Comprehensive proteomic investigation of infectious and inflammatory changes in late preterm prelabour rupture of membranes

. 2020 Oct 19 ; 10 (1) : 17696. [epub] 20201019

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33077789
Odkazy

PubMed 33077789
PubMed Central PMC7573586
DOI 10.1038/s41598-020-74756-9
PII: 10.1038/s41598-020-74756-9
Knihovny.cz E-zdroje

Preterm prelabour rupture of membranes beyond the 34th week of gestation (late PPROM) is frequently associated with the risk of the microbial invasion of the amniotic fluid (MIAC) and histological chorioamnionitis (HCA). Hence, we employed a Tandem Mass Tag-based approach to uncover amniotic fluid proteome response to the presence of MIAC and HCA in late PPROM. Protein dysregulation was associated with only five cases in the group of 15 women with confirmed MIAC and HCA. Altogether, 138 amniotic fluid proteins were changed in these five cases exclusively. These proteins were particularly associated with excessive neutrophil responses to infection, such as neutrophil degranulation and extracellular trap formation. We believe that the quantification of these proteins in amniotic fluid may assist in revealing women with the highest risk of excessive inflammatory response in late PPROM.

BIOCEV 1st Faculty of Medicine Charles University Prague Czech Republic

Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic

Department of Analytical Chemistry Faculty of Pharmacy in Hradec Kralove Charles University Hradec Kralove Czech Republic

Department of Biological and Biochemical Sciences Faculty of Chemical Technology University of Pardubice Pardubice Czech Republic

Department of Genetics and Bioinformatics Domain of Health Data and Digitalization Institute of Public Health Oslo Norway

Department of Metabolomics Institute of Physiology Czech Academy of Sciences Prague Czech Republic

Department of Obstetrics and Gynecology Institute of Clinical Science Sahlgrenska Academy University of Gothenburg Gothenburg Sweden

Department of Obstetrics and Gynecology University Hospital Hradec Kralove Charles University Faculty of Medicine in Hradec Kralove Hradec Kralove Czech Republic

Fingerland's Department of Pathology University Hospital in Hradec Kralove Charles University Faculty of Medicine Hradec Kralove Hradec Kralove Czech Republic

Food and Nutrition Science Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden

Institute of Clinical Biochemistry and Diagnostics University Hospital Hradec Kralove Hradec Kralove Czech Republic

Institute of Clinical Immunology and Allergology University Hospital Hradec Kralove Hradec Kralove Czech Republic

Institute of Clinical Microbiology University Hospital Hradec Kralove Hradec Kralove Czech Republic

Zobrazit více v PubMed

Mercer BM. Preterm premature rupture of the membranes: current approaches to evaluation and management. Obstet. Gynecol. Clin. North Am. 2005;32:411–428. doi: 10.1016/j.ogc.2005.03.003. PubMed DOI

Musilova I, et al. Intraamniotic inflammation in women with preterm prelabor rupture of membranes. PLoS ONE. 2015;10:e0133929. doi: 10.1371/journal.pone.0133929. PubMed DOI PMC

McIntire DD, Leveno KJ. Neonatal mortality and morbidity rates in late preterm births compared with births at term. Obstet. Gynecol. 2008;111:35–41. doi: 10.1097/01.AOG.0000297311.33046.73. PubMed DOI

McGowan JE, Alderdice FA, Holmes VA, Johnston L. Early childhood development of late-preterm infants: a systematic review. Pediatrics. 2011;127:1111–1124. doi: 10.1542/peds.2010-2257. PubMed DOI

Morse SB, Zheng H, Tang Y, Roth J. Early school-age outcomes of late preterm infants. Pediatrics. 2009;123:e622–629. doi: 10.1542/peds.2008-1405. PubMed DOI

Bond DM, et al. Planned early birth versus expectant management for women with preterm prelabour rupture of membranes prior to 37 weeks’ gestation for improving pregnancy outcome. Cochrane Database Syst. Rev. 2017;3:CD004735. PubMed PMC

Quist-Nelson J, et al. Immediate delivery compared with expectant management in late preterm prelabor rupture of membranes: an individual participant data meta-analysis. Obstet. Gynecol. 2018;131:269–279. doi: 10.1097/AOG.0000000000002447. PubMed DOI

Committee on Practice Bulletins-Obstetrics ACOG practice bulletin no. 188: prelabor rupture of membranes. Obstet. Gynecol. 2018;131:e1–e14. doi: 10.1097/AOG.0000000000002640. PubMed DOI

Tsakiridis I, Mamopoulos A, Chalkia-Prapa E-M, Athanasiadis A, Dagklis T. Preterm premature rupture of membranes: a review of 3 national guidelines. Obstet. Gynecol. Surv. 2018;73:368–375. doi: 10.1097/OGX.0000000000000567. PubMed DOI

DiGiulio DB, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am. J. Reprod. Immunol. 2010;64:38–57. PubMed PMC

Lee SM, et al. Acute histologic chorioamnionitis is a risk factor for adverse neonatal outcome in late preterm birth after preterm premature rupture of membranes. PLoS ONE. 2013;8:e79941. doi: 10.1371/journal.pone.0079941. PubMed DOI PMC

Ofman G, Vasco N, Cantey JB. Risk of early-onset sepsis following preterm, prolonged rupture of membranes with or without chorioamnionitis. Am. J. Perinatol. 2016;33:339–342. PubMed

Kacerovsky M, et al. Prelabor rupture of membranes between 34 and 37 weeks: the intraamniotic inflammatory response and neonatal outcomes. Am. J. Obstet. Gynecol. 2014;210:325.e1–325.e10. doi: 10.1016/j.ajog.2013.10.882. PubMed DOI

Musilova I, et al. Late preterm prelabor rupture of fetal membranes: fetal inflammatory response and neonatal outcome. Pediatr. Res. 2018;83:630–637. doi: 10.1038/pr.2017.300. PubMed DOI

Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J. Proteome Res. 2011;10:1785–1793. doi: 10.1021/pr101060v. PubMed DOI

Rauniyar N, Yates JR. Isobaric labeling-based relative quantification in shotgun proteomics. J. Proteome Res. 2014;13:5293–5309. doi: 10.1021/pr500880b. PubMed DOI PMC

Vajrychova M, Kacerovsky M, Tambor V, Hornychova H, Lenco J. Microbial invasion and histological chorioamnionitis upregulate neutrophil-gelatinase associated lipocalin in preterm prelabor rupture of membranes. J. Matern. Fetal. Neonatal. Med. 2016;29:12–21. doi: 10.3109/14767058.2014.991305. PubMed DOI

Kacerovsky M, et al. Lactobacilli-dominated cervical microbiota in women with preterm prelabor rupture of membranes. Pediatr. Res. 2020;87:952–960. doi: 10.1038/s41390-019-0692-1. PubMed DOI

Salafia CM, Weigl C, Silberman L. The prevalence and distribution of acute placental inflammation in uncomplicated term pregnancies. Obstet Gynecol. 1989;73:383–389. PubMed

Tambor V, et al. Amniotic fluid cathelicidin in PPROM pregnancies: from proteomic discovery to assessing its potential in inflammatory complications diagnosis. PLoS ONE. 2012;7:e41164. doi: 10.1371/journal.pone.0041164. PubMed DOI PMC

Vajrychova M, et al. Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology. Redox Biol. 2019;24:101227. doi: 10.1016/j.redox.2019.101227. PubMed DOI PMC

Werner T, et al. Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal. Chem. 2014;86:3594–3601. doi: 10.1021/ac500140s. PubMed DOI

Tyanova S, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.

Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J. Proteome Res. 2019;18:623–632. doi: 10.1021/acs.jproteome.8b00702. PubMed DOI PMC

Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Thompson GN, Halliday D. Protein turnover in pregnancy. Eur J Clin Nutr. 1992;46:411–417. PubMed

Perluigi M, et al. Proteomic analysis for the study of amniotic fluid protein composition. J Prenat Med. 2009;3:39–41. PubMed PMC

Chaemsaithong P, et al. A point of care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intra-amniotic inflammation/infection. J. Matern. Fetal. Neonatal. Med. 2016;29:360–367. doi: 10.3109/14767058.2015.1006621. PubMed DOI PMC

Knopf J, Leppkes M, Schett G, Herrmann M, Muñoz LE. Aggregated NETs sequester and detoxify extracellular histones. Front. Immunol. 2019;10:2176. doi: 10.3389/fimmu.2019.02176. PubMed DOI PMC

Silk E, Zhao H, Weng H, Ma D. The role of extracellular histone in organ injury. Cell Death Dis. 2017;8:e2812. doi: 10.1038/cddis.2017.52. PubMed DOI PMC

Tambor V, et al. CysTRAQ - A combination of iTRAQ and enrichment of cysteinyl peptides for uncovering and quantifying hidden proteomes. J. Proteomics. 2011 doi: 10.1016/j.jprot.2011.09.027. PubMed DOI

Bai B, et al. Deep profiling of proteome and phosphoproteome by isobaric labeling, extensive liquid chromatography, and mass spectrometry. Methods Enzymol. 2017;585:377–395. doi: 10.1016/bs.mie.2016.10.007. PubMed DOI PMC

Kammers K, Cole RN, Tiengwe C, Ruczinski I. Detecting significant changes in protein abundance. EuPA Open Proteomics. 2015;7:11–19. doi: 10.1016/j.euprot.2015.02.002. PubMed DOI PMC

Palstrøm NB, Matthiesen R, Beck HC. Data imputation in merged isobaric labeling-based relative quantification datasets. Methods Mol. Biol. 2020;2051:297–308. doi: 10.1007/978-1-4939-9744-2_13. PubMed DOI

Kacerovsky M, et al. Bedside assessment of amniotic fluid interleukin-6 in preterm prelabor rupture of membranes. Am. J. Obstet. Gynecol. 2014;211(385):e1–9. PubMed

Kusonmano K, et al. Effects of pooling samples on the performance of classification algorithms: a comparative study. ScientificWorldJournal. 2012;2012:278352. doi: 10.1100/2012/278352. PubMed DOI PMC

Kacerovsky M, et al. The fetal inflammatory response in subgroups of women with preterm prelabor rupture of the membranes. J. Matern. Fetal. Neonatal. Med. 2013;26:795–801. doi: 10.3109/14767058.2013.765404. PubMed DOI

Pacora P, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J. Matern. Fetal. Neonatal. Med. 2002;11:18–25. doi: 10.1080/jmf.11.1.18.25. PubMed DOI

Gomez-Lopez N, et al. Are amniotic fluid neutrophils in women with intraamniotic infection and/or inflammation of fetal or maternal origin? Am. J. Obstet. Gynecol. 2017;217(693):e1–693.e16. PubMed PMC

Faurschou M, Sørensen OE, Johnsen AH, Askaa J, Borregaard N. Defensin-rich granules of human neutrophils: characterization of secretory properties. Biochim. Biophys. Acta. 2002;1591:29–35. doi: 10.1016/S0167-4889(02)00243-4. PubMed DOI

Buhimschi IA, Buhimschi CS. The role of proteomics in the diagnosis of chorioamnionitis and early-onset neonatal sepsis. Clin. Perinatol. 2010;37:355–374. doi: 10.1016/j.clp.2010.03.002. PubMed DOI PMC

Leclerc E, Vetter SW. The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochim. Biophys. Acta. 2015;1852:2706–2711. doi: 10.1016/j.bbadis.2015.09.022. PubMed DOI PMC

Daffu G, et al. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int. J. Mol. Sci. 2013;14:19891–19910. doi: 10.3390/ijms141019891. PubMed DOI PMC

Hatakeyama T, Okada M, Shimamoto S, Kubota Y, Kobayashi R. Identification of intracellular target proteins of the calcium-signaling protein S100A12. Eur. J. Biochem. 2004;271:3765–3775. doi: 10.1111/j.1432-1033.2004.04318.x. PubMed DOI

Azevedo EP, et al. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J. Biol. Chem. 2015;290:22174–22183. doi: 10.1074/jbc.M115.640094. PubMed DOI PMC

Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MMB, López-Villegas EO, Sánchez-García FJ. Metabolic requirements for neutrophil extracellular traps formation. Immunology. 2015;145:213–224. doi: 10.1111/imm.12437. PubMed DOI PMC

Kirchner T, et al. The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Mediators Inflamm. 2012;2012:849136. doi: 10.1155/2012/849136. PubMed DOI PMC

Gomez-Lopez N, et al. Neutrophil extracellular traps in the amniotic cavity of women with intra-amniotic infection: new mechanism of host defense. Reprod. Sci. 2017;24:1139–1153. doi: 10.1177/1933719116678690. PubMed DOI PMC

de Buhr N, von Köckritz-Blickwede M. How neutrophil extracellular traps become visible. J. Immunol. Res. 2016;2016:4604713. PubMed PMC

Dąbrowska D, Jabłońska E, Garley M, Ratajczak-Wrona W, Iwaniuk A. New aspects of the biology of neutrophil extracellular traps. Scand. J. Immunol. 2016;84:317–322. doi: 10.1111/sji.12494. PubMed DOI

Fuchs TA, Bhandari AA, Wagner DD. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118:3708–3714. doi: 10.1182/blood-2011-01-332676. PubMed DOI PMC

Fuchs TA, et al. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. U.S.A. 2010;107:15880–15885. doi: 10.1073/pnas.1005743107. PubMed DOI PMC

Garg P, et al. Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture. J. Biol. Chem. 2010;285:22676–22688. doi: 10.1074/jbc.M110.122929. PubMed DOI PMC

Shin E-K, Park H, Noh J-Y, Lim K-M, Chung J-H. Platelet shape changes and cytoskeleton dynamics as novel therapeutic targets for anti-thrombotic drugs. Biomol. Ther. (Seoul) 2017;25:223–230. doi: 10.4062/biomolther.2016.138. PubMed DOI PMC

Zhao Y, et al. Thrombospondin-1 restrains neutrophil granule serine protease function and regulates the innate immune response during Klebsiella pneumoniae infection. Mucosal Immunol. 2015;8:896–905. doi: 10.1038/mi.2014.120. PubMed DOI PMC

Combs CA, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am. J. Obstet. Gynecol. 2014;210(125):e1–125.e15. PubMed

Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...