• This record comes from PubMed

Time-resolved circular dichroism of excitonic systems: theory and experiment on an exemplary squaraine polymer

. 2023 Sep 13 ; 14 (35) : 9328-9349. [epub] 20230728

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Experimental and theoretical foundations for femtosecond time-resolved circular dichroism (TRCD) spectroscopy of excitonic systems are presented. In this method, the system is pumped with linearly polarized light and the signal is defined as the difference between the transient absorption spectrum probed with left and with right circularly polarized light. We present a new experimental setup with a polarization grating as key element to generate circularly polarized pulses. Herein the positive (negative) first order of the diffracted light is left-(right-)circularly polarized and serves as a probe pulse in a TRCD experiment. The grating is capable of transferring ultrashort broadband pulses ranging from 470 nm to 720 nm into two separate beams with opposite ellipticity. By applying a specific chopping scheme we can switch between left and right circular polarizations and detect transient absorption (TA) and TRCD spectra on a shot-to-shot basis simultaneously. We perform experiments on a squaraine polymer, investigating excitonic dynamics, and we develop a general theory for TRCD experiments of excitonically coupled systems that we then apply to describe the experimental data in this particular example. At a magic angle of 54.7° between the pump-pulse polarization and the propagation direction of the probe pulse, the TRCD and TA signals become particularly simple to analyze, since the orientational average over random orientations of complexes factorizes into that of the interaction with the pump and the probe pulse, and the intrinsic electric quadrupole contributions to the TRCD signal average to zero for isotropic samples. Application of exciton theory to linear absorption and to linear circular dichroism spectra of squaraine polymers reveals the presence of two fractions of polymer conformations, a dominant helical conformation with close interpigment distances that are suggested to lead to short-range contributions to site energy shifts and excitonic couplings of the squaraine molecules, and a fraction of unfolded random coils. Theory demonstrates that TRCD spectra of selectively excited helices can resolve state populations that are practically invisible in TA spectroscopy due to the small dipole strength of these states. A qualitative interpretation of TRCD and TA spectra in the spectral window investigated experimentally is offered. The 1 ps time component found in these spectra is related to the slow part of exciton relaxation obtained between states of the helix in the low-energy half of the exciton manifold. The dominant 140 ps time constant reflects the decay of excited states to the electronic ground state.

See more in PubMed

Garab G., in Biophysical Techniques in Photosynthesis, ed. J. Amesz and A. J. Hoff, Springer Netherlands, Dordrecht, 1996, pp. 11–40

von Berlepsch H. Böttcher C. Ouart A. Regenbrecht M. Akari S. Keiderling U. Schnablegger H. Dähne S. Kirstein S. Langmuir. 2000;16:5908–5916. doi: 10.1021/la000014i. DOI

Didraga C. Klugkist J. A. Knoester J. J. Phys. Chem. B. 2002;106:11474–11486. doi: 10.1021/jp026217s. DOI

Kunsel T. Günther L. M. Köhler J. Jansen T. L. C. Knoester J. J. Chem. Phys. 2021;155:124310. doi: 10.1063/5.0061529. PubMed DOI

Eisfeld A. Kniprath R. Briggs J. S. J. Chem. Phys. 2007;126:104904. doi: 10.1063/1.2464097. PubMed DOI

Georgakopoulou S. Frese R. N. Johnson E. Koolhaas C. Cogdell R. J. van Grondelle R. van der Zwan G. Biophys. J. 2002;82:2184–2197. doi: 10.1016/S0006-3495(02)75565-3. PubMed DOI PMC

Lindorfer D. Renger T. J. Phys. Chem. B. 2018;122:2747–2756. doi: 10.1021/acs.jpcb.7b12832. PubMed DOI

Akhtar P. Lindorfer D. Lingvay M. Pawlak K. Zsiros O. Siligardi G. Jávorfi T. Dorogi M. Ughy B. Garab G. Renger T. Lambrev P. H. J. Phys. Chem. B. 2019;123:1090–1098. doi: 10.1021/acs.jpcb.8b12474. PubMed DOI

Selby J. Holzapfel M. Radacki K. Swain A. K. Braunschweig H. Lambert C. Macromolecules. 2022;55:421–436. doi: 10.1021/acs.macromol.1c02155. DOI

Bulheller B. M. Rodger A. Hirst J. D. Phys. Chem. Chem. Phys. 2007;9:2020–2035. doi: 10.1039/B615870F. PubMed DOI

Mukamel S., Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York, 1st edn, 1995

Valkunas L., Abramavicius D. and Mančal T., Molecular Excitation Dynamics and Relaxation, Wiley-VCH, Weinheim, 1st edn, 2013

Cho M. J. Chem. Phys. 2003;119:7003–7016. doi: 10.1063/1.1599344. DOI

Abramavicius D. Mukamel S. J. Chem. Phys. 2006;124:034113. doi: 10.1063/1.2104527. PubMed DOI

Powis I. J. Chem. Phys. 2000;112:301–310. doi: 10.1063/1.480581. DOI

Janssen M. H. M. Powis I. Phys. Chem. Chem. Phys. 2014;16:856–871. doi: 10.1039/C3CP53741B. PubMed DOI

Baykusheva D. Zindel D. Svoboda V. Bommeli E. Ochsner M. Tehlar A. Wörner H. J. Proc. Natl. Acad. Sci. U.S.A. 2019:23923–23929. doi: 10.1073/pnas.1907189116. PubMed DOI PMC

Svoboda V. Ram N. B. Baykusheva D. Zindel D. Waters M. D. J. Spenger B. Ochsner M. Herburger H. Stohner J. Wörner H. J. Sci. Adv. 2022;8:eabq2811. doi: 10.1126/sciadv.abq2811. PubMed DOI PMC

Cireasa R. Boguslavskiy A. E. Pons B. Wong M. C. H. Descamps D. Petit S. Ruf H. Thiré N. Ferré A. Suarez J. Higuet J. Schmidt B. E. Alharbi A. F. Légaré F. Blanchet V. Fabre B. Patchkovskii S. Smirnova O. Mairesse Y. Bhardwaj V. R. Nat. Phys. 2015;11:654–658.

Baykusheva D. Wörner H. J. Phys. Rev. X. 2018;8:031060.

Comby A. Beaulieu S. Boggio-Pasqua M. Descamps D. Légaré F. Nahon L. Petit S. Pons B. Fabre B. Mairesse Y. Blanchet V. J. Phys. Chem. Lett. 2016;7:4514–4519. PubMed PMC

Beauvarlet S. Bloch E. Rajak D. Descamps D. Fabre B. Petit S. Pons B. Mairesse Y. Blanchet V. Phys. Chem. Chem. Phys. 2022;24:6415–6427. doi: 10.1039/D1CP05618B. PubMed DOI

Lux C. Wollenhaupt M. Bolze T. Liang Q. Köhler J. Sarpe C. Baumert T. Angew. Chem., Int. Ed. 2012;51:5001–5005. doi: 10.1002/anie.201109035. PubMed DOI

Lux C. Wollenhaupt M. Sarpe C. Baumert T. ChemPhysChem. 2015;16:115–137. doi: 10.1002/cphc.201402643. PubMed DOI

Böwering N. Lischke T. Schmidtke B. Müller N. Khalil T. Heinzmann U. Phys. Rev. Lett. 2001;86:1187–1190. doi: 10.1103/PhysRevLett.86.1187. PubMed DOI

Lischke T. Böwering N. Schmidtke B. Müller N. Khalil T. Heinzmann U. Phys. Rev. A: At., Mol., Opt. Phys. 2004;70:022507. doi: 10.1103/PhysRevA.70.022507. PubMed DOI

Lewis J. W. Tilton R. F. Einterz C. M. Milder S. J. Kuntz I. D. Kliger D. S. J. Phys. Chem. 1985;89:289–294. doi: 10.1021/j100248a023. DOI

Gold J. S. Milder S. J. Lewis J. W. Kliger D. S. J. Am. Chem. Soc. 1985;107:8285–8286. doi: 10.1021/ja00312a092. DOI

Xie X. Simon J. D. Rev. Sci. Instrum. 1989;60:2614–2627. doi: 10.1063/1.1140681. DOI

Mesnil H. Schanne-Klein M. Hache F. Alexandre M. Lemercier G. Andraud C. Chem. Phys. Lett. 2001;338:269–276. doi: 10.1016/S0009-2614(01)00239-1. DOI

Fischer P. Hache F. Chirality. 2005;17:421–437. doi: 10.1002/chir.20179. PubMed DOI

Mesnil H. Hache F. Phys. Rev. Lett. 2000;85:4257–4260. doi: 10.1103/PhysRevLett.85.4257. PubMed DOI

Dartigalongue T. Hache F. Chem. Phys. Lett. 2005;415:313–316. doi: 10.1016/j.cplett.2005.09.022. PubMed DOI

Dartigalongue T. Hache F. Chirality. 2006;18:273–278. doi: 10.1002/chir.20254. PubMed DOI

Dartigalongue T. Niezborala C. Hache F. Phys. Chem. Chem. Phys. 2007;9:1611–1615. doi: 10.1039/B616173A. PubMed DOI

Hache F. J. Photochem. Photobiol., A. 2009;204:137–143. doi: 10.1016/j.jphotochem.2009.03.012. DOI

Niezborala C. Hache F. J. Am. Chem. Soc. 2008;130:12783–12786. doi: 10.1021/ja8039844. PubMed DOI

Schmid M. Martinez-Fernandez L. Markovitsi D. Santoro F. Hache F. Improta R. Changenet P. J. Phys. Chem. Lett. 2019;14:4089–4094. doi: 10.1021/acs.jpclett.9b00948. PubMed DOI

Mendonça L. Hache F. Changenet-Barret P. Plaza P. Chosrowjan H. Taniguchi S. Imamoto Y. J. Am. Chem. Soc. 2013;135:14637–14643. doi: 10.1021/ja404503q. PubMed DOI

Hache F. Changenet P. Chirality. 2021;33:747–757. doi: 10.1002/chir.23359. PubMed DOI

Mangot L. Taupier G. Romeo M. Boeglin A. Cregut O. Dorkenoo K. D. Opt. Lett. 2010;35:381–383. doi: 10.1364/OL.35.000381. PubMed DOI

Trifonov A. Buchvarov I. Lohr A. Würthner F. Fiebig T. Rev. Sci. Instrum. 2010;81:043104. doi: 10.1063/1.3340892. PubMed DOI

Meyer-Ilse J. Akimov D. Dietzek B. Laser Photonics Rev. 2013;7:495–505. doi: 10.1002/lpor.201200065. DOI

Hiramatsu K. Nagata T. J. Chem. Phys. 2015;143:121102. doi: 10.1063/1.4932229. PubMed DOI

Stadnytskyi V. Orf G. S. Blankenship R. E. Savikhin S. Rev. Sci. Instrum. 2018;89:033104. doi: 10.1063/1.5009468. PubMed DOI

Meyer-Ilse J. Akimov D. Dietzek B. J. Phys. Chem. Lett. 2012;3:182–185. doi: 10.1021/jz2014659. DOI

Oppermann M. Bauer B. Rossi T. Zinna F. Helbing J. Lacour J. Chergui M. Optica. 2019;6:56–60. doi: 10.1364/OPTICA.6.000056. DOI

Oppermann M. Spekowius J. Bauer B. Pfister R. Chergui M. Helbing J. J. Phys. Chem. Lett. 2019;10:2700–2705. doi: 10.1021/acs.jpclett.9b01253. PubMed DOI

Kuronuma M. Sato T. Araki Y. Mori T. Sakamoto S. Inoue Y. Ito O. Wada T. Chem. Lett. 2019;48:357–360. doi: 10.1246/cl.190012. DOI

Oppermann M. Zinna F. Lacour J. Chergui M. Nat. Chem. 2022;14:739–745. doi: 10.1038/s41557-022-00933-0. PubMed DOI

Scholz M. Morgenroth M. Cho M. J. Choi D. H. Oum K. Lenzer T. J. Phys. Chem. Lett. 2019;10:5160–5166. doi: 10.1021/acs.jpclett.9b02061. PubMed DOI

Morgenroth M. Scholz M. Lenzer T. Oum K. J. Phys. Chem. C. 2020;124:10192–10200. doi: 10.1021/acs.jpcc.0c00976. DOI

Morgenroth M. Scholz M. Cho M. J. Choi D. H. Oum K. Lenzer T. Nat. Commun. 2022;13:210. doi: 10.1038/s41467-021-27886-1. PubMed DOI PMC

Steinbacher A. Hildenbrand H. Schott S. Buback J. Schmid M. Nuernberger P. Brixner T. Opt. Express. 2017;25:21735–21752. doi: 10.1364/OE.25.021735. PubMed DOI

Lambert C. Koch F. Völker S. F. Schmiedel A. Holzapfel M. Humeniuk A. Röhr M. I. S. Mitric R. Brixner T. J. Am. Chem. Soc. 2015;137:7851–7861. doi: 10.1021/jacs.5b03644. PubMed DOI

Turkin A. Malý P. Lambert C. Phys. Chem. Chem. Phys. 2021;23:18393–18403. doi: 10.1039/D1CP02136B. PubMed DOI

Nielsen J. T. Kulminskaya N. Bjerring M. Linnanto J. M. Rätsep M. Pedersen M. O. Lambrev P. H. Dorogi M. Garab G. Thomsen K. Jegerschoeld C. Frigaard N.-U. Lindahl M. Nielsen N. C. Nat. Commun. 2016;7:12454. doi: 10.1038/ncomms12454. PubMed DOI PMC

Adolphs J. Müh F. Madjet M. E.-A. Renger T. Photosynth. Res. 2008;95:197. doi: 10.1007/s11120-007-9248-z. PubMed DOI

Madjet M. E. Abdurahman A. Renger T. J. Phys. Chem. B. 2006;110:17268–17281. doi: 10.1021/jp0615398. PubMed DOI

Raszewski G. Renger T. J. Am. Chem. Soc. 2008;130:4431–4446. doi: 10.1021/ja7099826. PubMed DOI

Adolphs J. Renger T. Biophys. J. 2006;91:2778–2797. doi: 10.1529/biophysj.105.079483. PubMed DOI PMC

Andrews S. S. J. Chem. Educ. 2004;81:877–885. doi: 10.1021/ed081p877. DOI

Andrews D. L. Thirunamachandran T. J. Chem. Phys. 1977;67:5026–5033. doi: 10.1063/1.434725. DOI

Schott S. Steinbacher A. Buback J. Nuernberger P. Brixner T. J. Phys. B: At., Mol. Opt. Phys. 2014;47:124014. doi: 10.1088/0953-4075/47/12/124014. DOI

Renger T. Marcus R. A. J. Chem. Phys. 2002;116:9997–10019. doi: 10.1063/1.1470200. DOI

DeLong K. W. Trebino R. Hunter J. White W. E. J. Opt. Soc. Am. B. 1994;11:2206–2215. doi: 10.1364/JOSAB.11.002206. DOI

Oh C. Escuti M. J. Phys. Rev. A: At., Mol., Opt. Phys. 2007;76:043815. doi: 10.1103/PhysRevA.76.043815. DOI

Oh C. Escuti M. J. Opt. Lett. 2008;33:2287–2289. doi: 10.1364/OL.33.002287. PubMed DOI

Megerle U. Pugliesi I. Schriever C. Sailer C. F. Riedle E. Appl. Phys. B. 2009;96:215–231. doi: 10.1007/s00340-009-3610-0. DOI

Kovalenko S. A. Dobryakov A. L. Ruthmann J. Ernsting N. P. Phys. Rev. A: At., Mol., Opt. Phys. 1999;59:2369–2384. doi: 10.1103/PhysRevA.59.2369. DOI

Steinbacher A., PhD thesis, Dissertation, Universität Würzburg, 2015

Turkin A. Holzapfel M. Agarwal M. Fischermeier D. Mitric R. Schweins R. Gröhn F. Lambert C. Chem.–Eur. J. 2021;27:8380–8389. doi: 10.1002/chem.202101063. PubMed DOI PMC

Snellenburg J. J. Laptenok S. P. Seger R. Mullen K. M. van Stokkum I. H. M. J. Stat. Software. 2012;49:1–22.

Mullen K. M. van Stokkum I. H. M. J. Stat. Software. 2007;18:1–46. doi: 10.1360/jos180001. DOI

Madjet M. E.-A. Müh F. Renger T. J. Phys. Chem. B. 2009;113:12603–12614. doi: 10.1021/jp906009j. PubMed DOI

Hestand N. J. Spano F. C. Chem. Rev. 2018;118:7069–7163. doi: 10.1021/acs.chemrev.7b00581. PubMed DOI

Hestand N. J. Zheng C. Penmetcha A. R. Cona B. Cody J. A. Spano F. C. Collison C. J. J. Phys. Chem. C. 2015;119:18964–18974. doi: 10.1021/acs.jpcc.5b05095. DOI

Hart S. M. Banal J. L. Castellanos M. A. Markova L. Vyborna Y. Gorman J. Häner R. Willard A. P. Bathe M. Schlau-Cohen G. S. Chem. Sci. 2022;13:13020–13031. doi: 10.1039/D2SC02759C. PubMed DOI PMC

Klinger A. Lindorfer D. Müh F. Renger T. J. Chem. Phys. 2020;153:215103. doi: 10.1063/5.0027994. PubMed DOI

Bednarz M. Knoester J. J. Phys. Chem. B. 2001;105:12913–12923. doi: 10.1021/jp012371n. DOI

Hsu C.-P. You Z.-Q. Chen H.-C. J. Phys. Chem. C. 2008;112:1204–1212. doi: 10.1021/jp076512i. DOI

Voityuk A. A. Rösch N. J. Chem. Phys. 2002;117:5607–5616. doi: 10.1063/1.1502255. DOI

Cupellini L. Caprasecca S. Guido C. A. Müh F. Renger T. Mennucci B. J. Phys. Chem. Lett. 2018;9:6892–6899. doi: 10.1021/acs.jpclett.8b03233. PubMed DOI

Renger T. May V. J. Phys. Chem. B. 1997;101:7232–7240. doi: 10.1021/jp963372w. DOI

Spano F. C. Acc. Chem. Res. 2010;43:429–439. doi: 10.1021/ar900233v. PubMed DOI

Friedl C. Renger T. Berlepsch H. v. Ludwig K. Schmidt am Busch M. Megow J. J. Phys. Chem. C. 2016;120:19416–19433. doi: 10.1021/acs.jpcc.6b05856. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...