Time-resolved circular dichroism of excitonic systems: theory and experiment on an exemplary squaraine polymer
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
37712031
PubMed Central
PMC10498725
DOI
10.1039/d3sc01674a
PII: d3sc01674a
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Experimental and theoretical foundations for femtosecond time-resolved circular dichroism (TRCD) spectroscopy of excitonic systems are presented. In this method, the system is pumped with linearly polarized light and the signal is defined as the difference between the transient absorption spectrum probed with left and with right circularly polarized light. We present a new experimental setup with a polarization grating as key element to generate circularly polarized pulses. Herein the positive (negative) first order of the diffracted light is left-(right-)circularly polarized and serves as a probe pulse in a TRCD experiment. The grating is capable of transferring ultrashort broadband pulses ranging from 470 nm to 720 nm into two separate beams with opposite ellipticity. By applying a specific chopping scheme we can switch between left and right circular polarizations and detect transient absorption (TA) and TRCD spectra on a shot-to-shot basis simultaneously. We perform experiments on a squaraine polymer, investigating excitonic dynamics, and we develop a general theory for TRCD experiments of excitonically coupled systems that we then apply to describe the experimental data in this particular example. At a magic angle of 54.7° between the pump-pulse polarization and the propagation direction of the probe pulse, the TRCD and TA signals become particularly simple to analyze, since the orientational average over random orientations of complexes factorizes into that of the interaction with the pump and the probe pulse, and the intrinsic electric quadrupole contributions to the TRCD signal average to zero for isotropic samples. Application of exciton theory to linear absorption and to linear circular dichroism spectra of squaraine polymers reveals the presence of two fractions of polymer conformations, a dominant helical conformation with close interpigment distances that are suggested to lead to short-range contributions to site energy shifts and excitonic couplings of the squaraine molecules, and a fraction of unfolded random coils. Theory demonstrates that TRCD spectra of selectively excited helices can resolve state populations that are practically invisible in TA spectroscopy due to the small dipole strength of these states. A qualitative interpretation of TRCD and TA spectra in the spectral window investigated experimentally is offered. The 1 ps time component found in these spectra is related to the slow part of exciton relaxation obtained between states of the helix in the low-energy half of the exciton manifold. The dominant 140 ps time constant reflects the decay of excited states to the electronic ground state.
Center for Nanosystems Chemistry Universität Würzburg Theodor Boveri Weg 97074 Würzburg Germany
Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Praha 2 Czech Republic
Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
See more in PubMed
Garab G., in Biophysical Techniques in Photosynthesis, ed. J. Amesz and A. J. Hoff, Springer Netherlands, Dordrecht, 1996, pp. 11–40
von Berlepsch H. Böttcher C. Ouart A. Regenbrecht M. Akari S. Keiderling U. Schnablegger H. Dähne S. Kirstein S. Langmuir. 2000;16:5908–5916. doi: 10.1021/la000014i. DOI
Didraga C. Klugkist J. A. Knoester J. J. Phys. Chem. B. 2002;106:11474–11486. doi: 10.1021/jp026217s. DOI
Kunsel T. Günther L. M. Köhler J. Jansen T. L. C. Knoester J. J. Chem. Phys. 2021;155:124310. doi: 10.1063/5.0061529. PubMed DOI
Eisfeld A. Kniprath R. Briggs J. S. J. Chem. Phys. 2007;126:104904. doi: 10.1063/1.2464097. PubMed DOI
Georgakopoulou S. Frese R. N. Johnson E. Koolhaas C. Cogdell R. J. van Grondelle R. van der Zwan G. Biophys. J. 2002;82:2184–2197. doi: 10.1016/S0006-3495(02)75565-3. PubMed DOI PMC
Lindorfer D. Renger T. J. Phys. Chem. B. 2018;122:2747–2756. doi: 10.1021/acs.jpcb.7b12832. PubMed DOI
Akhtar P. Lindorfer D. Lingvay M. Pawlak K. Zsiros O. Siligardi G. Jávorfi T. Dorogi M. Ughy B. Garab G. Renger T. Lambrev P. H. J. Phys. Chem. B. 2019;123:1090–1098. doi: 10.1021/acs.jpcb.8b12474. PubMed DOI
Selby J. Holzapfel M. Radacki K. Swain A. K. Braunschweig H. Lambert C. Macromolecules. 2022;55:421–436. doi: 10.1021/acs.macromol.1c02155. DOI
Bulheller B. M. Rodger A. Hirst J. D. Phys. Chem. Chem. Phys. 2007;9:2020–2035. doi: 10.1039/B615870F. PubMed DOI
Mukamel S., Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York, 1st edn, 1995
Valkunas L., Abramavicius D. and Mančal T., Molecular Excitation Dynamics and Relaxation, Wiley-VCH, Weinheim, 1st edn, 2013
Cho M. J. Chem. Phys. 2003;119:7003–7016. doi: 10.1063/1.1599344. DOI
Abramavicius D. Mukamel S. J. Chem. Phys. 2006;124:034113. doi: 10.1063/1.2104527. PubMed DOI
Powis I. J. Chem. Phys. 2000;112:301–310. doi: 10.1063/1.480581. DOI
Janssen M. H. M. Powis I. Phys. Chem. Chem. Phys. 2014;16:856–871. doi: 10.1039/C3CP53741B. PubMed DOI
Baykusheva D. Zindel D. Svoboda V. Bommeli E. Ochsner M. Tehlar A. Wörner H. J. Proc. Natl. Acad. Sci. U.S.A. 2019:23923–23929. doi: 10.1073/pnas.1907189116. PubMed DOI PMC
Svoboda V. Ram N. B. Baykusheva D. Zindel D. Waters M. D. J. Spenger B. Ochsner M. Herburger H. Stohner J. Wörner H. J. Sci. Adv. 2022;8:eabq2811. doi: 10.1126/sciadv.abq2811. PubMed DOI PMC
Cireasa R. Boguslavskiy A. E. Pons B. Wong M. C. H. Descamps D. Petit S. Ruf H. Thiré N. Ferré A. Suarez J. Higuet J. Schmidt B. E. Alharbi A. F. Légaré F. Blanchet V. Fabre B. Patchkovskii S. Smirnova O. Mairesse Y. Bhardwaj V. R. Nat. Phys. 2015;11:654–658.
Baykusheva D. Wörner H. J. Phys. Rev. X. 2018;8:031060.
Comby A. Beaulieu S. Boggio-Pasqua M. Descamps D. Légaré F. Nahon L. Petit S. Pons B. Fabre B. Mairesse Y. Blanchet V. J. Phys. Chem. Lett. 2016;7:4514–4519. PubMed PMC
Beauvarlet S. Bloch E. Rajak D. Descamps D. Fabre B. Petit S. Pons B. Mairesse Y. Blanchet V. Phys. Chem. Chem. Phys. 2022;24:6415–6427. doi: 10.1039/D1CP05618B. PubMed DOI
Lux C. Wollenhaupt M. Bolze T. Liang Q. Köhler J. Sarpe C. Baumert T. Angew. Chem., Int. Ed. 2012;51:5001–5005. doi: 10.1002/anie.201109035. PubMed DOI
Lux C. Wollenhaupt M. Sarpe C. Baumert T. ChemPhysChem. 2015;16:115–137. doi: 10.1002/cphc.201402643. PubMed DOI
Böwering N. Lischke T. Schmidtke B. Müller N. Khalil T. Heinzmann U. Phys. Rev. Lett. 2001;86:1187–1190. doi: 10.1103/PhysRevLett.86.1187. PubMed DOI
Lischke T. Böwering N. Schmidtke B. Müller N. Khalil T. Heinzmann U. Phys. Rev. A: At., Mol., Opt. Phys. 2004;70:022507. doi: 10.1103/PhysRevA.70.022507. PubMed DOI
Lewis J. W. Tilton R. F. Einterz C. M. Milder S. J. Kuntz I. D. Kliger D. S. J. Phys. Chem. 1985;89:289–294. doi: 10.1021/j100248a023. DOI
Gold J. S. Milder S. J. Lewis J. W. Kliger D. S. J. Am. Chem. Soc. 1985;107:8285–8286. doi: 10.1021/ja00312a092. DOI
Xie X. Simon J. D. Rev. Sci. Instrum. 1989;60:2614–2627. doi: 10.1063/1.1140681. DOI
Mesnil H. Schanne-Klein M. Hache F. Alexandre M. Lemercier G. Andraud C. Chem. Phys. Lett. 2001;338:269–276. doi: 10.1016/S0009-2614(01)00239-1. DOI
Fischer P. Hache F. Chirality. 2005;17:421–437. doi: 10.1002/chir.20179. PubMed DOI
Mesnil H. Hache F. Phys. Rev. Lett. 2000;85:4257–4260. doi: 10.1103/PhysRevLett.85.4257. PubMed DOI
Dartigalongue T. Hache F. Chem. Phys. Lett. 2005;415:313–316. doi: 10.1016/j.cplett.2005.09.022. PubMed DOI
Dartigalongue T. Hache F. Chirality. 2006;18:273–278. doi: 10.1002/chir.20254. PubMed DOI
Dartigalongue T. Niezborala C. Hache F. Phys. Chem. Chem. Phys. 2007;9:1611–1615. doi: 10.1039/B616173A. PubMed DOI
Hache F. J. Photochem. Photobiol., A. 2009;204:137–143. doi: 10.1016/j.jphotochem.2009.03.012. DOI
Niezborala C. Hache F. J. Am. Chem. Soc. 2008;130:12783–12786. doi: 10.1021/ja8039844. PubMed DOI
Schmid M. Martinez-Fernandez L. Markovitsi D. Santoro F. Hache F. Improta R. Changenet P. J. Phys. Chem. Lett. 2019;14:4089–4094. doi: 10.1021/acs.jpclett.9b00948. PubMed DOI
Mendonça L. Hache F. Changenet-Barret P. Plaza P. Chosrowjan H. Taniguchi S. Imamoto Y. J. Am. Chem. Soc. 2013;135:14637–14643. doi: 10.1021/ja404503q. PubMed DOI
Hache F. Changenet P. Chirality. 2021;33:747–757. doi: 10.1002/chir.23359. PubMed DOI
Mangot L. Taupier G. Romeo M. Boeglin A. Cregut O. Dorkenoo K. D. Opt. Lett. 2010;35:381–383. doi: 10.1364/OL.35.000381. PubMed DOI
Trifonov A. Buchvarov I. Lohr A. Würthner F. Fiebig T. Rev. Sci. Instrum. 2010;81:043104. doi: 10.1063/1.3340892. PubMed DOI
Meyer-Ilse J. Akimov D. Dietzek B. Laser Photonics Rev. 2013;7:495–505. doi: 10.1002/lpor.201200065. DOI
Hiramatsu K. Nagata T. J. Chem. Phys. 2015;143:121102. doi: 10.1063/1.4932229. PubMed DOI
Stadnytskyi V. Orf G. S. Blankenship R. E. Savikhin S. Rev. Sci. Instrum. 2018;89:033104. doi: 10.1063/1.5009468. PubMed DOI
Meyer-Ilse J. Akimov D. Dietzek B. J. Phys. Chem. Lett. 2012;3:182–185. doi: 10.1021/jz2014659. DOI
Oppermann M. Bauer B. Rossi T. Zinna F. Helbing J. Lacour J. Chergui M. Optica. 2019;6:56–60. doi: 10.1364/OPTICA.6.000056. DOI
Oppermann M. Spekowius J. Bauer B. Pfister R. Chergui M. Helbing J. J. Phys. Chem. Lett. 2019;10:2700–2705. doi: 10.1021/acs.jpclett.9b01253. PubMed DOI
Kuronuma M. Sato T. Araki Y. Mori T. Sakamoto S. Inoue Y. Ito O. Wada T. Chem. Lett. 2019;48:357–360. doi: 10.1246/cl.190012. DOI
Oppermann M. Zinna F. Lacour J. Chergui M. Nat. Chem. 2022;14:739–745. doi: 10.1038/s41557-022-00933-0. PubMed DOI
Scholz M. Morgenroth M. Cho M. J. Choi D. H. Oum K. Lenzer T. J. Phys. Chem. Lett. 2019;10:5160–5166. doi: 10.1021/acs.jpclett.9b02061. PubMed DOI
Morgenroth M. Scholz M. Lenzer T. Oum K. J. Phys. Chem. C. 2020;124:10192–10200. doi: 10.1021/acs.jpcc.0c00976. DOI
Morgenroth M. Scholz M. Cho M. J. Choi D. H. Oum K. Lenzer T. Nat. Commun. 2022;13:210. doi: 10.1038/s41467-021-27886-1. PubMed DOI PMC
Steinbacher A. Hildenbrand H. Schott S. Buback J. Schmid M. Nuernberger P. Brixner T. Opt. Express. 2017;25:21735–21752. doi: 10.1364/OE.25.021735. PubMed DOI
Lambert C. Koch F. Völker S. F. Schmiedel A. Holzapfel M. Humeniuk A. Röhr M. I. S. Mitric R. Brixner T. J. Am. Chem. Soc. 2015;137:7851–7861. doi: 10.1021/jacs.5b03644. PubMed DOI
Turkin A. Malý P. Lambert C. Phys. Chem. Chem. Phys. 2021;23:18393–18403. doi: 10.1039/D1CP02136B. PubMed DOI
Nielsen J. T. Kulminskaya N. Bjerring M. Linnanto J. M. Rätsep M. Pedersen M. O. Lambrev P. H. Dorogi M. Garab G. Thomsen K. Jegerschoeld C. Frigaard N.-U. Lindahl M. Nielsen N. C. Nat. Commun. 2016;7:12454. doi: 10.1038/ncomms12454. PubMed DOI PMC
Adolphs J. Müh F. Madjet M. E.-A. Renger T. Photosynth. Res. 2008;95:197. doi: 10.1007/s11120-007-9248-z. PubMed DOI
Madjet M. E. Abdurahman A. Renger T. J. Phys. Chem. B. 2006;110:17268–17281. doi: 10.1021/jp0615398. PubMed DOI
Raszewski G. Renger T. J. Am. Chem. Soc. 2008;130:4431–4446. doi: 10.1021/ja7099826. PubMed DOI
Adolphs J. Renger T. Biophys. J. 2006;91:2778–2797. doi: 10.1529/biophysj.105.079483. PubMed DOI PMC
Andrews S. S. J. Chem. Educ. 2004;81:877–885. doi: 10.1021/ed081p877. DOI
Andrews D. L. Thirunamachandran T. J. Chem. Phys. 1977;67:5026–5033. doi: 10.1063/1.434725. DOI
Schott S. Steinbacher A. Buback J. Nuernberger P. Brixner T. J. Phys. B: At., Mol. Opt. Phys. 2014;47:124014. doi: 10.1088/0953-4075/47/12/124014. DOI
Renger T. Marcus R. A. J. Chem. Phys. 2002;116:9997–10019. doi: 10.1063/1.1470200. DOI
DeLong K. W. Trebino R. Hunter J. White W. E. J. Opt. Soc. Am. B. 1994;11:2206–2215. doi: 10.1364/JOSAB.11.002206. DOI
Oh C. Escuti M. J. Phys. Rev. A: At., Mol., Opt. Phys. 2007;76:043815. doi: 10.1103/PhysRevA.76.043815. DOI
Oh C. Escuti M. J. Opt. Lett. 2008;33:2287–2289. doi: 10.1364/OL.33.002287. PubMed DOI
Megerle U. Pugliesi I. Schriever C. Sailer C. F. Riedle E. Appl. Phys. B. 2009;96:215–231. doi: 10.1007/s00340-009-3610-0. DOI
Kovalenko S. A. Dobryakov A. L. Ruthmann J. Ernsting N. P. Phys. Rev. A: At., Mol., Opt. Phys. 1999;59:2369–2384. doi: 10.1103/PhysRevA.59.2369. DOI
Steinbacher A., PhD thesis, Dissertation, Universität Würzburg, 2015
Turkin A. Holzapfel M. Agarwal M. Fischermeier D. Mitric R. Schweins R. Gröhn F. Lambert C. Chem.–Eur. J. 2021;27:8380–8389. doi: 10.1002/chem.202101063. PubMed DOI PMC
Snellenburg J. J. Laptenok S. P. Seger R. Mullen K. M. van Stokkum I. H. M. J. Stat. Software. 2012;49:1–22.
Mullen K. M. van Stokkum I. H. M. J. Stat. Software. 2007;18:1–46. doi: 10.1360/jos180001. DOI
Madjet M. E.-A. Müh F. Renger T. J. Phys. Chem. B. 2009;113:12603–12614. doi: 10.1021/jp906009j. PubMed DOI
Hestand N. J. Spano F. C. Chem. Rev. 2018;118:7069–7163. doi: 10.1021/acs.chemrev.7b00581. PubMed DOI
Hestand N. J. Zheng C. Penmetcha A. R. Cona B. Cody J. A. Spano F. C. Collison C. J. J. Phys. Chem. C. 2015;119:18964–18974. doi: 10.1021/acs.jpcc.5b05095. DOI
Hart S. M. Banal J. L. Castellanos M. A. Markova L. Vyborna Y. Gorman J. Häner R. Willard A. P. Bathe M. Schlau-Cohen G. S. Chem. Sci. 2022;13:13020–13031. doi: 10.1039/D2SC02759C. PubMed DOI PMC
Klinger A. Lindorfer D. Müh F. Renger T. J. Chem. Phys. 2020;153:215103. doi: 10.1063/5.0027994. PubMed DOI
Bednarz M. Knoester J. J. Phys. Chem. B. 2001;105:12913–12923. doi: 10.1021/jp012371n. DOI
Hsu C.-P. You Z.-Q. Chen H.-C. J. Phys. Chem. C. 2008;112:1204–1212. doi: 10.1021/jp076512i. DOI
Voityuk A. A. Rösch N. J. Chem. Phys. 2002;117:5607–5616. doi: 10.1063/1.1502255. DOI
Cupellini L. Caprasecca S. Guido C. A. Müh F. Renger T. Mennucci B. J. Phys. Chem. Lett. 2018;9:6892–6899. doi: 10.1021/acs.jpclett.8b03233. PubMed DOI
Renger T. May V. J. Phys. Chem. B. 1997;101:7232–7240. doi: 10.1021/jp963372w. DOI
Spano F. C. Acc. Chem. Res. 2010;43:429–439. doi: 10.1021/ar900233v. PubMed DOI
Friedl C. Renger T. Berlepsch H. v. Ludwig K. Schmidt am Busch M. Megow J. J. Phys. Chem. C. 2016;120:19416–19433. doi: 10.1021/acs.jpcc.6b05856. PubMed DOI PMC