The effect of abdominal bracing on respiration during a lifting task: a cross-sectional study

. 2023 Sep 15 ; 15 (1) : 112. [epub] 20230915

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37715283
Odkazy

PubMed 37715283
PubMed Central PMC10504786
DOI 10.1186/s13102-023-00729-w
PII: 10.1186/s13102-023-00729-w
Knihovny.cz E-zdroje

BACKGROUND: Abdominal bracing is a maneuver widely used by rehabilitation specialists and sports trainers to improve spinal stability. This study aimed to investigate how lifting tasks with and without abdominal bracing affect the respiratory function of the diaphragm. METHODS: M-mode ultrasonographic assessment of diaphragmatic motion combined with spirometry was performed on 31 healthy adults. Participants were asked to breathe continuously whilst lifting a load with spontaneous abdominal muscle contraction (natural loaded breathing) and abdominal bracing (AB loaded breathing). RESULTS: Pearson's correlations revealed strong correlations between ultrasonography and spirometry measures (p < 0.001) for all types of breathing: tidal breathing (r = 0.709, r2 = 0.503), natural loaded breathing (r = 0.731, r2 = 0.534) and AB loaded breathing (r = 0.795, r2 = 0.632). Using paired-samples t-tests, the natural loaded breathing ultrasonography revealed more caudal diaphragm positions during inspiration (p < 0.001) but not during expiration (p = .101). Spirometry demonstrated lower lung volumes (L) at the end of inspiration and expiration (p < 0.001), with no changes in total lung volume (p = 0.06). The AB loaded breathing ultrasonography revealed more caudal diaphragm positions during inspiration (p = 0.002) but not during expiration (p = 0.05). Spirometry demonstrated lower lung volumes at the end of inspiration (p < 0.001), expiration (p = 0.002), and total lung volumes (p = 0.019). CONCLUSION: This study demonstrated that abdominal bracing performed during a lifting task reduces lung volume despite an increase in diaphragmatic motion. Diaphragm excursions strongly correlate with lung volumes even under postural loading. TRIAL REGISTRATION: The study was prospectively registered on 8 April 2021 at ClinicalTrials.gov with identification number NCT04841109.

Zobrazit více v PubMed

Saboisky J, Gorman R, De Troyer A, Gandevia S, Butler J. Differential activation among five human inspiratory motoneuron pools during tidal breathing. J Appl Physiol. 2007;102:772–780. doi: 10.1152/japplphysiol.00683.2006. PubMed DOI

Ratnovsky A, Elad D. Anatomical model of the human trunk for analysis of respiratory muscles mechanics. Respir Physiol Neurobiol. 2005;148:245–262. doi: 10.1016/j.resp.2004.12.016. PubMed DOI

Sant'Ambrogio G, Decandia M, Provini L. Diaphragmatic contribution to respiration in the rabbit. J Appl Physiol. 1966;21:843–847. doi: 10.1152/jappl.1966.21.3.843. PubMed DOI

Mognoni P, Saibene F, Sant'Ambrogio G. Contribution of the diaphragm and the other inspiratory muscles to different levels of tidal volume and static inspiratory effort in the rabbit. J Physiol. 1969;202:517–534. doi: 10.1113/jphysiol.1969.sp008825. PubMed DOI PMC

Sant'ambrogio G, Camporesi E. Contribution of various inspiratory muscles to ventilation and the immediate and distant effect of diaphragmatic paralysis. Acta Neurobiol Exp (Wars) 1973;33:401–409. PubMed

Hodges P, Gandevia S. Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J Appl Physiol. 2000;89:967–976. doi: 10.1152/jappl.2000.89.3.967. PubMed DOI

Hodges P, Gandevia S. Activation of the human diaphragm during a repetitive postural task. J Physiol. 2000;522:165–175. doi: 10.1111/j.1469-7793.2000.t01-1-00165.xm. PubMed DOI PMC

Hodges P, Martin Eriksson A, Shirley D, C Gandevia S. Intra-abdominal pressure increases stiffness of the lumbar spine. Journal of Biomechanics. 2005; 38: 1873–1880. doi:10.1016/j.jbiomech.2004.08.016. PubMed

Kolar P, Sulc J, Kyncl M, Sanda J, Neuwirth J, Bokarius A, et al. Stabilizing function of the diaphragm: dynamic MRI and synchronized spirometric assessment. J Appl Physiol. 2010;109:1064–1071. doi: 10.1152/japplphysiol.01216.2009. PubMed DOI

Hodges P, Kaigle Holm A, Holm S, Ekström L, Cresswell A, Hansson T, et al. Intervertebral Stiffness of the Spine Is Increased by Evoked Contraction of Transversus Abdominis and the Diaphragm. In Vivo Porcine Studies Spine. 2003;28:2594–2601. doi: 10.1097/01.BRS.0000096676.14323.25. PubMed DOI

Danon J, Druz W, Goldberg N, Sharp J. Function of the isolated paced diaphragm and the cervical accessory muscles in C1 quadriplegics. Am Rev Respir Dis. 1979;119:909–919. doi: 10.1164/arrd.1979.119.6.909. PubMed DOI

Strohl K, Mead J, Banzett R, Lehr J, Loring S, O’Cain C. Effect of Posture on Upper and Lower Rib Cage Motion and Tidal Volume during Diaphragm Pacing. Am Rev Respir Dis. 1984;130:320–321. doi: 10.1164/arrd.1984.130.2.320. PubMed DOI

Cresswell A, Thorstensson A. Changes in intra-abdominal pressure, trunk muscle activation and force during isokinetic lifting and lowering. Eur J Appl Physiol. 1994;68:315–321. doi: 10.1007/BF00571450. PubMed DOI

Vera-Garcia F, Brown S, Gray J, McGill S. Effects of different levels of torso coactivation on trunk muscular and kinematic responses to posteriorly applied sudden loads. Clin Biomech. 2006;21:443–455. doi: 10.1016/j.clinbiomech.2005.12.006. PubMed DOI

Ishida H, Suehiro T, Kurozumi C, Watanabe S. Comparison between the effectiveness of expiration and abdominal bracing maneuvers in maintaining spinal stability following sudden trunk loading. J Electromyogr Kinesiol. 2016;26:125–129. doi: 10.1016/j.jelekin.2015.11.011. PubMed DOI

Stanton T, Kawchuk G. The Effect of Abdominal Stabilization Contractions on Posteroanterior Spinal Stiffness. Spine. 2008;33:694–701. doi: 10.1097/BRS.0b013e318166e034. PubMed DOI

Larivière C, Boucher J, Mecheri H, Ludvig D. Maintaining Lumbar Spine Stability: A Study of the Specific and Combined Effects of Abdominal Activation and Lumbosacral Orthosis on Lumbar Intrinsic Stiffness. J Orthop Sports Phys Ther. 2019;49:262–271. doi: 10.2519/jospt.2019.8565. PubMed DOI

Coenen P, Campbell A, Kemp-Smith K, O'Sullivan P, Straker L. Abdominal bracing during lifting alters trunk muscle activity and body kinematics. Appl Ergon. 2017;63:91–98. doi: 10.1016/j.apergo.2017.04.009. PubMed DOI

Panjabi M. Clinical spinal instability and low back pain. J Electromyogr Kinesiol. 2003;13:371–379. doi: 10.1016/S1050-6411(03)00044-0. PubMed DOI

Willardson J. Core Stability Training: Applications to Sports Conditioning Programs. The Journal of Strength and Conditioning Research. 2007; 21: R-20255. doi:10.1519/R-20255.1. PubMed

Hibbs A, Thompson K, French D, Wrigley A, Spears I. Optimizing Performance by Improving Core Stability and Core Strength. Sports Med. 2008;38:995–1008. doi: 10.2165/00007256-200838120-00004. PubMed DOI

Grenier S, McGill S. Quantification of Lumbar Stability by Using 2 Different Abdominal Activation Strategies. Arch Phys Med Rehabil. 2007;88:54–62. doi: 10.1016/j.apmr.2006.10.014. PubMed DOI

Bolton C, Bevan-Smith E, Blakey J, Crowe P, Elkin S, Garrod R, et al. British Thoracic Society guideline on pulmonary rehabilitation in adults: accredited by NICE. Thorax. 2013; 68: ii1-ii30. doi:10.1136/thoraxjnl-2013-203808. PubMed

Garvey C, Bayles M, Hamm L, Hill K, Holland A, Limberg T, et al. Pulmonary Rehabilitation Exercise Prescription in Chronic Obstructive Pulmonary Disease. J Cardiopulm Rehabil Prev. 2016;36:75–83. doi: 10.1097/HCR.0000000000000171. PubMed DOI

Jimeno-Almazán A, Franco-López F, Buendía-Romero Á, Martínez-Cava A, Sánchez-Agar J, Sánchez-Alcaraz Martínez B, et al. Rehabilitation for post-COVID -19 condition through a supervised exercise intervention: A randomized controlled trial. Scand J Med Sci Sports. 2022;32:1791–1801. doi: 10.1111/sms.14240. PubMed DOI PMC

Sandberg J, Ekström M, Börjesson M, Bergström G, Rosengren A, Angerås O, et al. Underlying contributing conditions to breathlessness among middle-aged individuals in the general population: a cross-sectional study. BMJ Open Respiratory Research. 2020; 7. doi:10.1136/bmjresp-2020-000643. PubMed PMC

Nalbandian A, Sehgal K, Gupta A, Madhavan M, McGroder C, Stevens J, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27:601–615. doi: 10.1038/s41591-021-01283-z. PubMed DOI PMC

Pierce J, Shen Q, Cintron S, Hiebert J. Post-COVID-19 Syndrome. Nurs Res. 2022;71:164–174. doi: 10.1097/NNR.0000000000000565. PubMed DOI

Gilman S, Banzett R. Physiologic changes and clinical correlates of advanced dyspnea. Curr Opin Support Palliat Care. 2009;3:93–97. doi: 10.1097/SPC.0b013e32832b42ba. PubMed DOI PMC

Houston J, Angus R, Cowan M, McMillan N, Thomson N. Ultrasound assessment of normal hemidiaphragmatic movement: relation to inspiratory volume. Thorax. 1994;49:500–503. doi: 10.1136/thx.49.5.500. PubMed DOI PMC

Hodges P, Heijnen I, Gandevia S. Postural activity of the diaphragm is reduced in humans when respiratory demand increases. J Physiol. 2001;537:999–1008. doi: 10.1111/j.1469-7793.2001.00999.x. PubMed DOI PMC

Kantarci F, Mihmanli I, Demirel M, Harmanci K, Akman C, Aydogan F, et al. Normal Diaphragmatic Motion and the Effects of Body Composition. J Ultrasound Med. 2004;23:255–260. doi: 10.7863/jum.2004.23.2.255. PubMed DOI

Noh D, Lee J, You J. Diaphragm Breathing Movement Measurement using Ultrasound and Radiographic Imaging: A Concurrent Validity. Bio-Med Mater Eng. 2014;24:947–952. doi: 10.3233/BME-130889. PubMed DOI

Scarlata S, Mancini D, Laudisio A, Benigni A, Antonelli IR. Reproducibility and Clinical Correlates of Supine Diaphragmatic Motion Measured by M-Mode Ultrasonography in Healthy Volunteers. Respiration. 2018;96:259–266. doi: 10.1159/000489229. PubMed DOI

Sembera M, Busch A, Kobesova A, Hanychova B, Sulc J, Kolar P. Postural-respiratory function of the diaphragm assessed by M-mode ultrasonography. PLOS ONE. 2022; 17. doi:10.1371/journal.pone.0275389. PubMed PMC

Houston J, Morris A, Howie C, Reid J, McMillan N. Technical report: Quantitative assessment of diaphragmatic movement — A reproducible method using ultrasound. Clin Radiol. 1992;46:405–407. doi: 10.1016/S0009-9260(05)80688-9. PubMed DOI

Ayoub J, Cohendy R, Dauzat M, Targhetta R, De La Coussaye J, Bourgeois J, et al. Non-invasive quantification of diaphragm kinetics using m-mode sonography. Can J Anaesth. 1997;44:739–744. doi: 10.1007/BF03013389. PubMed DOI

Boussuges A, Gole Y, Blanc P. Diaphragmatic Motion Studied by M-Mode Ultrasonography. Chest. 2009;135:391–400. doi: 10.1378/chest.08-1541. PubMed DOI

Sarwal A, Walker F, Cartwright M. Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve. 2013;47:319–329. doi: 10.1002/mus.23671. PubMed DOI PMC

Kolar P, Neuwirth J, Sanda J, Suchanek V, Svata Z, Pivec M. Analysis of diaphragm movement during tidal breathing and during its activation while breath holding using MRI synchronized with spirometry. Physiol Res. 2009;58:383–392. doi: 10.33549/physiolres.931376. PubMed DOI

Kolar P, Sulc J, Kyncl M, Sanda J, Cakrt O, Andel R, et al. Postural Function of the Diaphragm in Persons With and Without Chronic Low Back Pain. J Orthop Sports Phys Ther. 2012;42:352–362. doi: 10.2519/jospt.2012.3830. PubMed DOI

Kim H. Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry & Endodontics. 2013; 38. doi:10.5395/rde.2013.38.1.52. PubMed PMC

Field A. Discovering Statistics Using IBM SPSS Statistics. 5. London: Sage Publications Inc; 2017.

Koo T, Li M. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012. PubMed DOI PMC

Cohen J. Statistical power analysis for the behavioral sciences. 2. New Jersey: Lawrence Erlbaum Associates; 1988.

D'Angelo E, Prandi E, Robatto F, Petitjean M, Bellemare F. Insertional action of the abdominal muscles in rabbits and dogs. Respir Physiol. 1996;104:147–157. doi: 10.1016/0034-5687(96)00005-9. PubMed DOI

Hagins M, Lamberg E. Natural breath control during lifting tasks: effect of load. Eur J Appl Physiol. 2006;96:453–458. doi: 10.1007/s00421-005-0097-1. PubMed DOI

Lamberg E, Hagins M. Breath control during manual free-style lifting of a maximally tolerated load. Ergonomics. 2010;53:385–392. doi: 10.1080/00140130903420228. PubMed DOI PMC

Hagins M, Lamberg E. Individuals with Low Back Pain Breathe Differently Than Healthy Individuals During a Lifting Task. J Orthop Sports Phys Ther. 2011;41:141–148. doi: 10.2519/jospt.2011.3437. PubMed DOI

Vostatek P, Novak D, Rychnovsky T, Rychnovska S, Yue J. Diaphragm Postural Function Analysis Using Magnetic Resonance Imaging. PLoS ONE. 2013; 8. doi:10.1371/journal.pone.0056724. PubMed PMC

Mohan V, Paungmali A, Sitilerpisan P, Hashim U, Mazlan M, Nasuha T. Respiratory characteristics of individuals with non-specific low back pain: A cross-sectional study. Nurs Health Sci. 2018;20:224–230. doi: 10.1111/nhs.12406. PubMed DOI

Koco E, Soilemezi E, Sotiriou P, Savvidou S, Tsagourias M, Pnevmatikos I, et al. Ultrasonographic assessment of diaphragmatic contraction and relaxation properties: correlations of diaphragmatic displacement with oesophageal and transdiaphragmatic pressure. BMJ Open Respiratory Research. 2021; 8. doi:10.1136/bmjresp-2021-001006. PubMed PMC

DePalo V, Parker A, Al-Bilbeisi F, McCool F. Respiratory muscle strength training with nonrespiratory maneuvers. J Appl Physiol. 2004;96:731–734. doi: 10.1152/japplphysiol.00511.2003. PubMed DOI

McCool F, Conomos P, Benditt J, Cohn D, Sherman C, Hoppin F. Maximal inspiratory pressures and dimensions of the diaphragm. Am J Respir Crit Care Med. 1997;155:1329–1334. doi: 10.1164/ajrccm.155.4.9105075. PubMed DOI

Janssens L, Brumagne S, McConnell A, Hermans G, Troosters T, Gayan-Ramirez G. Greater diaphragm fatigability in individuals with recurrent low back pain. Respir Physiol Neurobiol. 2013;188:119–123. doi: 10.1016/j.resp.2013.05.028. PubMed DOI

Janssens L, McConnell A, Pijnenburg M, Claeys K, Goossens N, Lysens R, et al. Inspiratory Muscle Training Affects Proprioceptive Use and Low Back Pain. Med Sci Sports Exerc. 2015;47:12–19. doi: 10.1249/MSS.0000000000000385. PubMed DOI

Beeckmans N, Vermeersch A, Lysens R, Van Wambeke P, Goossens N, Thys T, et al. The presence of respiratory disorders in individuals with low back pain: A systematic review. Man Ther. 2016;26:77–86. doi: 10.1016/j.math.2016.07.011. PubMed DOI

Rasmussen-Barr E, Magnusson C, Nordin M, Skillgate E. Are respiratory disorders risk factors for troublesome low-back pain? A study of a general population cohort in Sweden. Eur Spine J. 2019;28:2502–2509. doi: 10.1007/s00586-019-06071-5. PubMed DOI

Dos Santos YW, Paulin E, Shibao S, Chammas M, Salge J, Ribeiro M, et al. Air trapping: The major factor limiting diaphragm mobility in chronic obstructive pulmonary disease patients. Respirology. 2008;13:138–144. doi: 10.1111/j.1440-1843.2007.01194.x. PubMed DOI

Boccatonda A, Decorato V, Cocco G, Marinari S, Schiavone C. Ultrasound evaluation of diaphragmatic mobility in patients with idiopathic lung fibrosis: a pilot study. Multidisciplinary Respiratory Medicine. 2019; 14. doi:10.1186/s40248-018-0159-y. PubMed PMC

Tanriverdi A, Savci S, Mese M, Gezer N, Kahraman B, Sevinc C. Diaphragmatic Ultrasound in Non-Cystic Fibrosis Bronchiectasis: Relationship to Clinical Parameters. Ultrasound Med Biol. 2021;47:902–909. doi: 10.1016/j.ultrasmedbio.2020.12.009. PubMed DOI

Ishak S, Sakr H. Diaphragmatic thickness and excursion by lung ultrasound in pediatric chronic pulmonary diseases. J Ultrasound. 2022;25:97–102. doi: 10.1007/s40477-021-00570-2. PubMed DOI PMC

Cropp G, Pullano T, Cerny F, Nathanson I. Exercise tolerance and cardiorespiratory adjustments at peak work capacity in cystic fibrosis. Am Rev Respir Dis. 1982;126:211–216. doi: 10.1164/arrd.1982.126.2.211. PubMed DOI

Laveneziana P, Parker C, O’Donnell D. Ventilatory constraints and dyspnea during exercise in chronic obstructive pulmonary disease. Appl Physiol Nutr Metab. 2007;32:1225–1238. doi: 10.1139/H07-119. PubMed DOI

Vainshelboim B, Fox B, Oliveira J, Kramer M. Exercise training in idiopathic pulmonary fibrosis. Expert Rev Respir Med. 2015;10:69–77. doi: 10.1586/17476348.2016.1121104. PubMed DOI

José A, Ramos T, de Castro R, de Oliveira C, de Camargo A, Athanazio R, et al. Reduced Physical Activity With Bronchiectasis. Respir Care. 2018;63:1498–1505. doi: 10.4187/respcare.05771. PubMed DOI

Ries A. Impact of Chronic Obstructive Pulmonary Disease on Quality of Life: The Role of Dyspnea. Am J Med. 2006;119:12–20. doi: 10.1016/j.amjmed.2006.08.003. PubMed DOI

Shiraishi M, Higashimoto Y, Sugiya R, Mizusawa H, Takeda Y, Fujita S, et al. Diaphragmatic excursion correlates with exercise capacity and dynamic hyperinflation in COPD patients. ERJ Open Research. 2020; 6. doi:10.1183/23120541.00589-2020. PubMed PMC

Strasser B, Siebert U, Schobersberger W. Effects of resistance training on respiratory function in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Sleep and Breathing. 2013;17:217–226. doi: 10.1007/s11325-012-0676-4. PubMed DOI

Liao W, Chen J, Chen X, Lin L, Yan H, Zhou Y, et al. Impact of Resistance Training in Subjects With COPD: A Systematic Review and Meta-Analysis. Respir Care. 2015;60:1130–1145. doi: 10.4187/respcare.03598. PubMed DOI

Janaudis-Ferreira T, Hill K, Goldstein R, Robles-Ribeiro P, Beauchamp M, Dolmage T, et al. Resistance Arm Training in Patients With COPD. Chest. 2011;139:151–158. doi: 10.1378/chest.10-1292. PubMed DOI

McAuley M, McAuley E, Kapella M, Collins E, Alex C, Berbaum M, Larson J. Upper-Body Resistance Training and Self-Efficacy Enhancement in COPD. Journal of Pulmonary & Respiratory Medicine. 2012; 02. doi:10.4172/2161-105X.S9-001. PubMed PMC

Celli B, Rassulo J, Make B. Dyssynchronous Breathing during Arm but Not Leg Exercise in Patients with Chronic Airflow Obstruction. N Engl J Med. 1986;314:1485–1490. doi: 10.1056/NEJM198606053142305. PubMed DOI

Novak J, Jacisko J, Busch A, Cerny P, Stribrny M, Kovari M, et al. Intra-abdominal pressure correlates with abdominal wall tension during clinical evaluation tests. Clinical Biomechanics. 2021; 88. doi:10.1016/j.clinbiomech.2021.105426. PubMed

Zobrazit více v PubMed

ClinicalTrials.gov
NCT04841109

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace