer showed the importance of having a well-defined passivation layer. In addition, the numerous pinholes formed in the directly contacted STO/Si led to the rapid degradation of the photocathode during the PEC measurements. The stability tests demonstrated the soundness of the epitaxial STO layer in passivating Si against corrosion. This study provided a facile approach for preparing a robust protection layer over a photoelectrode substrate in realizing an efficient and, at the same time, durable PEC device.

Erratum v

PubMed

Zobrazit více v PubMed

Walter M. G.; Warren E. L.; McKone J. R.; Boettcher S. W.; Mi Q.; Santori E. A.; Lewis N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110 (11), 6446–6473. 10.1021/cr1002326. PubMed DOI

Ding Q.; Meng F.; English C. R.; Caban-Acevedo M.; Shearer M. J.; Liang D.; Daniel A. S.; Hamers R. J.; Jin S. Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si and Chemically Exfoliated Metallic MoS PubMed DOI

Kaufman A. J.; Krivina R. A.; Shen M.; Boettcher S. W. Controlling Catalyst-Semiconductor Contacts: Interfacial Charge Separation in p-InP Photocathodes. ACS Energy Lett. 2022, 7 (1), 541–549. 10.1021/acsenergylett.1c02590. DOI

Chen X.; Yin Z.; Cao K.; Shen S. Building Directional Charge Transport Channel in CdTe-Based Multilayered Photocathode for Efficient Photoelectrochemical Hydrogen Evolution. ACS Mater. Lett. 2022, 4 (8), 1381–1388. 10.1021/acsmaterialslett.2c00363. DOI

Paracchino A.; Laporte V.; Sivula K.; Gratzel M.; Thimsen E. Highly Active Oxide Photocathode for Photoelectrochemical Water Reduction. Nat. Mater. 2011, 10 (6), 456–461. 10.1038/nmat3017. PubMed DOI

Li C.; Hisatomi T.; Watanabe O.; Nakabayashi M.; Shibata N.; Domen K.; Delaunay J.-J. Positive Onset Potential and Stability of Cu DOI

Seger B.; Pedersen T.; Laursen A. B.; Vesborg P. C.; Hansen O.; Chorkendorff I. Using TiO PubMed DOI

Esposito D. V.; Levin I.; Moffat T. P.; Talin A. A. H PubMed DOI

Mei Z.; Chen Y.; Tong S.; Li Y.; Liu J.; Sun L.; Zhong W.; Dong X.; Ji Y.; Lin Y.; Chen H.; Pan F. High-Performance Si Photocathode Enabled by Spatial Decoupling Multifunctional Layers for Water Splitting. Adv. Funct. Mater. 2022, 32 (2), 2107164. 10.1002/adfm.202107164. DOI

Li S.; Lin H.; Luo S.; Wang Q.; Ye J. Surface/Interface Engineering of Si-Based Photocathodes for Efficient Hydrogen Evolution. ACS Photonics 2022, 9 (12), 3786–3806. 10.1021/acsphotonics.2c00708. DOI

Chen S.; Wang L.-W. Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chem. Mater. 2012, 24 (18), 3659–3666. 10.1021/cm302533s. DOI

Zeradjanin A. R.; Grote J.-P.; Polymeros G.; Mayrhofer K. J. J. A Critical Review on Hydrogen Evolution Electrocatalysis: Re-Exploring the Volcano-Relationship. Electroanalysis 2016, 28 (10), 2256–2269. 10.1002/elan.201600270. DOI

Seger B.; Laursen A. B.; Vesborg P. C.; Pedersen T.; Hansen O.; Dahl S.; Chorkendorff I. Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titanium-Protected n PubMed DOI

Seger B.; Tilley D. S.; Pedersen T.; Vesborg P. C. K.; Hansen O.; Grätzel M.; Chorkendorff I. Silicon Protected with Atomic Layer Deposited TiO DOI

Seger B.; Tilley S. D.; Pedersen T.; Vesborg P. C. K.; Hansen O.; Grätzel M.; Chorkendorff I. Silicon Protected with Atomic Layer Deposited TiO DOI

Sim U.; Yang T.-Y.; Moon J.; An J.; Hwang J.; Seo J.-H.; Lee J.; Kim K. Y.; Lee J.; Han S.; Hong B. H.; Nam K. T. N-doped Monolayer Graphene Catalyst on Silicon Photocathode for Hydrogen Production. Energy Environ. Sci. 2013, 6 (12), 3658. 10.1039/c3ee42106f. DOI

Benck J. D.; Lee S. C.; Fong K. D.; Kibsgaard J.; Sinclair R.; Jaramillo T. F. Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials. Adv. Energy Mater. 2014, 4 (18), 1400739. 10.1002/aenm.201400739. DOI

Li S.; Zhang P.; Song X.; Gao L. Photoelectrochemical Hydrogen Production of TiO PubMed DOI

Ros C.; Andreu T.; Hernandez-Alonso M. D.; Penelas-Perez G.; Arbiol J.; Morante J. R. Charge Transfer Characterization of ALD-Grown TiO PubMed DOI

Sun X.; Jiang J.; Yang Y.; Shan Y.; Gong L.; Wang M. Enhancing the Performance of Si-Based Photocathodes for Solar Hydrogen Production in Alkaline Solution by Facilely Intercalating a Sandwich N-Doped Carbon Nanolayer to the Interface of Si and TiO PubMed DOI

Li F.; Zheng W.; Liu J.; Zhao L.; Janackovic D.; Qiu Y.; Song X.; Zhang P.; Gao L. Enhancing the Long-Term Photoelectrochemical Performance of TiO DOI

Zeng G.; Pham T. A.; Vanka S.; Liu G.; Song C.; Cooper J. K.; Mi Z.; Ogitsu T.; Toma F. M. Development of a Photoelectrochemically Self-Improving Si/GaN Photocathode for Efficient and Durable H PubMed DOI

Wang T.; Liu S.; Li H.; Li C.; Luo Z.; Gong J. Transparent Ta DOI

Riyajuddin S.; Sultana J.; Siddiqui S. A.; Kumar S.; Badhwar D.; Yadav S. S.; Goyal S.; Venkatesan A.; Chakraverty S.; Ghosh K. Silicon Nanowire-Ta DOI

McKee R. A.; Walker F. J.; Chisholm M. F. Crystalline Oxides on Silicon: The First Five Monolayers. Phys. Rev. Lett. 1998, 81 (14), 3014–3017. 10.1103/PhysRevLett.81.3014. DOI

McKee R. A.; Walker F. J.; Chisholm M. F. Physical Structure and Inversion Charge at a Semiconductor Interface with a Crystalline Oxide. Science 2001, 293 (5529), 468–471. 10.1126/science.293.5529.468. PubMed DOI

Chambers S. A.; Liang Y.; Yu Z.; Droopad R.; Ramdani J.; Eisenbeiser K. Band Discontinuities at Epitaxial SrTiO DOI

Robertson J. Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices. J. Vac. Sci. 2000, 18 (3), 1785. 10.1116/1.591472. DOI

Zhang X.; Demkov A. A.; Li H.; Hu X.; Wei Y.; Kulik J. Atomic and Electronic Structure of the Si/SrTiO DOI

Ji L.; McDaniel M. D.; Wang S.; Posadas A. B.; Li X.; Huang H.; Lee J. C.; Demkov A. A.; Bard A. J.; Ekerdt J. G.; Yu E. T. A Silicon-Based Photocathode for Water Reduction with an Epitaxial SrTiO PubMed DOI

Chen B.; Jovanovic Z.; Abel S.; Le P. T. P.; Halisdemir U.; Smithers M.; Diaz-Fernandez D.; Spreitzer M.; Fompeyrine J.; Rijnders G.; Koster G. Integration of Single Oriented Oxide Superlattices on Silicon Using Various Template Techniques. ACS Appl. Mater. Interfaces 2020, 12 (38), 42925–42932. 10.1021/acsami.0c10579. PubMed DOI PMC

Jovanović Z.; Trstenjak U.; Ho H. C.; Butsyk O.; Chen B.; Tchernychova E.; Borodavka F.; Koster G.; Hlinka J.; Spreitzer M. Tiling the Silicon for Added Functionality: PLD Growth of Highly Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface. ACS Appl. Mater. Interfaces 2023, 15 (4), 6058–6068. 10.1021/acsami.2c17351. PubMed DOI PMC

Dubale A. A.; Su W.-N.; Tamirat A. G.; Pan C.-J.; Aragaw B. A.; Chen H.-M.; Chen C.-H.; Hwang B.-J. The Synergetic Effect of Graphene on Cu DOI

Ho H.-C.; Chen K.; Nagao T.; Hsueh C.-H. Photocurrent Enhancements of TiO DOI

Jovanović Z.; Spreitzer M.; Gabor U.; Suvorov D. Control of SrO Buffer-Layer Formation on Si(001) Using the Pulsed-Laser Deposition Technique. RSC Adv. 2016, 6 (85), 82150–82156. 10.1039/C6RA16311D. DOI

Ku C. K.; Wu P. H.; Chung C. C.; Chen C. C.; Tsai K. J.; Chen H. M.; Chang Y. C.; Chuang C. H.; Wei C. Y.; Wen C. Y.; Lin T. Y.; Chen H. L.; Wang Y. S.; Lee Z. Y.; Chang J. R.; Luo C. W.; Wang D. Y.; Hwang B. J.; Chen C. W. Creation of 3D Textured Graphene/Si Schottky Junction Photocathode for Enhanced Photo-Electrochemical Efficiency and Stability. Adv. Energy Mater. 2019, 9 (29), 1901022. 10.1002/aenm.201901022. DOI

Smiljanić M.; Panić S.; Bele M.; Ruiz-Zepeda F.; Pavko L.; Gašparič L.; Kokalj A.; Gaberšček M.; Hodnik N. Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support. ACS Catal. 2022, 12 (20), 13021–13033. 10.1021/acscatal.2c03214. PubMed DOI PMC

Pei S.; Cheng H.-M. The Reduction of Graphene Oxide. Carbon 2012, 50 (9), 3210–3228. 10.1016/j.carbon.2011.11.010. DOI

Jovanović Z.; Spreitzer M.; Kovac J.; Klement D.; Suvorov D. Silicon Surface Deoxidation Using Strontium Oxide Deposited with the Pulsed Laser Deposition Technique. ACS Appl. Mater. Interfaces 2014, 6 (20), 18205–18214. 10.1021/am505202p. PubMed DOI

Spreitzer M.; Klement D.; Egoavil R.; Verbeeck J.; Kovač J.; Založnik A.; Koster G.; Van Tendeloo G.; Suvorov D.; Rijnders G. Growth Mechanism of Epitaxial SrTiO DOI

Kim Y.; Cruz S. S.; Lee K.; Alawode B. O.; Choi C.; Song Y.; Johnson J. M.; Heidelberger C.; Kong W.; Choi S.; Qiao K.; Almansouri I.; Fitzgerald E. A.; Kong J.; Kolpak A. M.; Hwang J.; Kim J. Remote Epitaxy through Graphene Enables Two-Dimensional Material-Based Layer Transfer. Nature 2017, 544 (7650), 340–343. 10.1038/nature22053. PubMed DOI

Jiang J.; Sun X.; Chen X.; Wang B.; Chen Z.; Hu Y.; Guo Y.; Zhang L.; Ma Y.; Gao L.; Zheng F.; Jin L.; Chen M.; Ma Z.; Zhou Y.; Padture N. P.; Beach K.; Terrones H.; Shi Y.; Gall D.; Lu T. M.; Wertz E.; Feng J.; Shi J. Carrier Lifetime Enhancement in Halide Perovskite via Remote Epitaxy. Nat. Commun. 2019, 10 (1), 4145. 10.1038/s41467-019-12056-1. PubMed DOI PMC

Wang Y.; Qu Y.; Xu Y.; Li D.; Lu Z.; Li J.; Su X.; Wang G.; Shi L.; Zeng X.; Wang J.; Cao B.; Xu K. Modulation of Remote Epitaxial Heterointerface by Graphene-Assisted Attenuative Charge Transfer. ACS Nano 2023, 17 (4), 4023–4033. 10.1021/acsnano.3c00026. PubMed DOI

Dai L.; Zhao J.; Li J.; Chen B.; Zhai S.; Xue Z.; Di Z.; Feng B.; Sun Y.; Luo Y.; Ma M.; Zhang J.; Ding S.; Zhao L.; Jiang Z.; Luo W.; Quan Y.; Schwarzkopf J.; Schroeder T.; Ye Z. G.; Xie Y. H.; Ren W.; Niu G. Highly Heterogeneous Epitaxy of Flexoelectric BaTiO PubMed DOI PMC

Ashfold M. N.; Claeyssens F.; Fuge G. M.; Henley S. J. Pulsed Laser Ablation and Deposition of Thin Films. Chem. Soc. Rev. 2004, 33 (1), 23–31. 10.1039/b207644f. PubMed DOI

Schou J. Physical Aspects of the Pulsed Laser Deposition Technique: The Stoichiometric Transfer of Material from Target to Film. Appl. Surf. Sci. 2009, 255 (10), 5191–5198. 10.1016/j.apsusc.2008.10.101. DOI

Kölbach M.; Harbauer K.; Ellmer K.; van de Krol R. Elucidating the Pulsed Laser Deposition Process of BiVO DOI

Saint-Girons G.; Bachelet R.; Moalla R.; Meunier B.; Louahadj L.; Canut B.; Carretero-Genevrier A.; Gazquez J.; Regreny P.; Botella C.; Penuelas J.; Silly M. G.; Sirotti F.; Grenet G. Epitaxy of SrTiO DOI

He L.; Zhou W.; Cai D.; Mao S. S.; Sun K.; Shen S. Pulsed Laser-Deposited n-Si/NiO DOI

Hartig-Weiss A.; Tovini M. F.; Gasteiger H. A.; El-Sayed H. A. OER Catalyst Durability Tests Using the Rotating Disk Electrode Technique: The Reason Why This Leads to Erroneous Conclusions. ACS Appl. Energy Mater. 2020, 3 (11), 10323–10327. 10.1021/acsaem.0c01944. DOI

Scheuermann A. G.; Lawrence J. P.; Kemp K. W.; Ito T.; Walsh A.; Chidsey C. E.; Hurley P. K.; McIntyre P. C. Design Principles for Maximizing Photovoltage in Metal-Oxide-Protected Water-Splitting Photoanodes. Nat. Mater. 2016, 15 (1), 99–105. 10.1038/nmat4451. PubMed DOI

Jung J. Y.; Yu J. Y.; Lee J. H. Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO PubMed DOI

Das C.; Kot M.; Henkel K.; Schmeisser D. Engineering of Sub-Nanometer SiO PubMed DOI

Wang S.; Feng S.; Liu B.; Gong Z.; Wang T.; Gong J. An Integrated n-Si/BiVO PubMed DOI PMC

Digdaya I. A.; Rodriguez P. P.; Ma M.; Adhyaksa G. W. P.; Garnett E. C.; Smets A. H. M.; Smith W. A. Engineering the Kinetics and Interfacial Energetics of Ni/Ni-Mo Catalyzed Amorphous Silicon Carbide Photocathodes in Alkaline Media. J. Mater. Chem. A 2016, 4 (18), 6842–6852. 10.1039/C5TA09435F. DOI

Shen J. X.; Wang Y. J.; Chen C.; Wei Z. H.; Song P. F.; Zou S.; Dong W.; Su X. D.; Peng Y.; Fan R. L.; Shen M. R. Reduced Graphene Oxide Grafted on p-Si Photocathode as a Multifunctional Interlayer for Enhanced Solar Hydrogen Production. Appl. Phys. Lett. 2022, 121 (21), 213901. 10.1063/5.0121678. DOI

Bae D.; Seger B.; Vesborg P. C.; Hansen O.; Chorkendorff I. Strategies for Stable Water Splitting via Protected Photoelectrodes. Chem. Soc. Rev. 2017, 46 (7), 1933–1954. 10.1039/C6CS00918B. PubMed DOI

Cheng N.; Stambula S.; Wang D.; Banis M. N.; Liu J.; Riese A.; Xiao B.; Li R.; Sham T.-K.; Liu L.-M.; Botton G. A.; Sun X. Platinum Single-Atom and Cluster Catalysis of the Hydrogen Evolution Reaction. Nat. Commun. 2016, 7 (1), 13638. 10.1038/ncomms13638. PubMed DOI PMC

Smiljanić M.; Bele M.; Moriau L. J.; Vélez Santa J. F.; Menart S.; Šala M.; Hrnjić A.; Jovanovič P.; Ruiz-Zepeda F.; Gaberšček M.; Hodnik N. Suppressing Platinum Electrocatalyst Degradation via a High-Surface-Area Organic Matrix Support. ACS Omega 2022, 7 (4), 3540–3548. 10.1021/acsomega.1c06028. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...