Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37695941
PubMed Central
PMC10520914
DOI
10.1021/acsami.3c07747
Knihovny.cz E-zdroje
- Klíčová slova
- SrTiO3, epitaxy, onset potential, photoelectrochemical water splitting, protection layer, pulsed laser deposition, reduced graphene oxide, stability,
- Publikační typ
- časopisecké články MeSH
Development of a robust photocathode using low-cost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions. A protective layer over the substrate to simultaneously provide corrosion resistance and maintain efficient charge transfer across the device is therefore needed. To this end, in the present work, we utilized pulsed laser deposition (PLD) to prepare a high-quality SrTiO3 (STO) layer to passivate the p-Si substrate using a buffer layer of reduced graphene oxide (rGO). Specifically, a very thin (3.9 nm ∼10 unit cells) STO layer epitaxially overgrown on rGO-buffered Si showed the highest onset potential (0.326 V vs RHE) in comparison to the counterparts with thicker and/or nonepitaxial STO. The photovoltage, flat-band potential, and electrochemical impedance spectroscopy measurements revealed that the epitaxial photocathode was more beneficial for charge separation, charge transfer, and targeted redox reaction than the nonepitaxial one. The STO/rGO/Si with a smooth and highly epitaxial STO layer outperforming the directly contacted STO/Si with a textured and polycrystalline STO layer showed the importance of having a well-defined passivation layer. In addition, the numerous pinholes formed in the directly contacted STO/Si led to the rapid degradation of the photocathode during the PEC measurements. The stability tests demonstrated the soundness of the epitaxial STO layer in passivating Si against corrosion. This study provided a facile approach for preparing a robust protection layer over a photoelectrode substrate in realizing an efficient and, at the same time, durable PEC device.
Advanced Materials Department Jožef Stefan Institute 1000 Ljubljana Slovenia
Department of Materials Chemistry National Institute of Chemistry 1000 Ljubljana Slovenia
Department of Surface Engineering Jožef Stefan Institute 1000 Ljubljana Slovenia
Department of Thin Films and Surfaces Jožef Stefan Institute 1000 Ljubljana Slovenia
MESA Institute for Nanotechnology University of Twente Enschede 7522 NB The Netherlands
Zobrazit více v PubMed
Walter M. G.; Warren E. L.; McKone J. R.; Boettcher S. W.; Mi Q.; Santori E. A.; Lewis N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110 (11), 6446–6473. 10.1021/cr1002326. PubMed DOI
Ding Q.; Meng F.; English C. R.; Caban-Acevedo M.; Shearer M. J.; Liang D.; Daniel A. S.; Hamers R. J.; Jin S. Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si and Chemically Exfoliated Metallic MoS PubMed DOI
Kaufman A. J.; Krivina R. A.; Shen M.; Boettcher S. W. Controlling Catalyst-Semiconductor Contacts: Interfacial Charge Separation in p-InP Photocathodes. ACS Energy Lett. 2022, 7 (1), 541–549. 10.1021/acsenergylett.1c02590. DOI
Chen X.; Yin Z.; Cao K.; Shen S. Building Directional Charge Transport Channel in CdTe-Based Multilayered Photocathode for Efficient Photoelectrochemical Hydrogen Evolution. ACS Mater. Lett. 2022, 4 (8), 1381–1388. 10.1021/acsmaterialslett.2c00363. DOI
Paracchino A.; Laporte V.; Sivula K.; Gratzel M.; Thimsen E. Highly Active Oxide Photocathode for Photoelectrochemical Water Reduction. Nat. Mater. 2011, 10 (6), 456–461. 10.1038/nmat3017. PubMed DOI
Li C.; Hisatomi T.; Watanabe O.; Nakabayashi M.; Shibata N.; Domen K.; Delaunay J.-J. Positive Onset Potential and Stability of Cu DOI
Seger B.; Pedersen T.; Laursen A. B.; Vesborg P. C.; Hansen O.; Chorkendorff I. Using TiO PubMed DOI
Esposito D. V.; Levin I.; Moffat T. P.; Talin A. A. H PubMed DOI
Mei Z.; Chen Y.; Tong S.; Li Y.; Liu J.; Sun L.; Zhong W.; Dong X.; Ji Y.; Lin Y.; Chen H.; Pan F. High-Performance Si Photocathode Enabled by Spatial Decoupling Multifunctional Layers for Water Splitting. Adv. Funct. Mater. 2022, 32 (2), 2107164. 10.1002/adfm.202107164. DOI
Li S.; Lin H.; Luo S.; Wang Q.; Ye J. Surface/Interface Engineering of Si-Based Photocathodes for Efficient Hydrogen Evolution. ACS Photonics 2022, 9 (12), 3786–3806. 10.1021/acsphotonics.2c00708. DOI
Chen S.; Wang L.-W. Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chem. Mater. 2012, 24 (18), 3659–3666. 10.1021/cm302533s. DOI
Zeradjanin A. R.; Grote J.-P.; Polymeros G.; Mayrhofer K. J. J. A Critical Review on Hydrogen Evolution Electrocatalysis: Re-Exploring the Volcano-Relationship. Electroanalysis 2016, 28 (10), 2256–2269. 10.1002/elan.201600270. DOI
Seger B.; Laursen A. B.; Vesborg P. C.; Pedersen T.; Hansen O.; Dahl S.; Chorkendorff I. Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titanium-Protected n PubMed DOI
Seger B.; Tilley D. S.; Pedersen T.; Vesborg P. C. K.; Hansen O.; Grätzel M.; Chorkendorff I. Silicon Protected with Atomic Layer Deposited TiO DOI
Seger B.; Tilley S. D.; Pedersen T.; Vesborg P. C. K.; Hansen O.; Grätzel M.; Chorkendorff I. Silicon Protected with Atomic Layer Deposited TiO DOI
Sim U.; Yang T.-Y.; Moon J.; An J.; Hwang J.; Seo J.-H.; Lee J.; Kim K. Y.; Lee J.; Han S.; Hong B. H.; Nam K. T. N-doped Monolayer Graphene Catalyst on Silicon Photocathode for Hydrogen Production. Energy Environ. Sci. 2013, 6 (12), 3658. 10.1039/c3ee42106f. DOI
Benck J. D.; Lee S. C.; Fong K. D.; Kibsgaard J.; Sinclair R.; Jaramillo T. F. Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials. Adv. Energy Mater. 2014, 4 (18), 1400739. 10.1002/aenm.201400739. DOI
Li S.; Zhang P.; Song X.; Gao L. Photoelectrochemical Hydrogen Production of TiO PubMed DOI
Ros C.; Andreu T.; Hernandez-Alonso M. D.; Penelas-Perez G.; Arbiol J.; Morante J. R. Charge Transfer Characterization of ALD-Grown TiO PubMed DOI
Sun X.; Jiang J.; Yang Y.; Shan Y.; Gong L.; Wang M. Enhancing the Performance of Si-Based Photocathodes for Solar Hydrogen Production in Alkaline Solution by Facilely Intercalating a Sandwich N-Doped Carbon Nanolayer to the Interface of Si and TiO PubMed DOI
Li F.; Zheng W.; Liu J.; Zhao L.; Janackovic D.; Qiu Y.; Song X.; Zhang P.; Gao L. Enhancing the Long-Term Photoelectrochemical Performance of TiO DOI
Zeng G.; Pham T. A.; Vanka S.; Liu G.; Song C.; Cooper J. K.; Mi Z.; Ogitsu T.; Toma F. M. Development of a Photoelectrochemically Self-Improving Si/GaN Photocathode for Efficient and Durable H PubMed DOI
Wang T.; Liu S.; Li H.; Li C.; Luo Z.; Gong J. Transparent Ta DOI
Riyajuddin S.; Sultana J.; Siddiqui S. A.; Kumar S.; Badhwar D.; Yadav S. S.; Goyal S.; Venkatesan A.; Chakraverty S.; Ghosh K. Silicon Nanowire-Ta DOI
McKee R. A.; Walker F. J.; Chisholm M. F. Crystalline Oxides on Silicon: The First Five Monolayers. Phys. Rev. Lett. 1998, 81 (14), 3014–3017. 10.1103/PhysRevLett.81.3014. DOI
McKee R. A.; Walker F. J.; Chisholm M. F. Physical Structure and Inversion Charge at a Semiconductor Interface with a Crystalline Oxide. Science 2001, 293 (5529), 468–471. 10.1126/science.293.5529.468. PubMed DOI
Chambers S. A.; Liang Y.; Yu Z.; Droopad R.; Ramdani J.; Eisenbeiser K. Band Discontinuities at Epitaxial SrTiO DOI
Robertson J. Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices. J. Vac. Sci. 2000, 18 (3), 1785. 10.1116/1.591472. DOI
Zhang X.; Demkov A. A.; Li H.; Hu X.; Wei Y.; Kulik J. Atomic and Electronic Structure of the Si/SrTiO DOI
Ji L.; McDaniel M. D.; Wang S.; Posadas A. B.; Li X.; Huang H.; Lee J. C.; Demkov A. A.; Bard A. J.; Ekerdt J. G.; Yu E. T. A Silicon-Based Photocathode for Water Reduction with an Epitaxial SrTiO PubMed DOI
Chen B.; Jovanovic Z.; Abel S.; Le P. T. P.; Halisdemir U.; Smithers M.; Diaz-Fernandez D.; Spreitzer M.; Fompeyrine J.; Rijnders G.; Koster G. Integration of Single Oriented Oxide Superlattices on Silicon Using Various Template Techniques. ACS Appl. Mater. Interfaces 2020, 12 (38), 42925–42932. 10.1021/acsami.0c10579. PubMed DOI PMC
Jovanović Z.; Trstenjak U.; Ho H. C.; Butsyk O.; Chen B.; Tchernychova E.; Borodavka F.; Koster G.; Hlinka J.; Spreitzer M. Tiling the Silicon for Added Functionality: PLD Growth of Highly Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface. ACS Appl. Mater. Interfaces 2023, 15 (4), 6058–6068. 10.1021/acsami.2c17351. PubMed DOI PMC
Dubale A. A.; Su W.-N.; Tamirat A. G.; Pan C.-J.; Aragaw B. A.; Chen H.-M.; Chen C.-H.; Hwang B.-J. The Synergetic Effect of Graphene on Cu DOI
Ho H.-C.; Chen K.; Nagao T.; Hsueh C.-H. Photocurrent Enhancements of TiO DOI
Jovanović Z.; Spreitzer M.; Gabor U.; Suvorov D. Control of SrO Buffer-Layer Formation on Si(001) Using the Pulsed-Laser Deposition Technique. RSC Adv. 2016, 6 (85), 82150–82156. 10.1039/C6RA16311D. DOI
Ku C. K.; Wu P. H.; Chung C. C.; Chen C. C.; Tsai K. J.; Chen H. M.; Chang Y. C.; Chuang C. H.; Wei C. Y.; Wen C. Y.; Lin T. Y.; Chen H. L.; Wang Y. S.; Lee Z. Y.; Chang J. R.; Luo C. W.; Wang D. Y.; Hwang B. J.; Chen C. W. Creation of 3D Textured Graphene/Si Schottky Junction Photocathode for Enhanced Photo-Electrochemical Efficiency and Stability. Adv. Energy Mater. 2019, 9 (29), 1901022. 10.1002/aenm.201901022. DOI
Smiljanić M.; Panić S.; Bele M.; Ruiz-Zepeda F.; Pavko L.; Gašparič L.; Kokalj A.; Gaberšček M.; Hodnik N. Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support. ACS Catal. 2022, 12 (20), 13021–13033. 10.1021/acscatal.2c03214. PubMed DOI PMC
Pei S.; Cheng H.-M. The Reduction of Graphene Oxide. Carbon 2012, 50 (9), 3210–3228. 10.1016/j.carbon.2011.11.010. DOI
Jovanović Z.; Spreitzer M.; Kovac J.; Klement D.; Suvorov D. Silicon Surface Deoxidation Using Strontium Oxide Deposited with the Pulsed Laser Deposition Technique. ACS Appl. Mater. Interfaces 2014, 6 (20), 18205–18214. 10.1021/am505202p. PubMed DOI
Spreitzer M.; Klement D.; Egoavil R.; Verbeeck J.; Kovač J.; Založnik A.; Koster G.; Van Tendeloo G.; Suvorov D.; Rijnders G. Growth Mechanism of Epitaxial SrTiO DOI
Kim Y.; Cruz S. S.; Lee K.; Alawode B. O.; Choi C.; Song Y.; Johnson J. M.; Heidelberger C.; Kong W.; Choi S.; Qiao K.; Almansouri I.; Fitzgerald E. A.; Kong J.; Kolpak A. M.; Hwang J.; Kim J. Remote Epitaxy through Graphene Enables Two-Dimensional Material-Based Layer Transfer. Nature 2017, 544 (7650), 340–343. 10.1038/nature22053. PubMed DOI
Jiang J.; Sun X.; Chen X.; Wang B.; Chen Z.; Hu Y.; Guo Y.; Zhang L.; Ma Y.; Gao L.; Zheng F.; Jin L.; Chen M.; Ma Z.; Zhou Y.; Padture N. P.; Beach K.; Terrones H.; Shi Y.; Gall D.; Lu T. M.; Wertz E.; Feng J.; Shi J. Carrier Lifetime Enhancement in Halide Perovskite via Remote Epitaxy. Nat. Commun. 2019, 10 (1), 4145. 10.1038/s41467-019-12056-1. PubMed DOI PMC
Wang Y.; Qu Y.; Xu Y.; Li D.; Lu Z.; Li J.; Su X.; Wang G.; Shi L.; Zeng X.; Wang J.; Cao B.; Xu K. Modulation of Remote Epitaxial Heterointerface by Graphene-Assisted Attenuative Charge Transfer. ACS Nano 2023, 17 (4), 4023–4033. 10.1021/acsnano.3c00026. PubMed DOI
Dai L.; Zhao J.; Li J.; Chen B.; Zhai S.; Xue Z.; Di Z.; Feng B.; Sun Y.; Luo Y.; Ma M.; Zhang J.; Ding S.; Zhao L.; Jiang Z.; Luo W.; Quan Y.; Schwarzkopf J.; Schroeder T.; Ye Z. G.; Xie Y. H.; Ren W.; Niu G. Highly Heterogeneous Epitaxy of Flexoelectric BaTiO PubMed DOI PMC
Ashfold M. N.; Claeyssens F.; Fuge G. M.; Henley S. J. Pulsed Laser Ablation and Deposition of Thin Films. Chem. Soc. Rev. 2004, 33 (1), 23–31. 10.1039/b207644f. PubMed DOI
Schou J. Physical Aspects of the Pulsed Laser Deposition Technique: The Stoichiometric Transfer of Material from Target to Film. Appl. Surf. Sci. 2009, 255 (10), 5191–5198. 10.1016/j.apsusc.2008.10.101. DOI
Kölbach M.; Harbauer K.; Ellmer K.; van de Krol R. Elucidating the Pulsed Laser Deposition Process of BiVO DOI
Saint-Girons G.; Bachelet R.; Moalla R.; Meunier B.; Louahadj L.; Canut B.; Carretero-Genevrier A.; Gazquez J.; Regreny P.; Botella C.; Penuelas J.; Silly M. G.; Sirotti F.; Grenet G. Epitaxy of SrTiO DOI
He L.; Zhou W.; Cai D.; Mao S. S.; Sun K.; Shen S. Pulsed Laser-Deposited n-Si/NiO DOI
Hartig-Weiss A.; Tovini M. F.; Gasteiger H. A.; El-Sayed H. A. OER Catalyst Durability Tests Using the Rotating Disk Electrode Technique: The Reason Why This Leads to Erroneous Conclusions. ACS Appl. Energy Mater. 2020, 3 (11), 10323–10327. 10.1021/acsaem.0c01944. DOI
Scheuermann A. G.; Lawrence J. P.; Kemp K. W.; Ito T.; Walsh A.; Chidsey C. E.; Hurley P. K.; McIntyre P. C. Design Principles for Maximizing Photovoltage in Metal-Oxide-Protected Water-Splitting Photoanodes. Nat. Mater. 2016, 15 (1), 99–105. 10.1038/nmat4451. PubMed DOI
Jung J. Y.; Yu J. Y.; Lee J. H. Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO PubMed DOI
Das C.; Kot M.; Henkel K.; Schmeisser D. Engineering of Sub-Nanometer SiO PubMed DOI
Wang S.; Feng S.; Liu B.; Gong Z.; Wang T.; Gong J. An Integrated n-Si/BiVO PubMed DOI PMC
Digdaya I. A.; Rodriguez P. P.; Ma M.; Adhyaksa G. W. P.; Garnett E. C.; Smets A. H. M.; Smith W. A. Engineering the Kinetics and Interfacial Energetics of Ni/Ni-Mo Catalyzed Amorphous Silicon Carbide Photocathodes in Alkaline Media. J. Mater. Chem. A 2016, 4 (18), 6842–6852. 10.1039/C5TA09435F. DOI
Shen J. X.; Wang Y. J.; Chen C.; Wei Z. H.; Song P. F.; Zou S.; Dong W.; Su X. D.; Peng Y.; Fan R. L.; Shen M. R. Reduced Graphene Oxide Grafted on p-Si Photocathode as a Multifunctional Interlayer for Enhanced Solar Hydrogen Production. Appl. Phys. Lett. 2022, 121 (21), 213901. 10.1063/5.0121678. DOI
Bae D.; Seger B.; Vesborg P. C.; Hansen O.; Chorkendorff I. Strategies for Stable Water Splitting via Protected Photoelectrodes. Chem. Soc. Rev. 2017, 46 (7), 1933–1954. 10.1039/C6CS00918B. PubMed DOI
Cheng N.; Stambula S.; Wang D.; Banis M. N.; Liu J.; Riese A.; Xiao B.; Li R.; Sham T.-K.; Liu L.-M.; Botton G. A.; Sun X. Platinum Single-Atom and Cluster Catalysis of the Hydrogen Evolution Reaction. Nat. Commun. 2016, 7 (1), 13638. 10.1038/ncomms13638. PubMed DOI PMC
Smiljanić M.; Bele M.; Moriau L. J.; Vélez Santa J. F.; Menart S.; Šala M.; Hrnjić A.; Jovanovič P.; Ruiz-Zepeda F.; Gaberšček M.; Hodnik N. Suppressing Platinum Electrocatalyst Degradation via a High-Surface-Area Organic Matrix Support. ACS Omega 2022, 7 (4), 3540–3548. 10.1021/acsomega.1c06028. PubMed DOI PMC