Comprehensive proteomic investigation of infectious and inflammatory changes in late preterm prelabour rupture of membranes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33077789
PubMed Central
PMC7573586
DOI
10.1038/s41598-020-74756-9
PII: 10.1038/s41598-020-74756-9
Knihovny.cz E-zdroje
- MeSH
- chorioamnionitida metabolismus mikrobiologie MeSH
- dospělí MeSH
- infekční komplikace v těhotenství metabolismus MeSH
- kohortové studie MeSH
- lidé MeSH
- novorozenec MeSH
- předčasný odtok plodové vody metabolismus MeSH
- proteomika metody MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Preterm prelabour rupture of membranes beyond the 34th week of gestation (late PPROM) is frequently associated with the risk of the microbial invasion of the amniotic fluid (MIAC) and histological chorioamnionitis (HCA). Hence, we employed a Tandem Mass Tag-based approach to uncover amniotic fluid proteome response to the presence of MIAC and HCA in late PPROM. Protein dysregulation was associated with only five cases in the group of 15 women with confirmed MIAC and HCA. Altogether, 138 amniotic fluid proteins were changed in these five cases exclusively. These proteins were particularly associated with excessive neutrophil responses to infection, such as neutrophil degranulation and extracellular trap formation. We believe that the quantification of these proteins in amniotic fluid may assist in revealing women with the highest risk of excessive inflammatory response in late PPROM.
BIOCEV 1st Faculty of Medicine Charles University Prague Czech Republic
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic
Department of Metabolomics Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Institute of Clinical Microbiology University Hospital Hradec Kralove Hradec Kralove Czech Republic
Zobrazit více v PubMed
Mercer BM. Preterm premature rupture of the membranes: current approaches to evaluation and management. Obstet. Gynecol. Clin. North Am. 2005;32:411–428. doi: 10.1016/j.ogc.2005.03.003. PubMed DOI
Musilova I, et al. Intraamniotic inflammation in women with preterm prelabor rupture of membranes. PLoS ONE. 2015;10:e0133929. doi: 10.1371/journal.pone.0133929. PubMed DOI PMC
McIntire DD, Leveno KJ. Neonatal mortality and morbidity rates in late preterm births compared with births at term. Obstet. Gynecol. 2008;111:35–41. doi: 10.1097/01.AOG.0000297311.33046.73. PubMed DOI
McGowan JE, Alderdice FA, Holmes VA, Johnston L. Early childhood development of late-preterm infants: a systematic review. Pediatrics. 2011;127:1111–1124. doi: 10.1542/peds.2010-2257. PubMed DOI
Morse SB, Zheng H, Tang Y, Roth J. Early school-age outcomes of late preterm infants. Pediatrics. 2009;123:e622–629. doi: 10.1542/peds.2008-1405. PubMed DOI
Bond DM, et al. Planned early birth versus expectant management for women with preterm prelabour rupture of membranes prior to 37 weeks’ gestation for improving pregnancy outcome. Cochrane Database Syst. Rev. 2017;3:CD004735. PubMed PMC
Quist-Nelson J, et al. Immediate delivery compared with expectant management in late preterm prelabor rupture of membranes: an individual participant data meta-analysis. Obstet. Gynecol. 2018;131:269–279. doi: 10.1097/AOG.0000000000002447. PubMed DOI
Committee on Practice Bulletins-Obstetrics ACOG practice bulletin no. 188: prelabor rupture of membranes. Obstet. Gynecol. 2018;131:e1–e14. doi: 10.1097/AOG.0000000000002640. PubMed DOI
Tsakiridis I, Mamopoulos A, Chalkia-Prapa E-M, Athanasiadis A, Dagklis T. Preterm premature rupture of membranes: a review of 3 national guidelines. Obstet. Gynecol. Surv. 2018;73:368–375. doi: 10.1097/OGX.0000000000000567. PubMed DOI
DiGiulio DB, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am. J. Reprod. Immunol. 2010;64:38–57. PubMed PMC
Lee SM, et al. Acute histologic chorioamnionitis is a risk factor for adverse neonatal outcome in late preterm birth after preterm premature rupture of membranes. PLoS ONE. 2013;8:e79941. doi: 10.1371/journal.pone.0079941. PubMed DOI PMC
Ofman G, Vasco N, Cantey JB. Risk of early-onset sepsis following preterm, prolonged rupture of membranes with or without chorioamnionitis. Am. J. Perinatol. 2016;33:339–342. PubMed
Kacerovsky M, et al. Prelabor rupture of membranes between 34 and 37 weeks: the intraamniotic inflammatory response and neonatal outcomes. Am. J. Obstet. Gynecol. 2014;210:325.e1–325.e10. doi: 10.1016/j.ajog.2013.10.882. PubMed DOI
Musilova I, et al. Late preterm prelabor rupture of fetal membranes: fetal inflammatory response and neonatal outcome. Pediatr. Res. 2018;83:630–637. doi: 10.1038/pr.2017.300. PubMed DOI
Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J. Proteome Res. 2011;10:1785–1793. doi: 10.1021/pr101060v. PubMed DOI
Rauniyar N, Yates JR. Isobaric labeling-based relative quantification in shotgun proteomics. J. Proteome Res. 2014;13:5293–5309. doi: 10.1021/pr500880b. PubMed DOI PMC
Vajrychova M, Kacerovsky M, Tambor V, Hornychova H, Lenco J. Microbial invasion and histological chorioamnionitis upregulate neutrophil-gelatinase associated lipocalin in preterm prelabor rupture of membranes. J. Matern. Fetal. Neonatal. Med. 2016;29:12–21. doi: 10.3109/14767058.2014.991305. PubMed DOI
Kacerovsky M, et al. Lactobacilli-dominated cervical microbiota in women with preterm prelabor rupture of membranes. Pediatr. Res. 2020;87:952–960. doi: 10.1038/s41390-019-0692-1. PubMed DOI
Salafia CM, Weigl C, Silberman L. The prevalence and distribution of acute placental inflammation in uncomplicated term pregnancies. Obstet Gynecol. 1989;73:383–389. PubMed
Tambor V, et al. Amniotic fluid cathelicidin in PPROM pregnancies: from proteomic discovery to assessing its potential in inflammatory complications diagnosis. PLoS ONE. 2012;7:e41164. doi: 10.1371/journal.pone.0041164. PubMed DOI PMC
Vajrychova M, et al. Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology. Redox Biol. 2019;24:101227. doi: 10.1016/j.redox.2019.101227. PubMed DOI PMC
Werner T, et al. Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal. Chem. 2014;86:3594–3601. doi: 10.1021/ac500140s. PubMed DOI
Tyanova S, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J. Proteome Res. 2019;18:623–632. doi: 10.1021/acs.jproteome.8b00702. PubMed DOI PMC
Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Thompson GN, Halliday D. Protein turnover in pregnancy. Eur J Clin Nutr. 1992;46:411–417. PubMed
Perluigi M, et al. Proteomic analysis for the study of amniotic fluid protein composition. J Prenat Med. 2009;3:39–41. PubMed PMC
Chaemsaithong P, et al. A point of care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intra-amniotic inflammation/infection. J. Matern. Fetal. Neonatal. Med. 2016;29:360–367. doi: 10.3109/14767058.2015.1006621. PubMed DOI PMC
Knopf J, Leppkes M, Schett G, Herrmann M, Muñoz LE. Aggregated NETs sequester and detoxify extracellular histones. Front. Immunol. 2019;10:2176. doi: 10.3389/fimmu.2019.02176. PubMed DOI PMC
Silk E, Zhao H, Weng H, Ma D. The role of extracellular histone in organ injury. Cell Death Dis. 2017;8:e2812. doi: 10.1038/cddis.2017.52. PubMed DOI PMC
Tambor V, et al. CysTRAQ - A combination of iTRAQ and enrichment of cysteinyl peptides for uncovering and quantifying hidden proteomes. J. Proteomics. 2011 doi: 10.1016/j.jprot.2011.09.027. PubMed DOI
Bai B, et al. Deep profiling of proteome and phosphoproteome by isobaric labeling, extensive liquid chromatography, and mass spectrometry. Methods Enzymol. 2017;585:377–395. doi: 10.1016/bs.mie.2016.10.007. PubMed DOI PMC
Kammers K, Cole RN, Tiengwe C, Ruczinski I. Detecting significant changes in protein abundance. EuPA Open Proteomics. 2015;7:11–19. doi: 10.1016/j.euprot.2015.02.002. PubMed DOI PMC
Palstrøm NB, Matthiesen R, Beck HC. Data imputation in merged isobaric labeling-based relative quantification datasets. Methods Mol. Biol. 2020;2051:297–308. doi: 10.1007/978-1-4939-9744-2_13. PubMed DOI
Kacerovsky M, et al. Bedside assessment of amniotic fluid interleukin-6 in preterm prelabor rupture of membranes. Am. J. Obstet. Gynecol. 2014;211(385):e1–9. PubMed
Kusonmano K, et al. Effects of pooling samples on the performance of classification algorithms: a comparative study. ScientificWorldJournal. 2012;2012:278352. doi: 10.1100/2012/278352. PubMed DOI PMC
Kacerovsky M, et al. The fetal inflammatory response in subgroups of women with preterm prelabor rupture of the membranes. J. Matern. Fetal. Neonatal. Med. 2013;26:795–801. doi: 10.3109/14767058.2013.765404. PubMed DOI
Pacora P, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J. Matern. Fetal. Neonatal. Med. 2002;11:18–25. doi: 10.1080/jmf.11.1.18.25. PubMed DOI
Gomez-Lopez N, et al. Are amniotic fluid neutrophils in women with intraamniotic infection and/or inflammation of fetal or maternal origin? Am. J. Obstet. Gynecol. 2017;217(693):e1–693.e16. PubMed PMC
Faurschou M, Sørensen OE, Johnsen AH, Askaa J, Borregaard N. Defensin-rich granules of human neutrophils: characterization of secretory properties. Biochim. Biophys. Acta. 2002;1591:29–35. doi: 10.1016/S0167-4889(02)00243-4. PubMed DOI
Buhimschi IA, Buhimschi CS. The role of proteomics in the diagnosis of chorioamnionitis and early-onset neonatal sepsis. Clin. Perinatol. 2010;37:355–374. doi: 10.1016/j.clp.2010.03.002. PubMed DOI PMC
Leclerc E, Vetter SW. The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochim. Biophys. Acta. 2015;1852:2706–2711. doi: 10.1016/j.bbadis.2015.09.022. PubMed DOI PMC
Daffu G, et al. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int. J. Mol. Sci. 2013;14:19891–19910. doi: 10.3390/ijms141019891. PubMed DOI PMC
Hatakeyama T, Okada M, Shimamoto S, Kubota Y, Kobayashi R. Identification of intracellular target proteins of the calcium-signaling protein S100A12. Eur. J. Biochem. 2004;271:3765–3775. doi: 10.1111/j.1432-1033.2004.04318.x. PubMed DOI
Azevedo EP, et al. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J. Biol. Chem. 2015;290:22174–22183. doi: 10.1074/jbc.M115.640094. PubMed DOI PMC
Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MMB, López-Villegas EO, Sánchez-García FJ. Metabolic requirements for neutrophil extracellular traps formation. Immunology. 2015;145:213–224. doi: 10.1111/imm.12437. PubMed DOI PMC
Kirchner T, et al. The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Mediators Inflamm. 2012;2012:849136. doi: 10.1155/2012/849136. PubMed DOI PMC
Gomez-Lopez N, et al. Neutrophil extracellular traps in the amniotic cavity of women with intra-amniotic infection: new mechanism of host defense. Reprod. Sci. 2017;24:1139–1153. doi: 10.1177/1933719116678690. PubMed DOI PMC
de Buhr N, von Köckritz-Blickwede M. How neutrophil extracellular traps become visible. J. Immunol. Res. 2016;2016:4604713. PubMed PMC
Dąbrowska D, Jabłońska E, Garley M, Ratajczak-Wrona W, Iwaniuk A. New aspects of the biology of neutrophil extracellular traps. Scand. J. Immunol. 2016;84:317–322. doi: 10.1111/sji.12494. PubMed DOI
Fuchs TA, Bhandari AA, Wagner DD. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118:3708–3714. doi: 10.1182/blood-2011-01-332676. PubMed DOI PMC
Fuchs TA, et al. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. U.S.A. 2010;107:15880–15885. doi: 10.1073/pnas.1005743107. PubMed DOI PMC
Garg P, et al. Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture. J. Biol. Chem. 2010;285:22676–22688. doi: 10.1074/jbc.M110.122929. PubMed DOI PMC
Shin E-K, Park H, Noh J-Y, Lim K-M, Chung J-H. Platelet shape changes and cytoskeleton dynamics as novel therapeutic targets for anti-thrombotic drugs. Biomol. Ther. (Seoul) 2017;25:223–230. doi: 10.4062/biomolther.2016.138. PubMed DOI PMC
Zhao Y, et al. Thrombospondin-1 restrains neutrophil granule serine protease function and regulates the innate immune response during Klebsiella pneumoniae infection. Mucosal Immunol. 2015;8:896–905. doi: 10.1038/mi.2014.120. PubMed DOI PMC
Combs CA, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am. J. Obstet. Gynecol. 2014;210(125):e1–125.e15. PubMed
Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC