All-cause and cardiovascular mortality in relation to lung function in the full range of distribution across four Eastern European cohorts
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
WT064947
Wellcome Trust - United Kingdom
WT081081
Wellcome Trust - United Kingdom
R01 AG023522
NIA NIH HHS - United States
PubMed
35902678
PubMed Central
PMC9334616
DOI
10.1038/s41598-022-17261-5
PII: 10.1038/s41598-022-17261-5
Knihovny.cz E-zdroje
- MeSH
- kardiovaskulární nemoci * epidemiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- plíce MeSH
- proporcionální rizikové modely MeSH
- prospektivní studie MeSH
- rizikové faktory MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
It is unclear whether the dose-response relationship between lung function and all-cause and cardiovascular mortality in the Central and Eastern European populations differ from that reported in the Western European and American populations. We used the prospective population-based HAPIEE cohort that includes randomly selected people with a mean age of 59 ± 7.3 years from population registers in Czech, Polish, Russian and Lithuanian urban centres. The baseline survey in 2002-2005 included 36,106 persons of whom 24,944 met the inclusion criteria. Cox proportional hazards models were used to estimate the dose-response relationship between lung function defined as FEV1 divided by height cubed and all-cause and cardiovascular mortality over 11-16 years of follow-up. Mortality rate increased in a dose-response manner from highest to lower FEV1/height3 deciles. Adjusted hazard ratios (HR) of all-cause mortality for persons in the 8th best, the 5th and the worst deciles were 1.27 (95% CI 1.08‒1.49), 1.37 (1.18-1.60) and 2.15 (1.86‒2.48), respectively; for cardiovascular mortality, the respective HRs were 1.84 (1.29-2.63), 2.35 (1.67-3.28) and 3.46 (2.50‒4.78). Patterns were similar across countries, with some statistically insignificant variation. FEV1/height3 is a strong predictor of all-cause and cardiovascular mortality, across full distribution of values, including persons with preserved lung function.
National Institute of Public Health Prague Czech Republic
Novosibirsk State Medical University Novosibirsk Russia
Research Department of Epidemiology and Public Health University College London London UK
Zobrazit více v PubMed
Weinmayr, G. et al. Association of lung function with overall mortality is independent of inflammatory, cardiac, and functional biomarkers in older adults: The ActiFE-study. Sci. Rep.10.1038/s41598-020-68372-w (2020). PubMed PMC
Baughman, P. et al. Combined effect of lung function level and decline increases morbidity and mortality risks. Eur. J. Epidemiol.27, 933–943 (2012). PubMed
Leivseth, L., Nilsen, T. I. L., Mai, X. M., Johnsen, R. & Langhammer, A. Lung function and respiratory symptoms in association with mortality: The HUNT study. Copd-J. Chronic Obstruct. Pulm. Dis.11, 59–80 (2014). PubMed
Yang, K., Wu, Y., Chen, D., Liu, S. & Chen, R. The impact of lung function on extra-pulmonary diseases and all-cause mortality in US adult population with and without COPD. Clin. Epidemiol.10.2147/CLEP.S270599 (2020). PubMed PMC
Vaz Fragoso, C. A., van Ness, P. H. & McAvay, G. J. FEV(1) as a standalone spirometric predictor and the attributable fraction for death in older persons. Respir. Care65, 217–226 (2020). PubMed PMC
Sircar, K., Hnizdo, E., Petsonk, E. & Atffield, M. Decline in lung function and mortality: Implications for medical monitoring. Occup. Environ. Med.64, 461–466 (2007). PubMed PMC
Bikov, A. et al. FEV 1 is a stronger mortality predictor than FVC in patients with moderate COPD and with an increased risk for cardiovascular disease. Int. J. Chronic Obstruct. Pulm. Dis.15, 1135. 10.2147/COPD.S242809 (2020). PubMed PMC
Menezes, A. M. B. et al. FEV 1 is a better predictor of mortality than FVC: The PLATINO cohort study. PLoS ONE9, e109732. 10.1371/journal.pone.0109732 (2014). PubMed PMC
Ching, S.-M. et al. FEV1 and total Cardiovascular mortality and morbidity over an 18 years follow-up population-based prospective EPIC-NORFOLK study. BMC Public Health10.1186/s12889-019-6818-x (2019). PubMed PMC
Sunyer, J. & Ulrik, C. S. Level of FEV1 as a predictor of all-cause and cardiovascular mortality: An effect beyond smoking and physical fitness? Eur. Respir. J.25, 587. 10.1183/09031936.05.00011105 (2005). PubMed
Duong, M. et al. Mortality and cardiovascular and respiratory morbidity in individuals with impaired FEV1 (PURE): An international, community-based cohort study. Lancet Global Health7, E613–E623 (2019). PubMed
Gupta, R. P. & Strachan, D. P. Ventilatory function as a predictor of mortality in lifelong non-smokers: Evidence from large British cohort studies. BMJ Open7, e015381 (2017). PubMed PMC
Loth, D. W. et al. Normal spirometry values in healthy elderly: The Rotterdam study. Eur. J. Epidemiol.28, 329–334 (2013). PubMed
Ashley, F., Kannel, W. B., Sorlie, P. D. & Masson, R. Pulmonary function: Relation to aging, cigarette habit, and mortality: The Framingham study. Ann. Intern. Med.82, 739–745 (1975). PubMed
Schünemann, H. J., Dorn, J., Grant, B. J. B., Winkelstein, W. & Trevisan, M. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest118, 656–664 (2000). PubMed
Lee, H. M., Liu, M. A., Barrett-Connor, E. & Wong, N. D. Association of lung function with coronary heart disease and cardiovascular disease outcomes in elderly: The Rancho Bernardo study. Respir. Med.108, 1779–1785 (2014). PubMed PMC
Pedone, C. et al. Alternative ways of expressing FEV1 and mortality in elderly people with and without COPD. Eur. Respir. J.41, 800–805 (2013). PubMed
Sylvester, K. P. et al. ARTP statement on pulmonary function testing 2020. Bmj Open Respir. Res.7, e000575 (2020). PubMed PMC
Miller, M. R., Thinggaard, M., Christensen, K., Pedersen, O. F. & Sigsgaard, T. Best lung function equations for the very elderly selected by survival analysis. Eur. Respir. J.43, 1338–1346 (2014). PubMed PMC
Quanjer, P. H. et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. J.40, 1324–1343 (2012). PubMed PMC
Turkeshi, E. et al. Short-term prognostic value of forced expiratory volume in 1 second divided by height cubed in a prospective cohort of people 80 years and older. BMC Geriatr.10.1186/s12877-015-0013-4 (2015). PubMed PMC
Sabia, S. et al. Why does lung function predict mortality? Results from the whitehall ii cohort study. Am. J. Epidemiol.172, 1415–1423 (2010). PubMed PMC
Miller, M. R. & Pedersen, O. F. New concepts for expressing forced expiratory volume in 1 s arising from survival analysis. Eur. Respir. J.35, 873–882 (2010). PubMed
Chinn, S., Gislason, T., Aspelund, T. & Gudnason, V. Optimum expression of adult lung function based on all-cause mortality: Results from the Reykjavik study. Respir. Med.101, 601–609 (2007). PubMed
Vandenheede, H. et al. Socioeconomic inequalities in all-cause mortality in the Czech Republic, Russia, Poland and Lithuania in the 2000s: Findings from the HAPIEE Study. J. Epidemiol. Community Health68, 297–303 (2014). PubMed PMC
Kolossváry, E., Björck, M. & Behrendt, C. A. A divide between the western European and the central and Eastern European countries in the peripheral vascular field: A narrative review of the literature. J. Clin. Med.10, 3553 (2021). PubMed PMC
Powles, J. W. et al. The contribution of leading diseases and risk factors to excess losses of healthy life in eastern Europe: Burden of disease study. BMC Public Health5, 1–10 (2005). PubMed PMC
Bhatta, L. et al. Spirometric classifications of COPD severity as predictive markers for clinical outcomes: The HUNT Study. MedRxiv.10.1101/2020.11.03.20221432 (2020). PubMed PMC
Hegendörfer, E., Vaes, B., Matheï, C., van Pottelbergh, G. & Degryse, J. M. Prognostic value of short-term decline of forced expiratory volume in 1 s over height cubed (FEV 1/Ht 3) in a cohort of adults aged 80 and over. Aging Clin. Exp. Res.30, 507–516 (2018). PubMed
Wang, C. et al. Biomarkers of aging and lung function in the normative aging study. Aging12, 11942 (2020). PubMed PMC
Kim, J. J. et al. Relationship between airflow obstruction and coronary atherosclerosis in asymptomatic individuals: Evaluation by coronary CT angiography. Int. J. Cardiovasc. Imaging34, 641–648 (2018). PubMed
Sheen, S. S. et al. Airflow limitation as a risk factor for vascular stiffness. Int. J. Tuberc. Lung Dis.24, 577–584 (2020). PubMed
Min, K. B. & Min, J. Y. Reduced lung function, C-reactive protein, and increased risk of cardiovascular mortality. Circ. J.78, 2309-U423 (2014). PubMed
Lin, W. Y., Yao, C. A., Wang, H. C. & Huang, K. C. Impaired lung function is associated with obesity and metabolic syndrome in adults. Obesity14, 1654–1661 (2006). PubMed
Liu, G. Y. & Kalhan, R. Impaired respiratory health and life course transitions from health to chronic lung disease. Chest160, 879–889 (2021). PubMed PMC
Miller, J. et al. Comorbidity, systemic inflammation and outcomes in the ECLIPSE cohort. Respir. Med.107, 1376–1384 (2013). PubMed
Polak, M. et al. Socioeconomic status and pulmonary function, transition from childhood to adulthood: Cross-sectional results from the polish part of the HAPIEE study. BMJ Open9, e022638 (2019). PubMed PMC
Peasey, A. et al. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: Rationale and design of the HAPIEE study. BMC Public Health6, 255 (2006). PubMed PMC
Graham, B. L. et al. Standardization of spirometry 2019 update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med.200, e70 (2019). PubMed PMC
Zhang, Y. B. et al. Combined lifestyle factors, all-cause mortality and cardiovascular disease: A systematic review and meta-analysis of prospective cohort studies. J. Epidemiol. Community Health75, 92–99 (2021). PubMed
Ganna, A. & Ingelsson, E. 5 year mortality predictors in 498,103 UK Biobank participants: A prospective population-based study. The Lancet386, 533–540 (2015). PubMed
Etter, J. F., le Houezec, J. & Perneger, T. V. A self-administered questionnaire to measure dependence on cigarettes: The cigarette dependence scale. Neuropsychopharmacology28, 359–370 (2003). PubMed