Can spirometry improve the performance of cardiovascular risk model in high-risk Eastern European countries?

. 2023 ; 10 () : 1228807. [epub] 20230829

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37711557

Grantová podpora
R01 AG023522 NIA NIH HHS - United States

AIMS: Impaired lung function has been strongly associated with cardiovascular disease (CVD) events. We aimed to assess the additive prognostic value of spirometry indices to the risk estimation of CVD events in Eastern European populations in this study. METHODS: We randomly selected 14,061 individuals with a mean age of 59 ± 7.3 years without a previous history of cardiovascular and pulmonary diseases from population registers in the Czechia, Poland, and Lithuania. Predictive values of standardised Z-scores of forced expiratory volume measured in 1 s (FEV1), forced vital capacity (FVC), and FEV1 divided by height cubed (FEV1/ht3) were tested. Cox proportional hazards models were used to estimate hazard ratios (HRs) of CVD events of various spirometry indices over the Framingham Risk Score (FRS) model. The model performance was evaluated using Harrell's C-statistics, likelihood ratio tests, and Bayesian information criterion. RESULTS: All spirometry indices had a strong linear relation with the incidence of CVD events (HR ranged from 1.10 to 1.12 between indices). The model stratified by FEV1/ht3 tertiles had a stronger link with CVD events than FEV1 and FVC. The risk of CVD event for the lowest vs. highest FEV1/ht3 tertile among people with low FRS was higher (HR: 2.35; 95% confidence interval: 1.96-2.81) than among those with high FRS. The addition of spirometry indices showed a small but statistically significant improvement of the FRS model. CONCLUSIONS: The addition of spirometry indices might improve the prediction of incident CVD events particularly in the low-risk group. FEV1/ht3 is a more sensitive predictor compared to other spirometry indices.

Zobrazit více v PubMed

Cardiovascular diseases. Available at: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (Accessed November 10, 2022).

Damen JAAG, Hooft L, Schuit E, Debray TPA, Collins GS, Tzoulaki I, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. Br Med J. (2016) 353:i2416. 10.1136/BMJ.I2416 PubMed DOI PMC

D’Agostino RB. General cardiovascular risk profile for use in primary care: the Framingham heart study (Circulation. 2008;117:743–753). Circulation (2008) 118:743–53. 10.1161/CIRCULATIONAHA.108.190154 PubMed DOI

Lloyd-Jones DM. Cardiovascular risk prediction. Circulation. (2010) 121:1768–77. 10.1161/CIRCULATIONAHA.109.849166 PubMed DOI

Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. (2003) 24:987–1003. 10.1016/S0195-668X(03)00114-3 PubMed DOI

Hippisley-Cox J, Coupland C, Robson J, Brindle P. Derivation, validation, and evaluation of a new QRISK model to estimate lifetime risk of cardiovascular disease: cohort study using QResearch database. Br Med J. (2010) 341:93. 10.1136/BMJ.C6624 PubMed DOI PMC

SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 Risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J (2021) 42:2439–54. 10.1093/EURHEARTJ/EHAB309 PubMed DOI PMC

Sofogianni A, Stalikas N, Antza C, Tziomalos K. Cardiovascular risk prediction models and scores in the era of personalized medicine. J Pers Med. (2022) 12(7):1180. 10.3390/JPM12071180 PubMed DOI PMC

Pate A, Emsley R, Ashcroft DM, Brown B, Van Staa T. The uncertainty with using risk prediction models for individual decision making: an exemplar cohort study examining the prediction of cardiovascular disease in English primary care. BMC Med. (2019) 17:1–16. 10.1186/S12916-019-1368-8/TABLES/6 PubMed DOI PMC

De Ruijter W, Westendorp RGJ, Assendelft WJJ, Den Elzen WPJ, De Craen AJM, Le Cessie S, et al. Use of Framingham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study. Br Med J. (2009) 338:A3083. 10.1136/bmj.a3083 PubMed DOI PMC

Vaes B, Indestege P, Serneels T, Hegendörfer E, Hegendörfer E, Van Peet PG, et al. Biomarkers versus traditional risk factors to predict cardiovascular events in very old adults: cross-validated prospective cohort study. BMJ Open. (2020) 10:e035809. 10.1136/BMJOPEN-2019-035809 PubMed DOI PMC

Sabayan B, Gussekloo J, De Ruijter W, Westendorp RGJ, De Craen AJM. Framingham stroke risk score and cognitive impairment for predicting first-time stroke in the oldest old. Stroke. (2013) 44:1866–71. 10.1161/strokeaha.113.001460 PubMed DOI

Folsom AR. Classical and novel biomarkers for cardiovascular risk prediction in the United States. J Epidemiol. (2013) 23:158. 10.2188/JEA.JE20120157 PubMed DOI PMC

Graversen P, Abildstrøm SZ, Jespersen L, Borglykke A, Prescott E. Cardiovascular risk prediction: can systematic coronary risk evaluation (SCORE) be improved by adding simple risk markers? Results from the Copenhagen City heart study. Eur J Prev Cardiol. (2016) 23:1546–56. 10.1177/2047487316638201 PubMed DOI

Aul P, Idker MR, Ifai AR, Ynda L, Ose R, Ulie J, Uring EB, Ook ARC. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. (2002) 347(20):1557–65. 10.1056/NEJMOA021993 PubMed DOI

Vaz Fragoso CA, Van Ness PH, McAvay GJ. FEV(1) as a standalone spirometric predictor and the attributable fraction for death in older persons. Respir Care. (2020) 65:217–26. 10.4187/respcare.07012 PubMed DOI PMC

Batty GD, Gunnell D, Langenberg C, Smith GD, Marmot MG, Shipley MJ. Adult height and lung function as markers of life course exposures: associations with risk factors and cause-specific mortality. Eur J Epidemiol. 21(11):795–801. 10.1007/s10654-006-9057-2 PubMed DOI

Baughman P, Marott JL, Lange P, Martin CJ, Shankar A, Petsonk EL, et al. Combined effect of lung function level and decline increases morbidity and mortality risks. Eur J Epidemiol. (2012) 27:933–43. 10.1007/s10654-012-9750-2 PubMed DOI

Gupta RP, Strachan DP. Ventilatory function as a predictor of mortality in lifelong non-smokers: evidence from large British cohort studies. BMJ Open. (2017) 7(7):e015381. 10.1136/bmjopen-2016-015381 PubMed DOI PMC

Sabia S, Shipley M, Elbaz A, Marmot M, Kivimaki M, Kauffmann F, et al. Why does lung function predict mortality? Results from the Whitehall II cohort study. Am J Epidemiol. (2010) 172:1415–23. 10.1093/AJE/KWQ294 PubMed DOI PMC

Loth DW, Ittermann T, Lahousse L, Hofman A, Leufkens HGM, Brusselle GG, et al. Normal spirometry values in healthy elderly: the Rotterdam study. Eur J Epidemiol. (2013) 28:329–34. 10.1007/s10654-013-9800-4 PubMed DOI

Duong M, Islam S, Rangarajan S, Leong D, Kurmi O, Teo K, et al. Mortality and cardiovascular and respiratory morbidity in individuals with impaired FEV1 (PURE): an international, community-based cohort study. Lancet Global Health. (2019) 7:E613–23. 10.1016/s2214-109x(19)30070-1 PubMed DOI

Weinmayr G, Schulz H, Klenk J, Denkinger M, Duran-Tauleria E, Koenig W, et al. Association of lung function with overall mortality is independent of inflammatory, cardiac, and functional biomarkers in older adults: the ActiFE-study. Sci Rep. (2020) 10:11862. 10.1038/s41598-020-68372-w PubMed DOI PMC

Sarycheva T, Capkova N, Pająk A, Malyutina S, Simonova G, Tamosiunas A, et al. Impaired lung function and mortality in Eastern Europe: results from multi-centre cohort study. Respir Res. (2022) 23:1–10. 10.1186/S12931-022-02057-Y/TABLES/4 PubMed DOI PMC

Lee HM, Le H, Lee BT, Lopez VA, Wong ND. Forced vital capacity paired with Framingham risk score for prediction of all-cause mortality. Eur Respir J. (2010) 36:1002–6. 10.1183/09031936.00042410 PubMed DOI

Damen JA, Pajouheshnia R, Heus P, Moons KGM, Reitsma JB, Scholten RJPM, et al. Performance of the Framingham risk models and pooled cohort equations for predicting 10-year risk of cardiovascular disease: a systematic review and meta-analysis. BMC Med. (2019) 17:1–16. 10.1186/S12916-019-1340-7/FIGURES/7 PubMed DOI PMC

Günaydın ZY, Karagöz A, Bektaş O, Kaya A, Kırış T, Erdoğan G, et al. Comparison of the Framingham risk and SCORE models in predicting the presence and severity of coronary artery disease considering SYNTAX score. Anatol J Cardiol. (2016) 16:412. 10.5152/ANATOLJCARDIOL.2015.6317 PubMed DOI PMC

Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. (2022) 43:716–99. 10.1093/EURHEARTJ/EHAB892 PubMed DOI

Movsisyan NK, Vinciguerra M, Medina-Inojosa JR, Lopez-Jimenez F. Cardiovascular diseases in central and eastern Europe: a call for more surveillance and evidence-based health promotion. Ann Glob Health. (2020) 86(1):21. 10.5334/aogh.2713 PubMed DOI PMC

Bobak M, Marmot M. East-west mortality divide and its potential explanations: proposed research agenda. BMJ. (1996) 312:421. 10.1136/BMJ.312.7028.421 PubMed DOI PMC

Kolossváry E, Björck M, Behrendt CA. A divide between the Western European and the central and Eastern European countries in the peripheral vascular field: a narrative review of the literature. J Clin Med. (2021) 10(16):3553. 10.3390/JCM10163553 PubMed DOI PMC

Powles JW, Zatonski W, Vander Hoorn S, Ezzati M. The contribution of leading diseases and risk factors to excess losses of healthy life in Eastern Europe: burden of disease study. BMC Public Health. (2005) 5:1–10. 10.1186/1471-2458-5-116/FIGURES/3 PubMed DOI PMC

Vandenheede H, Vikhireva O, Pikhart H, Kubinova R, Malyutina S, Pajak A, et al. Socioeconomic inequalities in all-cause mortality in the Czech Republic, Russia, Poland and Lithuania in the 2000s: findings from the HAPIEE study. J Epidemiol Community Health. (2014) 68:297–303. 10.1136/JECH-2013-203057 PubMed DOI PMC

Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol. (2022) 80:2361–71. 10.1016/J.JACC.2022.11.005 PubMed DOI

Prüss-Ustün A, Wolf J, Corvalán C, Neville T, Bos R, Neira M. Diseases due to unhealthy environments: an updated estimate of the global burden of disease attributable to environmental determinants of health. J Public Health (Oxf). (2017) 39:464–75. 10.1093/PUBMED/FDW085 PubMed DOI PMC

Peasey A, Bobak M, Kubinova R, Malyutina S, Pajak A, Tamosiunas A, et al. Determinants of cardiovascular disease and other non-communicable diseases in central and Eastern Europe: rationale and design of the HAPIEE study. BMC Public Health. (2006) 6:255. 10.1186/1471-2458-6-255 PubMed DOI PMC

Graham BL, Steenbruggen I, Barjaktarevic IZ, Cooper BG, Hall GL, Hallstrand TS, et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am J Respir Crit Care Med. (2019) 200:e70. 10.1164/RCCM.201908-1590ST PubMed DOI PMC

Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-year age range: the global lung function 2012 equations. Eur Respir J. (2012) 40:1324–43. 10.1183/09031936.00080312 PubMed DOI PMC

Sarycheva T, Capkova N, Pająk A, Malyutina S, Tamosiunas A, Bobák M, Pikhart H. All-cause and cardiovascular mortality in relation to lung function in the full range of distribution across four Eastern European cohorts. Sci Rep (2022) 12:1–9. 10.1038/s41598-022-17261-5 PubMed DOI PMC

Linden A. Framingham: Stata module for calculating the Framingham 10-year cardiovascular disease risk prediction. statistical software components (2017). Available at: https://ideas.repec.org/c/boc/bocode/s457997.html (Accessed November 11, 2022).

Newson RB. Comparing the predictive powers of survival models using Harrell’s C or Somers’ D. Stata J. (2010) 10:339–58. 10.1177/1536867X1001000303 DOI

Kuk D, Varadhan R. Model selection in competing risks regression. Stat Med. (2013) 32:3077–88. 10.1002/SIM.5762 PubMed DOI

Cook NR. Quantifying the added value of new biomarkers: how and how not. Diagn Progn Res. (2018) 2(14). 10.1186/S41512-018-0037-2 PubMed DOI PMC

Grønnesby JK, Borgan Ø. A method for checking regression models in survival analysis based on the risk score. Lifetime Data Anal. (1996) 2:315–28. 10.1007/BF00127305 PubMed DOI

Demler OV, Paynter NP, Cook NR. Tests of calibration and goodness of fit in the survival setting. Stat Med. (2015) 34:1659. 10.1002/SIM.6428 PubMed DOI PMC

Teshnizi SH, Ayatollahi SMT. Comparison of cox regression and parametric models: application for assessment of survival of pediatric cases of acute leukemia in southern Iran. Asian Pac J Cancer Prev. (2017) 18:981. 10.22034/APJCP.2017.18.4.981 PubMed DOI PMC

Royston P. Flexible parametric alternatives to the cox model, and more. Stata J. (2001) 1:1–28. 10.1177/1536867X0100100101 DOI

Royston P, Parmar MKB. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat Med. (2002) 21:2175–97. 10.1002/SIM.1203 PubMed DOI

Syriopoulou E, Mozumder SI, Rutherford MJ, Lambert PC. Robustness of individual and marginal model-based estimates: a sensitivity analysis of flexible parametric models. Cancer Epidemiol. (2019) 58:17–24. 10.1016/J.CANEP.2018.10.017 PubMed DOI PMC

Brindle P, Ebrahim S, Jonathan E, Lampe F, Walker M, Whincup P, et al. Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study. Br Med J. (2003) 327:1267. 10.1136/BMJ.327.7426.1267 PubMed DOI PMC

D’Agostino RB, Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA. (2001) 286:180–7. 10.1001/jama.286.2.180 PubMed DOI

Boudík F, Reissigová J, Hrach K, Tomečková M, Bultas J, Anger Z, et al. Primary prevention of coronary artery disease among middle aged men in Prague: twenty-year follow-up results. Atherosclerosis. (2006) 184:86–93. 10.1016/J.ATHEROSCLEROSIS.2005.02.011 PubMed DOI

Piko P, Kosa Z, Sandor J, Adany R. Comparative risk assessment for the development of cardiovascular diseases in the Hungarian general and Roma population. Sci Rep (2021) 11:1–12. 10.1038/s41598-021-82689-0 PubMed DOI PMC

Cook NR, Ridker PM. Calibration of the pooled cohort equations for atherosclerotic cardiovascular disease: an update. Ann Intern Med. (2016) 165:786–94. 10.7326/M16-1739 PubMed DOI

Vikhireva O, Pajak A, Broda G, Malyutina S, Tamosiunas A, Kubinova R, et al. SCORE performance in central and Eastern Europe and former soviet union: MONICA and HAPIEE results. Eur Heart J. (2014) 35(9):571–77. 10.1093/eurheartj/eht189 PubMed DOI PMC

Pedone C, Scarlata S, Scichilone N, Forastiere F, Bellia V, Antonelli-Incalzi R. Alternative ways of expressing FEV1 and mortality in elderly people with and without COPD. Eur Respir J. (2013) 41:800–5. 10.1183/09031936.00008812 PubMed DOI

Sylvester KP, Clayton N, Cliff I, Hepple M, Kendrick A, Kirkby J, et al. ARTP statement on pulmonary function testing 2020. BMJ Open Respir Res. (2020) 7(1):e000575. 10.1136/bmjresp-2020-000575 PubMed DOI PMC

Miller MR, Thinggaard M, Christensen K, Pedersen OF, Sigsgaard T. Best lung function equations for the very elderly selected by survival analysis. Eur Respir J. (2014) 43:1338–46. 10.1183/09031936.00100313 PubMed DOI PMC

Miller MR, Pedersen OF. New concepts for expressing forced expiratory volume in 1 s arising from survival analysis. Eur Respir J. (2010) 35:873–82. 10.1183/09031936.00025809 PubMed DOI

Chinn S, Gislason T, Aspelund T, Gudnason V. Optimum expression of adult lung function based on all-cause mortality: results from the Reykjavik study. Respir Med. (2007) 101:601–9. 10.1016/J.RMED.2006.06.009 PubMed DOI

Bhatta L, Leivseth L, Mai X-M, Henriksen AH, Carslake D, Chen Y, et al. Spirometric classifications of COPD severity as predictive markers for clinical outcomes: the HUNT study. medRxiv. BMC Med Res Methodol. (2013) 13:33. 10.1101/2020.11.03.20221432 PubMed DOI PMC

Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. (2014) 35:1925–31. 10.1093/EURHEARTJ/EHU207 PubMed DOI PMC

Harrell FE, Lee KL, Mark DB. Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. (1996) 15:361–87. 10.1002/(SICI)1097-0258(19960229)15:4 PubMed DOI

Royston P, Altman DG. External validation of a Cox prognostic model: principles and methods. BMC Med Res Methodol. (2013) 13:33. 10.1186/1471-2288-13-33 PubMed DOI PMC

Palatini P, Penzo M, Racioppa A, Zugno E, Guzzardi G, Anaclerio M, et al. Clinical relevance of nighttime blood pressure and of daytime blood pressure variability. Arch Intern Med. (1992) 152:1855–60. 10.1001/ARCHINTE.1992.00400210081013 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...