Tiling the Silicon for Added Functionality: PLD Growth of Highly Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface

. 2023 Feb 01 ; 15 (4) : 6058-6068. [epub] 20230118

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36653314

The application of two-dimensional (2D) materials has alleviated a number of challenges of traditional epitaxy and pushed forward the integration of dissimilar materials. Besides acting as a seed layer for van der Waals epitaxy, the 2D materials─being atom(s) thick─have also enabled wetting transparency in which the potential field of the substrate, although partially screened, is still capable of imposing epitaxial overgrowth. One of the crucial steps in this technology is the preservation of the quality of 2D materials during and after their transfer to a substrate of interest. In the present study, we show that by honing the achievements of traditional epitaxy and wet chemistry a hybrid approach can be devised that offers a unique perspective for the integration of functional oxides with a silicon platform. It is based on SrO-assisted deoxidation and controllable coverage of silicon surface with a layer(s) of spin-coated graphene oxide, thus simultaneously allowing both direct and van der Waals epitaxy of SrTiO3 (STO). We were able to grow a high-quality STO pseudo-substrate suitable for further overgrowth of functional oxides, such as PbZr1-xTixO3 (PZT). Given that the quality of the films grown on a reduced graphene oxide-buffer layer was almost identical to that obtained on SiC-derived graphene, we believe that this approach may provide new routes for direct and "remote" epitaxy or layer-transfer techniques of dissimilar material systems.

Zobrazit více v PubMed

Ayers J. E.; Kujofsa T.; Rango P.; Raphael J. E.. Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization, 2nd ed.; CRC Press/Taylor & Francis Group: Boca Raton, 2017; p 659.

Takahagi T.; Nagai I.; Ishitani A.; Kuroda H.; Nagasawa Y. The Formation of Hydrogen Passivated Silicon Single-Crystal Surfaces Using Ultraviolet Cleaning and HF Etching. J. Appl. Phys. 1988, 64, 3516–3521. 10.1063/1.341489. DOI

Wilk G. D.; Wei Y.; Edwards H.; Wallace R. M. In Situ Si Flux Cleaning Technique for Producing Atomically Flat Si(100) Surfaces at Low Temperature. Appl. Phys. Lett. 1997, 70, 2288–2290. 10.1063/1.119083. DOI

McKee R. A.; Walker F. J.; Chisholm M. F. Crystalline Oxides on Silicon: The First Five Monolayers. Phys. Rev. Lett. 1998, 81, 3014–3017. 10.1103/PhysRevLett.81.3014. DOI

Yu Z.; Ramdani J.; Curless J. A.; Overgaard C. D.; Finder J. M.; Droopad R.; Eisenbeiser K. W.; Hallmark J. A.; Ooms W. J.; Kaushik V. S. Epitaxial Oxide Thin Films on Si(001). J. Vac. Sci. Technol., B 2000, 18, 2139–2145. 10.1116/1.1303737. DOI

Wei Y.; Hu X.; Liang Y.; Jordan D. C.; Craigo B.; Droopad R.; Yu Z.; Demkov A.; Edwards J. J. L.; Ooms W. J. Mechanism of Cleaning Si(100) Surface Using Sr or SrO for the Growth of Crystalline SrTiO3 Films. J. Vac. Sci. Technol., B 2002, 20, 1402–1405. 10.1116/1.1491547. DOI

Lettieri J.; Haeni J. H.; Schlom D. G. Critical Issues in the Heteroepitaxial Growth of Alkaline-Earth Oxides on Silicon. J. Vac. Sci. Technol., A 2002, 20, 1332–1340. 10.1116/1.1482710. DOI

Li H.; Hu X.; Wei Y.; Yu Z.; Zhang X.; Droopad R.; Demkov A. A.; Edwards J.; Moore K.; Ooms W.; Kulik J.; Fejes P. Two-Dimensional Growth of High-Quality Strontium Titanate Thin Films on Si. J. Appl. Phys. 2003, 93, 4521–4525. 10.1063/1.1562001. DOI

Zachariae J.; Pfnür H. Growth Conditions, Stoichiometry, and Electronic Structure of Lattice-Matched SrO/BaO Mixtures on Si(100). Phys. Rev. B 2005, 72, 07541010.1103/PhysRevB.72.075410. DOI

Norga G. J.; Marchiori C.; Guiller A.; Locquet J. P.; Rossel C.; Siegwart H.; Caimi D.; Fompeyrine J.; Conard T. Phase of Reflection High-Energy Electron Diffraction Oscillations During (Ba,Sr)O Epitaxy on Si(100): A Marker of Sr Barrier Integrity. Appl. Phys. Lett. 2005, 87, 26290510.1063/1.2158018. DOI

Mi S.-B.; Jia C.-L.; Vaithyanathan V.; Houben L.; Schubert J.; Schlom D. G.; Urban K. Atomic Structure of the Interface Between SrTiO3 Thin Films and Si(001) Substrates. Appl. Phys. Lett. 2008, 93, 10191310.1063/1.2981524. DOI

Zhang C. B.; Wielunski L.; Willis B. G. Formation of Strontium Template on Si(100) by Atomic Layer Deposition. Appl. Surf. Sci. 2011, 257, 4826–4830. 10.1016/j.apsusc.2010.12.098. DOI

Willis B. G.; Mathew A. Growth of Ordered SrO Layers on Si(100) Using Metal-Organic Surface Reactions. J. Vac. Sci. Technol., A 2008, 26, 83–89. 10.1116/1.2819267. DOI

Klement D.; Spreitzer M.; Suvorov D. Formation of a Strontium Buffer Layer on Si(001) by Pulsed-Laser Deposition Through the Sr/Si(001)(2 × 3) Surface Reconstruction. Appl. Phys. Lett. 2015, 106, 07160210.1063/1.4913464. DOI

Diaz-Fernandez D.; Spreitzer M.; Parkelj T.; Kovac J.; Suvorov D. The Importance of Annealing and Stages Coverage on the Epitaxial Growth of Complex Oxides on Silicon by Pulsed Laser Deposition. RSC Adv. 2017, 7, 24709–24717. 10.1039/C7RA02820B. DOI

Parkelj Potočnik T.; Zupanič E.; Tong W.-Y.; Bousquet E.; Diaz Fernandez D.; Koster G.; Ghosez P.; Spreitzer M. Atomic Structure of Sr/Si(0 0 1)(1 × 2) Surfaces Prepared by Pulsed Laser Deposition. Appl. Surf. Sci. 2019, 471, 664–669. 10.1016/j.apsusc.2018.12.027. DOI

Jovanović Z.; Spreitzer M.; Kovač J.; Klement D.; Suvorov D. Silicon Surface Deoxidation Using Strontium Oxide Deposited with the Pulsed Laser Deposition Technique. ACS Appl. Mater. Interfaces 2014, 6, 18205–18214. 10.1021/am505202p. PubMed DOI

Jovanović Z.; Spreitzer M.; Gabor U.; Suvorov D. Control of SrO Buffer-Layer Formation on Si(001) Using the Pulsed-Laser Deposition Technique. RSC Adv. 2016, 6, 82150–82156. 10.1039/C6RA16311D. DOI

Jovanović Z.; Gauquelin N.; Koster G.; Rubio-Zuazo J.; Ghosez P.; Verbeeck J.; Suvorov D.; Spreitzer M. Simultaneous Heteroepitaxial Growth of SrO (001) and SrO (111) During Strontium-Assisted Deoxidation of the Si (001) Surface. RSC Adv. 2020, 10, 31261–31270. 10.1039/D0RA06548J. PubMed DOI PMC

Jiang J.; Sun X.; Chen X.; Wang B.; Chen Z.; Hu Y.; Guo Y.; Zhang L.; Ma Y.; Gao L.; Zheng F.; Jin L.; Chen M.; Ma Z.; Zhou Y.; Padture N. P.; Beach K.; Terrones H.; Shi Y.; Gall D.; Lu T. M.; Wertz E.; Feng J.; Shi J. Carrier Lifetime Enhancement in Halide Perovskite via Remote Epitaxy. Nat. Commun. 2019, 10, 414510.1038/s41467-019-12056-1. PubMed DOI PMC

Kum H.; Lee D.; Kong W.; Kim H.; Park Y.; Kim Y.; Baek Y.; Bae S. H.; Lee K.; Kim J. Epitaxial Growth and Layer-Transfer Techniques for Heterogeneous Integration of Materials for Electronic and Photonic Devices. Nat. Electron. 2019, 2, 439–450. 10.1038/s41928-019-0314-2. DOI

Kim H.; Chang C. S.; Lee S.; Jiang J.; Jeong J.; Park M.; Meng Y.; Ji J.; Kwon Y.; Sun X.; Kong W.; Kum H. S.; Bae S.-H.; Lee K.; Hong Y. J.; Shi J.; Kim J. Remote Epitaxy. Nat. Rev. Methods Primers 2022, 2, 1–21. 10.1038/s43586-022-00122-w. DOI

Bae S. H.; Lu K.; Han Y.; Kim S.; Qiao K.; Choi C.; Nie Y.; Kim H.; Kum H. S.; Chen P.; Kong W.; Kang B. S.; Kim C.; Lee J.; Baek Y.; Shim J.; Park J.; Joo M.; Muller D. A.; Lee K.; Kim J. Graphene-Assisted Spontaneous Relaxation Towards Dislocation-Free Heteroepitaxy. Nat. Nanotechnol. 2020, 15, 272–276. 10.1038/s41565-020-0633-5. PubMed DOI

Qiao K.; Liu Y. P.; Kim C.; Molnar R. J.; Osadchy T.; Li W. H.; Sun X. C.; Li H. S.; Myers-Ward R. L.; Lee D.; Subramanian S.; Kim H.; Lu K. Y.; Robinson J. A.; Kong W.; Kim J. Graphene Buffer Layer on SiC as a Release Layer for High-Quality Freestanding Semiconductor Membranes. Nano Lett. 2021, 21, 4013–4020. 10.1021/acs.nanolett.1c00673. PubMed DOI

Badokas K.; Kadys A.; Augulis D.; Mickevicius J.; Ignatjev I.; Skapas M.; Sebeka B.; Juska G.; Malinauskas T. MOVPE Growth of GaN via Graphene Layers on GaN/Sapphire Templates. Nanomaterials 2022, 12, 785.10.3390/nano12050785. PubMed DOI PMC

Flaschmann R.; Ye J.; Paul N.; Bern F.; Esquinazi P.; Muller-Buschbaum P.; Stahn J.; Boni P.; Zheng J.-G.; Aoki T.; Paul A. Self-Organized In-Plane Ordering of Nanostructures at Epitaxial Ferroelectric-Ferromagnetic Interfaces. J. Appl. Crystallogr. 2016, 49, 1693–1703. 10.1107/S1600576716012115. DOI

Kum H. S.; Lee H.; Kim S.; Lindemann S.; Kong W.; Qiao K.; Chen P.; Irwin J.; Lee J. H.; Xie S.; Subramanian S.; Shim J.; Bae S. H.; Choi C.; Ranno L.; Seo S.; Lee S.; Bauer J.; Li H.; Lee K.; Robinson J. A.; Ross C. A.; Schlom D. G.; Rzchowski M. S.; Eom C. B.; Kim J. Heterogeneous Integration of Single-Crystalline Complex-Oxide Membranes. Nature 2020, 578, 75–81. 10.1038/s41586-020-1939-z. PubMed DOI

Dai L. Y.; Niu G.; Zhao J. Y.; Zhao H. F.; Liu Y. W.; Wang Y. K.; Zhang Y. J.; Wu H. P.; Wang L. Y.; Pfutzenreuter D.; Schwarzkopf J.; Dubourdieu C.; Schroeder T.; Ye Z. G.; Xie Y. H.; Ren W. Toward van der Waals Epitaxy of Transferable Ferroelectric Barium Titanate Films via a Graphene Monolayer. J. Mater. Chem. C 2020, 8, 3445–3451. 10.1039/C9TC06454K. DOI

Lee S. A.; Hwang J. Y.; Kim E. S.; Kim S. W.; Choi W. S. Highly Oriented SrTiO3 Thin Film on Graphene Substrate. ACS Appl. Mater. Interfaces 2017, 9, 3246–3250. 10.1021/acsami.6b12258. PubMed DOI

Chen B. B.; Jovanovic Z.; Abel S.; Le P. T. P.; Halisdemir U.; Smithers M.; Diaz-Fernandez D.; Spreitzer M.; Fompeyrine J.; Rijnders G.; Koster G. Integration of Single Oriented Oxide Superlattices on Silicon Using Various Template Techniques. ACS Appl. Mater. Interfaces 2020, 12, 42925–42932. 10.1021/acsami.0c10579. PubMed DOI PMC

Shirane G.; Suzuki K. Crystal Structure of Pb(Zr-Ti)O3. J. Phys. Soc. Jpn. 1952, 7, 333.10.1143/JPSJ.7.333. DOI

Jaffe B.; Roth R. S.; Marzullo S. Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics. J. Appl. Phys. 1954, 25, 809–810. 10.1063/1.1721741. DOI

Noheda B.; Cox D. E.; Shirane G.; Gonzalo J. A.; Cross L. E.; Park S. E. A Monoclinic Ferroelectric Phase in the Pb(Zr1–xTix)O3 Solid Solution. Appl. Phys. Lett. 1999, 74, 2059–2061. 10.1063/1.123756. DOI

Funakubo H.; Dekkers M.; Sambri A.; Gariglio S.; Shklyarevskiy I.; Rijnders G. Epitaxial PZT Films for MEMS Printing Applications. MRS Bull. 2012, 37, 1030–1038. 10.1557/mrs.2012.271. DOI

Muralt P.; Polcawich R. G.; Trolier-McKinstry S. Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting. MRS Bull. 2009, 34, 658–664. 10.1557/mrs2009.177. DOI

Eom C.-B.; Trolier-McKinstry S. Thin-Film Piezoelectric MEMS. MRS Bull. 2012, 37, 1007–1017. 10.1557/mrs.2012.273. DOI

Kim S. G.; Priya S.; Kanno I. Piezoelectric MEMS for Energy Harvesting. MRS Bull. 2012, 37, 1039–1050. 10.1557/mrs.2012.275. DOI

Isarakorn D.; Briand D.; Janphuang P.; Sambri A.; Gariglio S.; Triscone J. M.; Guy F.; Reiner J. W.; Ahn C. H.; de Rooij N. F. The Realization and Performance of Vibration Energy Harvesting MEMS Devices Based on an Epitaxial Piezoelectric Thin Film. Smart Mater. Struct. 2011, 20, 02501510.1088/0964-1726/20/2/025015. DOI

Chopra A.; Bayraktar M.; Nijland M.; ten Elshof J. E.; Bijkerk F.; Rijnders G. Tuning of Large Piezoelectric Response in Nanosheet-Buffered Lead Zirconate Titanate Films on Glass Substrates. Sci. Rep. 2017, 7, 25110.1038/s41598-017-00333-2. PubMed DOI PMC

Matsuba K.; Wang C.; Saruwatari K.; Uesusuki Y.; Akatsuka K.; Osada M.; Ebina Y.; Ma R.; Sasaki T. Neat Monolayer Tiling of Molecularly Thin Two-Dimensional Materials in 1 Min. Sci. Adv. 2017, 3, e170041410.1126/sciadv.1700414. PubMed DOI PMC

Horcas I.; Fernández R.; Gómez-Rodríguez J. M.; Colchero J.; Gómez-Herrero J.; Baro A. M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 01370510.1063/1.2432410. PubMed DOI

Jovanovic Z.; Bajuk-Bogdanović D.; Jovanović S.; Mravik Ž.; Kovač J.; Holclajtner-Antunović I.; Vujković M. The Role of Surface Chemistry in the Charge Storage Properties of Graphene Oxide. Electrochim. Acta 2017, 258, 1228–1243. 10.1016/j.electacta.2017.11.178. DOI

Klement D.Growth of Strontium Titanate on Silicon by Pulsed Laser Deposition Technique. Ph.D. Dissertation, Jožef Stefan International Postgraduate School, 2015. https://plus.cobiss.net/cobiss/si/sl/bib/282123264?lang=sl (accessed June 15, 2022).

Hodas M.; Siffalovic P.; Nádaždy P.; Mrkyvková N.; Bodík M.; Halahovets Y.; Duva G.; Reisz B.; Konovalov O.; Ohm W.; Jergel M.; Majková E.; Gerlach A.; Hinderhofer A.; Schreiber F. Real-Time Monitoring of Growth and Orientational Alignment of Pentacene on Epitaxial Graphene for Organic Electronics. ACS Appl. Nano Mater. 2018, 1, 2819–2826. 10.1021/acsanm.8b00473. DOI

Hoang A. T.; Katiyar A. K.; Shin H.; Mishra N.; Forti S.; Coletti C.; Ahn J.-H. Epitaxial Growth of Wafer-Scale Molybdenum Disulfide/Graphene Heterostructures by Metal–Organic Vapor-Phase Epitaxy and Their Application in Photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 44335–44344. 10.1021/acsami.0c12894. PubMed DOI PMC

Baran J. D.; Eames C.; Takahashi K.; Molinari M.; Islam M. S.; Parker S. C. Structural, Electronic, and Transport Properties of Hybrid SrTiO3-Graphene and Carbon Nanoribbon Interfaces. Chem. Mater. 2017, 29, 7364–7370. 10.1021/acs.chemmater.7b02253. DOI

Gómez-Navarro C.; Meyer J. C.; Sundaram R. S.; Chuvilin A.; Kurasch S.; Burghard M.; Kern K.; Kaiser U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10, 1144–1148. 10.1021/nl9031617. PubMed DOI

Cançado L. G.; Jorio A.; Ferreira E. H. M.; Stavale F.; Achete C. A.; Capaz R. B.; Moutinho M. V. O.; Lombardo A.; Kulmala T. S.; Ferrari A. C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. 10.1021/nl201432g. PubMed DOI

Lim E. H.; Karunasiri G.; Chua S. J.; Wong H.; Pey K. L.; Lee K. H. Monitoring of TiSi2 Formation on Narrow Polycrystalline Silicon Lines Using Raman Spectroscopy. IEEE Electron Device Lett. 1998, 19, 171–173. 10.1109/55.669738. DOI

Lim E. H.; Karunasiri G.; Chua S. J.; Shen Z. X.; Wong H.; Pey K. L.; Lee K. H.; Chan L. Characterization of Titanium Silicide by Raman Spectroscopy for Submicron IC Processing. Microelectron. Eng. 1998, 43–44, 611–617. 10.1016/S0167-9317(98)00234-2. DOI

Vála L.; Vavruňková V.; Jandová V.; Křenek T. Laser Ablation of Silicon Monoxide and Titanium Monoxide in Liquid: Formation of Mixed Colloidal Dispersion with Photocatalytic Activity. J. Phys. Conf. Ser. 2020, 1527, 01204610.1088/1742-6596/1527/1/012046. DOI

Zou B.; Walker C.; Wang K.; Tileli V.; Shaforost O.; Harrison N. M.; Klein N.; Alford N. M.; Petrov P. K. Growth of Epitaxial Oxide Thin Films on Graphene. Sci. Rep. 2016, 6, 3151110.1038/srep31511. PubMed DOI PMC

Tan G.; Maruyama K.; Kanamitsu Y.; Nishioka S.; Ozaki T.; Umegaki T.; Hida H.; Kanno I. Crystallographic Contributions to Piezoelectric Properties in PZT Thin Films. Sci. Rep. 2019, 9, 730910.1038/s41598-019-43869-1. PubMed DOI PMC

Fujisawa T.; Ehara Y.; Yasui S.; Kamo T.; Yamada T.; Sakata O.; Funakubo H. Direct Observation of Intrinsic Piezoelectricity of Pb(Zr,Ti)O3 by Time-Resolved X-Ray Diffraction Measurement Using Single-Crystalline Films. Appl. Phys. Lett. 2014, 105, 01290510.1063/1.4889803. DOI

Yamada T.; Yasumoto J.; Ito D.; Sakata O.; Imai Y.; Kiguchi T.; Shiraishi T.; Shimizu T.; Funakubo H.; Yoshino M.; Nagasaki T. Negligible Substrate Clamping Effect on Piezoelectric Response in (111)-Epitaxial Tetragonal Pb(Zr, Ti)O3 Films. J. Appl. Phys. 2015, 118, 07201210.1063/1.4927810. DOI

Vu H. T.; Nguyen M. D.; Houwman E.; Boota M.; Dekkers M.; Vu H. N.; Rijnders G. Ferroelectric and Piezoelectric Responses of (110) and (001)-Oriented Epitaxial Pb(Zr0.52Ti0.48)O3 Thin Films on All-Oxide Layers Buffered Silicon. Mater. Res. Bull. 2015, 72, 160–167. 10.1016/j.materresbull.2015.07.043. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting

. 2023 Sep 20 ; 15 (37) : 44482-44492. [epub] 20230911

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...